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RANDOM WALK PROBABILITIES 
IN TERMS OF LEGENDRE POLYNOMIALS 

M. A. EL-SHEHAWEY 

(Communicated by Gejza Wimmer) 

ABSTRACT. Asymmetric random walk on non-negative integers 5 , with one or 
two absorbing boundaries is considered. 

The probability distribution (pn(x\x0)) of being at any position x G S after n 
steps, given an initial position x0 6 S, from their generating function is obtained 
in terms of derivatives of Legendre polynomials. This derivation is different from 
the standard approach. 

1. Introduction 

Anomalous diffusion in random systems has received wide attention in 
the last decade. In spite of considerable progress, many important problems 
are still open. One of the models, intensively studied in the earlier works is 
a one-dimensional discrete-time random walk on the random lattice (see for 
example, N e u t s [6], Cox and M i l l e r [1], F e l l e r [5], S r i n i v a s a n and 
M e h a t a [8], W e i s s and H a v l i n [9], R a y k i n [7], E L - S h e h a w e y [2], 
E l - S h e h a w e y and M a t r af i [3], and E l - S h e h a w e y [4]). The determina­
tion of explicit expressions for random walk probabilities from their generating 
functions is effected by partial fractions. However, it is generally quite difficult. 
In this paper we seek explicit expressions for obtaining the n-step probability 
pn(x\x0) that the particle is at location x G S after n steps given that its initial 
position was x0 G S. These are easily derived from their generating function 
expansion involving derivatives of Legendre polynomials. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 60G50. 
Keywords : asymmetric random walk, generating function, Legendre polynomial, transition 
probability. 
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2. The generating function 
for the nth step occupation probability 

Let pn(x\x0) be the n-step occupation probability that the particle reaches 
the position x £ S at time n given that its initial position was x0 e S] and a, 
(3 and 7 are respectively the probabilities of moving one step to the right, one 
to the left and remaining in position, a + fi + j = 1. The boundary points 0 and 
L are absorbing barriers. Then, pn(x\x0) must satisfy the following difference 
equations. 

For n > 1 

Pn(X\Xo) = aPn-l(X ~ MXo) + lPn-AX\Xo) + PPn-l(X + MX
0) > 

x G { 2 , 3 , . . . , L - 2 } t2-1) 

Pn( 1 l^o)=7P n_i( lko)+^Pn-l ( 2ko) (2-2) 
Pn(0|x0) = i9pn_1(l|a:0) (2.3) 

PnU> " 1|*0)
 = «Pn- l ( £ " 2K)) + 7Pn-l(£ " l|*o) (2-4) 

Pn(^ko) = « P n - l ( £ - 1 k o ) (2'5) 

with the initial condition 

p0(x\x0) = 8XXQ , (2.6) 

where S„ „ denotes the Kronecker delta. 
X yXQ 

Introduce the generating functions 

00 

G(z;x\x0) = Y/z
npn(x\x0), x,x0€S, \z\<l. (2.7) 

n=0 

The Equations (2.1)-(2.5) reduce to 

G(z; x\x0) = j ~ - z [8XfXQ + z(aG(z; x-l\x0) + f3G(z- x+l\x0))] , 

xG{2 ,3 , . . . ,L -2} , 

with the boundary conditions 

G(z;x\x0) = < 

r 80xo+t3zG(z;l\x0), x = 0, 

I^[S1IXO + PZG(Z-,2\X0)], * = 1> 

T^l[<5L-i,x0+«zG(^ i-2la ;o)]. x = L-l, 

I SL,X0 + otzG(z;L-l\x0), x = L. 

(2.9) 
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Solving (2.8) and (2.9) systematically (see E l - S h e h a w e y [2]) we deduce 
that 

Xo 
I fl---iU_/J---U 

x0e s, x = o , Í (fî)" [--? 
x|xn) = < 

ш-~ fe;-<n 

— 
G(z;x\x0) = 

1f=Ц 
xoeS\{0,L}, (2.10) 

x e {i,2,...,x0}, 

G(z;x\x0)= l 

ř (vtO* *° (°'°-e*0 \ [ _ _ _ _ _ ! *oe s\{o,i 
zV^ \ ex-ea ) [ ot-e} J ' X 6 { : C O J S O 

L — XQ \m m-\< 
x0es\{o,L}, 

+ 1 . . . . . L - 1 } , 

(2.11) 
LГ0 Є 5 , x ~ L 

and G(z;x|x0) = 0 for x0 = 0 or L, x G 5\{0,L}, where 0x(z) and ^2(^) a r e 

given by 

0 ^ ) = (2-г\/ã/?) [l-iz+y/l- 2jz + (7
2 - 4aß)z2 ] , 

Ö2(z) = (гzx/õ/ ) [l - 7* - \Л - 27-г + (72 - 4aß)z2] . 
(2.12) 

With the convention that the square roots are positive we have 6x(z) > 
02(z) and hence, if yon(x\x0) denotes the n-step occupation probability that 
the particle is at location x after n steps, given that its initial position was 
x0 £ S for the case L infinite, the generating function expression (2.10) is easily 
modified to the one-boundary case. 

'(>/l)*V> *-o , 
(2-13) G(z;x\x0) = < 

__T___1 f_______l\ xo^S\{0,L}, 
'** \ * " * / * x={l,2,...,x0}. 

On using 91(z)02(
z) = 1 a n d expanding the denominator of (2.10) as a geometric 

series in ^ M w e can deduce that ex(z) 

PÁXЮ 
M 

=w»(^o)+_Sí_E(f) 
JL XQ 

wn (x I 2jL + x0) - ( | ) wn (x | 2jL - x0) 

(2-14) 
in the two cases 

(1) 1 = 0 , ^ 6 5 , 
(2) x = l,2,...,x0, x0€S\{0,L}. 
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Thus the problem of identifying the coefficient of zn in (2,10) can be reduced to 
that of determining the coefficient of zn in (2.13). In the following section we 
state some fundamental concepts and notions needed. 

3. Basic notions and fundamental concepts 

Let us introduce the notation 

= zҳ/Ҷ1 — 4aß and v = 1 
ҳ/Ҷ1 — 4aß 

with the assumption 72 > 4a/3, we see that 02(z) becomes 

2(z) = 
yJҶ1 - 4aß 

1 — uv — v 1 - 2uv -f u2 . 

(з.i) 

(3.2) 2 v ' 2yja~fiu 

From W h i t t a k e r and W a t s o n [10; p. 336], 

f 1 - UV- VI~2UV + U2 ] m = m(v2 - l ) m f" i ! L z i l l p ( m ) (v)un+m (33) 
L J z-^ (n + m)l n 

where p^m\y) denotes the mth derivative with respect to y of the Rodrigues 
formula for Legendre polynomials pn(y) defined by 

Pn(У) 
1 <*" 2 ( Г - l ) \ n > 0 . 

n!2n dyn 

We need the following results for Legendre polynomials, 

(3.4) 

Ám)(v)= ^ Г ] ' / U v ^ l 
n ҡn\(v2 - l ) т J L 

cos^ cosrrap dtp (3.5) 

(see W h i t t a k e r and W a t s o n [10; p. 325-326]), and 

(n + m)\ 
róm)(o) = ( _ 1 ) 

2n ( n+m\ \ (n — m\\ 
(3.6) 

Formula (3.6) is derived from the generating function for Legendre polynomials, 
namely 

1 °° 

= EP>K (3-7) \ / l — 2uv + u2 
n = 0 

by differentiation with respect to v and then setting v = 0, and then equating 
coefficients of u. 
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We shall also need the trigonometric identity 

^ rt , 1 sin(2M + l U / o n N 

> cos2mip = - + — \ . '* , (3.8) 
^ ^ 2 2smV> 

m=0 r 

as well as the result given by W h i t t a k e r and W a t s o n [10; p. 180] 

„!im /S'°<2^ + 1 " t / W d ^ f [ / ( 0 ) + / W ] , (3.9) 
M—><x> J sin^ z 

o 
provided that f(ip) is continuously differentiate in the range (0,7r). 

4. The one-boundary case (L —•> oo) 

In the case L infinite, from (2.13), (3.2) and (3.3) we can deduce that 

"„(01*0) = * o ( W ° 7 r T ^ í ( 7 2 " 4a/?)!t-sapf> °> 
(x + x0)\

K' H' Fn \^-4apJ ' (4.1) 

n > xQ, 

and for x G {1,2, . . . , x 0 } , x0 G £\{0, L} 

x — l . 

wn(-;|.Co) = Y(2k - x + x0 + i)2-*--+*o+iafc/3*-*+*o — 2 : _ . 
nV ' °y z--v ° ' y (n + 2k-x + x0 + 2)\ 

k=0 v u ' 

•^-^)"îi^«r+"+,,(^E3). 
n > 2& - a; + £0 , 

(4.2) 
and zero elsewhere. 

Formulae (4.1), (4.2) and (3.5) enable us to find after integration by parts 
alternative expressions for wn(x\xQ), namely 

™n(Фo) = { 

,тř7 ( v U. 7T ^ _ _ ^ 

a) 2 S (7 + 2 v / ^cos tp) n cosx 0 tp dtp, z = 0, 

£û./ 
П7Г „ „ , 

0 

, / Q \ £ T 1 ; / _ . _ , , - , v„ . . . * 6 { l , 2 , . . . , x 0 } , 

0 xQ G «->\[0, L/ . 

(4.3) 

Formulae (4.1)-(4.3) generalize those of F e l l e r [5; p. 353] to the case 7 
and x are non-zero. In fact the case 7 = 0 can be formally deduced from (4.1), 
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(4.2) using (3.6). We obtain, 

Wn(x\Xo) = { 
n-f-a — XQ n — X-\-XQ 

X = 0 , П > xn 

n -^ x xQ , 

2 n + 1 a 2 / 3 2 f cosn 7T(psmx0n(psmx7:(p dtp, x e S \ { 0 , L } , 

x0E5\{0,L}. 

(4A) 

This obviously agrees with the well-known result for the infinite random walk 
with absorbing barrier at the origin (see for example F e l l e r [5], S r i n i v a s o n 
and Me t h a t a [8]). 

5. Random walk with two absorbing boundaries 

Using (4.3) and performing an integration by parts we can verify that 

í) 
JL 

wn (x\2jL + x0) - ( £ ) wn (x\2jL - x0) 

Lҡ 

= / Fn(iþ\x\x0) cos2rrкp d(p 

(5.1) 

where the function Fn(ifi;x\x0) is given by 

' v ^ (J§ ) ""(I + 2v^9cos I )n-1sin £ sin ̂  , x = 0 , 

( f ) " ^ (7 + 2v^cos f ) n s in^s in^ , x€{1.2,...,*„} , 
E„(V-;^|x0) = — < 

x0es\{o,L}. 

From (2.14) and (5.1) we have 
Lтr 

РпЫХо) = J i m Fn(^X\Xo) 
M —>oo у 

О 

sin(2M + 1)^ 

2 8 ^ ^ 
dф, 

(5.2) 

(5.3) 

where we have used the trigonometric identity (3.8). But clearly we have 
Ln 

sin(2M + l)\j) 
/

< 
F

n(^x\xoY sin tp 
åiþ 

m=0 i 

(5.4) 
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by employing a result given in W h i t t a k e r and W a t s o n [10; p. 180]. 
Thus from (3.9), (5.3) and (5.4) we have 

L-i 

Pn (X\Xo) = \ 5 2 Fn (m7F>' X\Xo) > (5-5) 
m=l 

and therefore finally using (5.2) we obtain 

• sin 

2y/áfi ( fp\ í p / • , n / r s mn\"-i 
(5.6) 

. fmn\ . fxnmir\ m{—)sm{ - V J ' x°eS> 
Xn — X 

2 L-l 

Pn(
xK) = l(J^ ) ^(T + 2^COB™) • 

. fxmn\ . /xnra7r\ 

z G { l , 2 , . . . , x 0 } , X 0 6 5 \ { 0 , L } . 

Observing (2.10) and (2.11) we can conclude that pn(L\x0) can be obtained 
directly from pn(0\xo) using the transformation 

a <-> 0 and xQ K> L - x0 . 

Therefore pn(Z|x0) is of the form 

P„( iW - - ^ (y f ) ^ E (.+2^S?« - = ) M • 
. /m7r\ . fmn(L-x())\ 

sm(-r)sm{ \ )> xoeS-
(5.8) 

The explicit expressions for pn(x\x0),
 x € {^o'^o+l* • • •>-^~l}> ^0 ^ 

5'\{0, L} can be similarly obtained from (5.7) using the transformation 

a <-» 0 and x0 <-» a:. 

Therefore, the explicit formula for pn(
x\x

0) for any x € 5'\{0, L}, x0 € 5\{0, L} 

/ x 2 / / ? \ 2 v^/ 0 /—^ ra7r\n . fxm7r\ . fxnm7r\ 
Pn(x\xo) = i[-) £ ( 7 + 2Vk/Jcos—J s i n ( " T " J s m ( " V ~ J -

(5.9) 
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We see that with the appropriate change of notation formula, (5.6) is similar 
to a formula given by C o x and M i l l e r [1; p. 353] and generalizes that of 
F e l l e r [5; p. 353] and formula (5.9) generalizes that of W e i s s and H a v 1 i n 
[9] to the case a ^ /?, 7 non-zero. Unfortunately, however, the expression in 
N e u t s [6; Equation (20)] corresponding to (5.6) is erroneous. A comparison 
leads to the necessity of a correction in N e u t s [6]. The expression 

1 . b-j 1 
I„ = 7 S I I I P ; 7T— r-r-

e b y b [d7ldu]u = t. 

. _ ! / , N i PҠ . pҡ(Ь-j) 
= b x (4pq) 2 cos Ч- sm —--—-----

ò ò 
r + (Apq)2 cos pҡ 

should be 
1 1 . b-j 

Tn — T S H I P — : TT7-—r-T^i 
P b V h [d 7 /d«] t t = „ 

(cosp7r) l 

-b Ҷ4p^)2(cos/97г) ^ s i n — - ( b - j ) s i n ^ - r + (4pq)2 cos pҡ 
1 - 2 

, _ i , , ч 1 . pҡ . jpҡ 
b (^pq)2 sm ^— sm — - r + (4pq)2 cos 

P7Г 

in which 7 = arccos(4p#) 2 (u x — r ) , and formula (20) should corrected ac­
cordingly to agree with our result (5.6). 

A glance at the sums in (5.6), (5.8) and (5.9) show that the terms correspond­
ing to the summation indices m = k and m = L — k are of the same absolute 
value, they are of the same sign when n, x and x0 are of the same parity and 
cancel otherwise. Accordingly pn(x\x0) = 0 when n + x — x0 is odd while for 
even n + x — x0 and n > 1 

vn(
x\xo) = 

v ^ ( f ) ^ £ (т + гV^cos^^-^s in-^s in-^ 

_4 

m < # 

(ÎÏ J2 (7 + 2 v
/ «3 c o s I l f ) sin---r---sin 

n<2 

ЩIL\n

 s i n xтnҡ s i n fГûmтг 

íZ/r> t -̂ « x — o , 

x,x0 e 5\{o,L}, 

V^(f)^ £ (7 + 27^COS ÎSL)"-1
 s i n 2ШL s i n mrг(Ł-«o) , І Q g S , x = L j 

(5.10) 

the summation extending over the positive integers < \. This form is more 
natural than (5.6), (5.8) and (5.9) because now the coefficients form a decreasing 
sequence and so for large n it is essentially only the first term that counts. 
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Finally we observe that (4.3), (5.6)-(5.9) are well defined for 7 2 < 4a/3 and 
by straight forward modifications of the above we can more rigorously deduce 
these expressions for these cases. 
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