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THE ORTHOGONALITY IN
AFFINE PARALLEL STRUCTURE

JAROSLAV LETTRICH

(Commaunicated by Oto Strauch)

ABSTRACT. The paper deals with orthogonality of lines in an incidence struc-
ture. As a closure condition of orthogonality, the reduced pentagonal condition is
used. For finding the algebraic expression of orthogonality in parallel structure,
we use the Reidemeister condition except the reduced pentagonal condition.

Introduction

In this paper the orthogonality of lines in an affine parallel structure con-
structed over a non-planar right nearfield is investigated.

In section 1 we construct an affine parallel structure A over a non-planar
right nearfield and its extension A, adding improper points and an improper
line. It is proved that the Reidemeister condition (more general as in [5]) is
fulfilled in this structure A (see the Theorem 5 and its proof).

Section 2 includes the definition of the orthogonality of lines and its proper-
ties in the structure A. As a closure condition for the orthogonality of lines a
reduced pentagonal condition is introduced. By this condition as well as by the
Reidemeister condition from the section 1 the property (RP) of the structure A
is derived — the Theorem 6 on “orthogonal rectangles”.

An algebraic expression of the orthogonality of lines in A is derived in the
section 3. Some properties of the “directions” of orthogonal lines as well as the
properties of a certain mapping of the coordinate nearfield onto itself are proved.
It is shown that this mapping is an automorphism. Using this fact the condition
for the directions of the orthogonal lines is expressed in Theorem 11, which is
the main result of this paper.

AMS Subject Classification (1991): Primary 51A15.
Key words: Translation structure, Non-planar quasifield, Non-planar nearfield, Reide-
meister condition, Reduced pentagonal condition.
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An example of a non-planar right quasifield of the first type is given in the
section 4. By a modification of the operation of the multiplication we obtain a
non-planar right nearfield.

1. The parallel structure over a non-planar right nearfield
We recall the definition of the non-planar right nearfield (see [3], [4]).

DEFINITION 1. A right nearfield is defined as a triplet S = (S,+,), where
S is an at least two-element set equipped with two binary operations “+ ” and
“.” such that

(S1) (S,+) s an abelian group with a null element Q;

(S2) (S#,-) is a group with a neutral element 1, where S#* = S\ {0};
(S3) 0-a=0 foralla€eS;

(S4) a-(b+c)=a-b+a-c for all a,b,c € S (right distributive law).

A right nearfield is planar whenever
(S5) #{ze€eS| cz=a-z+b}=1 forall a,be S, a#1.
A right nearfield is called non-planar when it is not planar.

We recall some known properties of the right nearfield without proof.

LEMMA 1. For any right nearfield S = (S,+,-) the following holds:
(1) a-(b—c)=a-b—a-c forall a,b,c€ S,
(2) a-0=0 foralla€ S,
() a-(-b)=(—a):-b=-a-b forall a,b€ S.

We shall use the following notions:

DEFINITION 2.

(a) The kernel Ker(S) of a given right nearfield S = (S, +,-) i3 the set of
all elements a € S such that

(z+y)-a=z-a+y-a forall z,y€S.

(b) The centre Z(S) of S = (S,+,) is the set of all elements a € S such
that
rz-a=a-x forall z€S.

The following properties of Ker(S) and Z(S) follow from Definition 1 and 2.

LEMMA 2.

(a) Ker(S) is always a skewfield,
(b) Z(S) is always a field.
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Since any finite right nearfield is planar, by S = (S,+,:) we will mean an
infinite non-planar right nearfield, further (#5S is an infinite cardinal number).

In what follows we omit the notation a-b and we shall use briefly ab.

We are going to construct an affine parallel structure A = (P, L) over a given
nearfield S = (S, +,+): :

Ordered pairs (z,y) € S? are points from A, therefore P = §2;
lines of the first type are the sets

{(z,y) € S*| z=c}, ceS;
lines of the second type are the sets
{(z,y) € S*| y=d}, deS;
lines of the third type are the sets
{(a:,y)65’2| y =az +b}, a#0, a,bes.
Thus
L={{(z,y) €S*| z=c}| ceS}{{(z,y) €S?| y=d}| deS}
u{{(z,y) € S*| y=az+b}| a#0, a,beS}.
A line g, h,k of the first, second and the third type will be denoted briefly as
g=(x=c),ceS, h=(y=d),deS, k=(y=az+b),a+#0,a,beSs,
respectively.

The incidence of points from P and lines from £ in the structure A is
considered in the sense “to be an element”.

A relation “||” of parallelity of lines from L is determined as follows: any
line of the first type is parallel to any line of the first type and to no other line
from L. Similarly, any line of the second type is parallel to any line of the second
type and to no others. Two lines (y = ajz+b;) and (y = asz +by) of the third
type are parallel if and only if they have the same direction, i.e.

(y=arz+b) || (y=ax+ b)) < a1 =a;.

It is easy to check the following:

(a) Any line of the first type intersects any line of the second as well as
the third type (we also say they have a common point).

(b) Any line of the second type intersects any line of the first as well as
the third type.

(¢) Two lines of the third type may or may not have a common point.
Since (S5) does not hold for S, there are non-parallel lines of the third
type having no common point in £. Moreover, the following lemma
holds.
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LEMMA 3. If a point (a,b) € P does not lie on a line (y = kz +q) € L,
k # 0, then there is a line containing the point (a,b) and having no common
point with the line (y = kz +q).

Proof. See the proof of Theorem 3.2 in (3. O

The common point B € P of two different lines g,h € £ (the intersection
point of g,h) will be denoted by B=gnNh.

We have just constructed the structure A = (P,£) with the incidence of
points and lines as well as with the parallelity of lines. It is easy to see that the
axioms of an affine parallel structure (introduced by J. Andre in [1]) are
fulfilled in A.

The following is fulfilled in the affine parallel structure A = (P,L): If
A, B € P are two mutually different points, then there is exactly one line g € £
connecting A, B. This line g will be denoted as g = AB and called a join line
of points A, B.

If A= (a,b), B=(c,d), then

g=(z=a) whenever a =c, b # d;
g=(y=b) whenever b= d, a # c;

4
g=(y=kz+q) whenevera+#c,b#d, where k= (d—b)(c—a)!, (4)

qg=—ka+bd.

Remark 1. The constructed affine parallel structure A = (P, L) is a cen-
tral translation structure in the sense of J. Andre [2].

Translations of A are mappings.

7(a,b): P — P, (z,y) — (z +a, y+b), for all (a,b) € S%. The image of a
line (zx=c),c€S, (y=kz+q), k,g €S under the translation 7(a,b) is
the line (z = ¢)7(a,b) = (z = c+a), (y = kz+q)7(a,b) = (y = kx —ka+q+b),
respectively. Any line (y = kx +q), where k =ba™!, g € S is fixed (as gross)
under translation 7(a,b), a # 0. The translation 7(0,b), fixes (as gross) any
line (z=¢), c€S.

If we denote

T= {T(a,b) | (a,b) € 52} ,
then (T,-) is a translation group of all translations of A. The group (T7,-)
operates strictly simply transitively in the set P of points of A.

In order to make formulations more simple as well as to express closure con-
ditions we will extend the structure A = (P, L) adding improper points and an
improper line. The improper point § of a line g € £ is the set

a={d€eL| dlg}.
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The improper line ho, is the set of improper points of all lines from L. A
common improper point of all lines of the first and second type will be denoted
as (00), (0), respectively. A common improper point of all parallel lines of third
type (y = kox +¢q), ¢ € S (ko € S is fixed) will be denoted as (ko). Hence

hoo = {(k)| k€ S}U{(c0)}.

The structure A = (P U koo, LU {hoo}) is a projective parallel structure
with prominent improper line ho, in the sense of J. Andre. Any proper line
from A is a line from £ extended by the addition of its improper point.

We denote as A1Az...4A, (n > 2) the fact that mutually distinct points

A1,Az,...,A, € PUhy are collinear i.e. thereis aline ¢ € LU{ho} containing
all ones.

We shall use the following lemma, in the sequel.

LEMMA 4. Let A,B,C,D be mutually distinct proper points of the structure
A constructed over a non-planar nearfield S = (S,+,-). Let AB(0) A CD(0) A
AD(o0) A BC(0). If AC(k) for some k € S¥, then BD(—k).

Proof. We have A = (a,b), B = (¢,b), C = (¢,d),D = (a,d) from the
assumptions of Lemma for some a,b,c,d € S, a # ¢, b # d. Using the third
relation of (4) and the properties of the nearfield S the proof is finished. a

The Reidemeister condition (of a certain type) in an affine parallel structure
(extended by the addition of improper points and an improper line) constructed
over a non-planar left quasifield was introduced and studied in [5]. Fulfilling
that condition in the mentioned incidence structure implies that the coordinate
quasifield is a non-planar left nearfield (see the Theorem 3 in [5]). Since the
coordinate algebra of the structure A = (PUho, LU{hs}) constructed in this
paper is the non-planar right nearfield § = (S, +, -), the mentioned Reidemeister
condition holds. (The proof follows from the fact that the coordinate algebra is
a non-planar right nearfield and the lines of the third type are of the form
y=kzr+gq, k#0, k,q€ S).

We will prove the validity of a more general closure condition than that of
Reidemeister in [5].

DEFINITION 3. Let A= (PUheo, LU {ho}). We say that the Reidemeister
condition of the type (0,00,k,l,m,n), k,l,m,n € S#* k #1# m is satisfied
in A, constructed over a non-planar right nearfield S = (S,+,-) whenever A
has the property

(R) Let R€ P be a point and A,B,C,D,A',B',C',D' € P\ {R}. If any
eleven of the twelve relations from AB(0), CD(0), A'B'(0), C'D'(0),
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AD(o0), BC(oo), A'D'(c0), B'C'(c0), RAA'(k), RBB'(1),
RCC'(m), RDD'(n) hold, then the remaining twelfth relation holds
as well (see Fig. 1).
If the Reidemeister condition of the type (0,00,k,l,m,n) holds for any
k,ibm € S#, k # 1 # m, then we say the Reidemeister condition holds in
A.

THEOREM 5. In the parallel structure A= (PUhs, LU {hoo}) constructed

over a non-planar right nearfield S = (S,+,:) the Reidemeister condition is
satisfied.

Proof. Since A = (P,L) is a central translation structure and the inci-
dence relation between the points and lines as well as the relation of parallelity
of lines (see Remark 1) are preserved in any translation structure, it is sufficient
to prove Theorem 5 for the point R = (0,0).

Let k,1,m € S¥#, k # | # m. Suppose, for example, the first eleven relations
hold from (R) for given points A,B,C,D,A',B',C',D' € P\{R}.If A, A' are
arbitrary proper points of line R(k), A # R # A' then the points B, B’ lying
on R(l), C,C' lying on R(m) and the points D, D’ satisfying the first eleven
relations from (R) are determined uniquely. It is sufficient to show D' € RD
and to determine the direction n of the line RD.

Let a,a’ be the first coordinate of the points A, A’, respectively. From the
incidence A, A’ € R(k) = (y = kz) we have the second coordinates of A, A’,
thus A = (a,ka), A' = (d',kd’), respectively.

Since AB, A'B' are the lines of the second type and the points B, B’ are
lying on the line R(l) = (y = lz), the coordinates of B, B’ are

B =(I"""ka, ka), B'=(""kd' kd).

Since BC', B'C' are the lines of the first type and the points B, B’ are lying
on the line R(m) = (y = mz) we have

C=("ka,ml™ -ka), C'=("" kd,ml™" kd).

Since AD, A'D' are the lines of the first type and CD, C'D’ are the lines of
the second type the coordinates of D, D' are

D = (a, ml™! - ka), D' = (d', ml™! - kd').

Let n be the direction of RD,ie. RD = (y = nz). The equality ml™!-ka = na
results n = ml™! - k, thus

RD = (y =ml™! - kz).
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The coordinates of D' satisfy the equation of the line RD, consequently D'€ RD
and thus the twelfth relation RDD’'(n) from (R) holds and n = ml™! - k is
uniquely determined by the elements k,I,m € S#, k # | # m now. We can
prove the theorem when other eleven relations hold in a similar way. O

COROLLARY. If the relations AB(Q), CD(0), AD(o0), BC(o0) hold for any
mutually distinct points A,B,C,D € P and a point R€ P\ {A,B,C,D} does
not lie on any line AB, BC, CD, AD, then the directions k,l,m,n of the
lines RA, RB, RC, RD satisfy the equality n =ml™! - k.

Proof. Follows from Theorem 5 immediately. O

2. The reduced pentagonal condition

Define a relation “_L” (orthogonality of lines) in the set £ of lines of the
affine parallel structure A = (P, £) constructed over a non-planar right nearfield
S = (S,+,") in the following way (requiring only the validity of so-called trivial
axioms of orthogonality).

(01) gLh = hlg forall gheL,

(02) ((g9Lh) & (R || k)) => gLk forall g,h k€ L.

(03) For any line g € £ and for any point B € g there is exactly one line

he £\ {g} suchthat Be€ h and hlg.

Remark 2.

(a) If gLh, then g,h is called mutually orthogonal.

_ (b) From axioms of parallel structure and from the axioms (02), (03) we have
for a given point B € P and a given line g € £ that there exists just one line
he L\ {g} suchthat B€ h and hlg.
(c) According to the axiom (03) no line g € £ of the structure A is isotropic
(i.e. gLg does not hold).

(d) In the structure A with an orthogonality of lines
((gLh) & (9Lk)) = R ||k

is valid for all mutually distinct lines g,h,k € L.

If an orthogonality is defined in the affine parallel structure A = (P, L)
over a non-planar right nearfield S = (S, +,-), then we will always suppose the
following;:

1) Any line (¢ = ¢), ¢ € S of the first type is orthogonal to any line
(y =d), d € S of the second type and vice versa.

2) A perpendicular to a given line (y = z) of the third type is a line
(y = ex), e € S#\ {1} of the third type.

51



JAROSLAV LETTRICH

3) A perpendicular to a given line (y = az), a € S¥ of the third type
will be denoted as (y = a'z), o' € S#\ {a}; this is also a line of the
third type.

As a closure condition for the orthogonality of lines in A over a non-planar
right nearfield § = (S,+,:) a special case of pentagonal condition dealing with
an intersection point of the altitudes of a pentagon will be used (see [7]). Since
any two non-parallel lines of the third type need not have an intersection point
in our structure, some additional requirements concerning the sides of the pen-
tagon must be fulfilled. Thus we shall obtain the following reduced pentagonal
condition.

DEFINITION 4. We say that o structure A = (PUhoo, LU{hso}) constructed
over a non-planar right nearfield S = (S,+,:) satisfies a reduced pentagonal
condition whenever A has the following property:

(P) For any pentagonal ABCDE from A satisfying the relations BC(e),
CD(1), DE(c0), EA(0) and in which AB 1s a line of the third type
the following holds: If four altitudes of ABCDE (i.e. four perpendic-

ulars going from the vertices to the opposite sides) are going through a
point @, then the fifth altitude goes through @ too (see Fig. 2).

From Fig. 2 it is evident how we can construct the perpendicular k to a given
line g of the third type in the case when two couples of mutually orthogonal
lines are known (a line of the first type and a line of the second type; a line
(y =z +¢q) and a line (y = ex + ¢')) and the reduced pentagonal condition

holds (i.e. A satisfies the property (P)).

Ifin A the reduced pentagonal condition holds, then if the Reidemeister con-
dition is satisfied too (by Theorem 5 it holds in \A) we can derive another closure
condition of an orthogonality of lines in A useful for an algebraic expression of
an orthogonality in A.

DEFINITION 5. We shall say a structure A = (PUhoo, LU{hoo}) constructed
over a non-planar right nearfield S = (S,+,-) has the property (RP) whenever
following holds:

(RP) Let RyK,L,M,N € P be mutually distinct points for which KL(0),
MN(0), KN(o0), LM(00) fulfil and the point R does not lie on any
of lines KL, LM, MN, NK. Similarly let R', K', L', M', N' € P
be another mutually distinct points for which K'L'(c0), M'N'(c0),
K'N'(0), L'M'(0) fulfil and the point R' does not lie on any of
lines K'L', L'M', M'N', N'K'. If any three of the four relations
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RK1R'K', RLILR'L', RMLR'M', RNLR'N' are satisfied then the
fourth is satisfied too. (See Fig. 3).

THEOREM 6. If a structure A = (PUheo, LU{hoo}) constructed over a non-
planar right nearfield S = (S,+,:) has the property (P) then it has the property
(RP).

Proof. Since A is a central translation structure preserving the incidence
of points and lines as well as the parallelity of lines (see Remark 1) we can
suppose without loss of generality that R = (0,1), R' = (—e~!,0) has the
property (y = z)L(y = ex) where e € S¥ \ {1}.

Let Ko, Lo, My, Ny be points satisfying the Reidemeister condition with

the points R,K,L,M,N where K, = (1,yo). Similarly let K, Ly, Mg, Ny be
points satisfying the assumption of (R) with points R', K', L', M', N' where
K(') =(1- e_l’ y(,))
Suppose for example the first three relations from (R) hold. Then RKy LR'Kj,
RLyLR'Ly, RMyLR'M] also hold. To prove the fourth relation RN LR'N’'
from (RP) it is sufficient to show that RNy LR'Ng. Let k,l,m,n be directions of
the lines RK,, RL,, RM,, RN,, respectively. By Theorem 35,
n = ml~! - k. Using the reduced pentagonal condition (which is satisfied in
A by the assumption of the theorem) we construct the perpendiculars to the
lines RKy, RLy, RMy, RNy going through the point R' in such a way that
we choose a common point A of all pentagonals AB,C,D,E, AB;C;D,E,
AB3;C3D3E, AByCyD4E in the point R = (0,1) and a common intersection
point @ of altitudes of those pentagonals in the point R' = (—e~!, 0) (see
Fig. 4). It is easy to show that E = (1 —e™!, 1) and also

B, =(_k—lv Q)s Cl =('—e—l,""l+ek_l)a D, =(l'—e_laek_l)a
B2 =(_1—1,Q)7 CZ=(—e_ls _l+el—l)a D2=(l_e—l,el-l),
B; :(-m_lig)’ Cs =(_e_la _l+em-l), D, =(.1__e_lvem—l)’
By =(-n"1,0), Ci=(—e1, -1+en?), Dy=(1-e1 en™).
According to the assumption we have K; = D; = (1 — e™!, ek™!) and

Ly = Dy = (1 —e !, el™!). The point M) must lie on the line QD; and
Ly M(0) holds, hence M = (ml~! —e~!, el™!). For the coordinates of the
point N} we have

Ny =(mi™' —e™ !, ek™1).
It is sufficient to show that the point N{§ lies on the line QD4 with the equation

QD4 = (y=ek ' Im ™ (z + 7).
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Since y = ek Um I (mi™! —e ! +e7!) = ek~ Hm Iml~! = ek~! holds, the
point N{ lieson @Dy, thus R'N[LRN,, R*"N'LRN . We can prove the theorem
in a similar way when the other three of the four relations (RP) are fulfilled. O

3. The algebraic expression of the orthogonality in A

By the orthogonality of lines ((01),(02),(03) and (z = ¢)L(y = d) satisfied
for any c,d € S) of a parallel structure A = (PUhoo, LU{ho}) constructed

over a non-planar right nearfield S = (S,+,-) a map from the set S# of non-
zero elements of S into itself is given. Namely

a—d < (y=azr)l(y=ad'z). (5)

From (5) as well as the axioms and the properties of mutually orthogonal lines
follows

LEMMA 7. The map a — a’ given by (5)
(a) is bijective,
(b) 1is involutorial i.e. a” = (a’)' = a,
(c) has no fized element, i.e. for no element a € S* o' =a holds.

Since a perpendicular to the line (y = ) of the third type was denoted as
(y =ex), e € S#\ {1} we can write

l'=e, e=1. (6)

In the following we always suppose that the reduced pentagonal condition (P) as
well as the condition (RP) (as it was just proved) are satisfied in A constructed
over a non-planar right nearfield & = (S,+,:). Other nontrivial properties of
the map a +— a’ are involved in the following lemma.

LEMMA 8. For all a,b € S# we have
(M) (-a) =-d,
(8) (a7') =e-(a")7" e,
(9) (a-b)=b-et-a'.

Proof.

a) Let a € S# be an arbitrary element. We will find the perpendiculars to the
lines (y = az+1), (y = —az+1) by the reduced pentagonal condition (P), where
A =(0,1) and E = (1—e~!, 1) are common vertices of the pentagons ABCDE,
AB'C'D'E and Q =_(—e~1,0) is an intersection point of their altitudes (see
Fig. 5). When AB = (y = az + 1) has a direction a, then the line OF has
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the direction —a by Lemma 4, where O = (0, 0), F = A(0) N B(c0). Hence

AB' || OF and AB' = (y = —az +1). The coordinates of the further vertices
of the pentagons are:

B =(-a™1,0), C =(—e!, ~14ea™), D =(Q1Q-etea™),
B'=(a"1,0), C'=(—et —1—ea?), D =(1-et —ea™).

If G=(—e1 —eat), H=(1-¢€71,0), then the image of the point Q,D
under translation 7(0,—ea™'), is G, H, respectively. Moreover GH | QD.
Thus GH has the direction a’. @D’ has the direction —a’ by Lemma 4. Using

the construction and the condition (P) we have the direction of QD' is (—a)’.

Hence (—a)' = —d'.

b) We use Theorem 6 and the method of its proof to prove (8). If a € S# is
an arbitrary element, then we can determme the points (desxgnatlon as in the
proof of Theorem 6):

Ko=(l,l+l), K(I)z(l_e_lae)’

Ly =(a7', 1+1), =(1-e1, ea ),
Mo = (a7t a7t +1), Mo = (a_l —e !, eat),
=(1,a 1 +1), Ny =(a"'—e71e).

The direction of AKo, ALy, AMy, ANy, QK{, QLy, QMy, QN is k=1,
l=a,m=1,n=a"', kK =e,l'=0a", m' =e, n' =e(a’)"! e, respec-
tively (for the latter we have used the corollary of Theorem 5). By Theorem 6
QN{LAN, hence n’ = (a~!)'. Consequently we have (a=!)' =e€-(a’)"!-e

c) In this case we also use Theorem 6 and the method of its proof. Let

a,b € S# be arbitrary elements. We will determine the points (designation as
in the proof of Theorem 6):

Ko =(1,1+1), Ky =(1-e"e),

Lo = (671 1+1), Ly =(1—e1,0),

My= (b1 a+1), M= ((a)'e—e1, V),
= (1, a+1), Ny =((a)t-e—ete).

The direction of AKy, ALy, AMy, ANy, QK{, QL,, QM}, QNy is k=1,
l=b,m=ab,n=a, kK =e, ' =b, m =bela’, n' = d, respectively
(for the expression of m’ we have used corollary of Theorem 5). By Theorem 6
QML AM, hence m' = (ab)’. Consequently we have (ab)’ =b'-e7'-a’. O
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LEMMA 9. For any a,b € S* we have

-1

(@a+b) = [(a)* + ()7

if and only if e € Ker(S), where e is from (6).

(10)

Proof. Let a,b € S#. By the reduced pentagonal condition (P) the per-
pendiculars to lines (y = a 'z +1), (y=b"tz+1), y=(a+b)"lz+1) are
determined, where A = (0,1), E = (1 — e~ !, 1) are the common vertices of
the pentagons AB,C1D,E, AByCyD3,E, EB3C3D3E and Q = (—e™1,0) is
a common intersection point of their altitudes. The coordinates of the further
vertices of the considered pentagons are

B, =(—a, 0), Ci = (—e_l, —1+ea), D, =(Q1- el ea),
Bz = (—-b, Q), Cz = (—6_1, —l—{- eb), D2 = (l— 6_1, eb) y
By =(—(a+b),0), C3=(—e',—1+e(a+b)), Ds=(1—e ' e(a+D)).

By (P) QD,, QD,, QD3 is perpendicular to AB; = (y = a™ 'z + 1),
AB; = (y = b 'z +1), AB3 = (y = (a + b)~1z + 1), respectively. Their
directions are

@' =ea, () =eb, [atb)l] =ela+bd).
By the axiom (S4) e(a + b) = ea + eb. Hence
[(a+8)7 = (@) + (1)
Using (8) we have
efla+b)] ' e=e(@) -eto) e

from which
[(a+8)] 7 =[(@) e+ () e e,

The right side of the last equation is equal to (Q/)“1 + ()71 if and only if
e~ € Ker(S), i.e. e € Ker(S). Hence we have

(a+b) = [(@)+ @)
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Using the mapping a + a’ of the set S# of non-zero elements of S (defined
by (5)) and its properties (6), (7), (8), (9), (10) we define the new mapping
~: 85— S as follows:

Let A = (PUhoo, LU{h}) be a structure constructed over the non-planar
right nearfield & = (S,+,-) and satisfying the reduced pentagonal condition
(P). Let A = (0,1), Q = (—e71,0), F = (0,1) be points from P, where
e € S#\ {1} satisfies (6). An arbitrary line from £ going through F intersects
the line (y = 0) in the point X = (b,0), b € S. The line (determined by
(P)) going through @ and perpendicular to the line FX intersects the line
(z = 0) in the point Y = (0,b) (see Fig. 6). A mapping X +— Y of the set
of the points X of the line (y = 0) onto the set of the points Y of the line
(z = 0) is a bijective one in which to the point (1,0), (0,0) lying on (y =0),
there corresponds the point (0,1), (0,0), lying on (z = 0), respectively. This
mapping determines the bijective one

18-S, b—b (11)

in which 1—~1=1and 0—0=0.
The equation of the line F X, where X = (b,0), b#0 is

FX=(@y=bz—-1)
and the equation of the perpendicular QY (QY LFX) is
QY =(y=0"" z+b).
The coordinates of @ satisfy the equation of the line QY , hence
0= (1) - (~e") +5.
Using (8) we obtain

b=e- ()" forall be S#, 12

=}
1o

For the mapping ~: S — S, b+ b determined by (12) the following lemma
is satisfied:
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LEMMA 10. For any e € S# \ {1} satisfying (6) the mapping ~: S — S,

b+ b determined by (12) is an automorphz.sm of the multiplicative group (S#,-)
of the nearfield S.

If e € Ker(S) and (6) is fulfilled, then the mapping “~ ” is an automorphism
of the nearfield S = (S,+,-).

If e € Z(S) and (6) is fulfilled, then the mapping “

” 18 an identical auto-
morphism of the nearfield S = (S,+,-).

Proof. From the definition of the mapping ~: S — S, b+ b we can see

that it is bijective and 0 = 0, 1 = 1. To prove the first assertion we will show
that for any two elements a,b € S# we have

a__Tz(a)_la a-b=a-b.
e |l _‘)] "zefe-(a) ] =eet (d) €
=(d)-et=[e- () '=(@@)".

We have used (8) and the properties of the nearfield. Using (9) and the
properties of the nearfield we obtain

a-b=e-[(a- b)']_l =e-(b'-et-d) T =e-[(a') e (¥)7Y]
=[e-(a)] [e-(¥) ] =a -b.

To prove the second assertion it is sufficient to show additional equations,
namely for any a,b € S#

—a=-—a, a+b=a+b.
Using (7) and the properties of the nearfield we have:
“a=¢e- [(—a)] =e-(—d')! = —e(d')! = —a.

Using Lemma 9 and the fact that e € Ker(S), we have

a+b=e-[(a-}-b)’]_l {[ N1
=e-(a) T +e-(b)? =6+5

1]—1}—1

To prove the third assertion we use the expression of direction a' of the per-

pendicular line @D to the line AB = (y = az + 1), a # 0 in the condition
(P).
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It is easy to show that a’ = ea™!. Hence for any a € S#
1

d=c-(a)'=e-(era') ' =e-a-e'.
If e € Z(S), then
G=c-a-e'=a-e-e! =a,
thus a + @ is an identical mapping. O

For the image of e € S# (see (6)) under the mapping “~” we have by (12)

g=e- () '=e1'=e-1=ce.

Hence e is fixed with respect to the automorphism “~”. Using (12) we can
express the direction b' of the perpendicular line to (y = bz), b # 0. We obtain
b =(e'-b)',  b#0. (13)

Since a perpendicular line to (y = ¢), ¢ € S is any line (z = d), d € S
with non-defined direction, it is suitable to express the mutual perpendicular
(proper) lines from £ in the following way

(y=bx+c)J.(:c=(e_1'E)«y+d), bc,d€ S. (14)
By this relation we can also express a perpendicular line to a line of the second
type with zero-direction because 0 = 0.
By Lemma 7 the mapping a — a' determined by (5) is involutorial, i.e.
a"=a forall a€ S.If a#0,then a’ =(e™',a)”!. That means
a=d'=(@)=[ca)) ="l -a)T1] =(a)-e,

hence we have

! forall a€S. (15)

Summarizing all the facts above we obtain the following theorem which, de-
termines an algebraic expression of the orthogonality in A.

e~ l-@a=a-e”

THEOREM 11. Suppose that in the parallel structure A = (PUhoo, LU{hs})
constructed over the non-planar right nearfield S = (S, +,-) the orthogonality of
the proper lines satisfying the azioms (01), (02), (03) is defined and the reduced
pentagonal condition (P) holds. Then any line (y = ar+b), a,b € S 1s perpen-
dicular to any line (z = (e™!-@)y+c), c € S, where e € S#\ {1} is determined
by (6) and the mapping a — @ 13 an automorphism of the multiplicative group
(S#,-) of the nearfield S for which the following holds:

Q=Q’ I=.]_-1 E=ey e—l-aza-e—].

If e € Ker(S), then the mapping a — @ is an automorphism of the nearfield S .

If e € Z(S), then the mapping a — @ 13 the identical automorphism of the
nearfield S.
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4. Examples of the infinite non-planar right quasifield and nearfield

Let (C,+,-) be the field of complex numbers z = z + yi, where z,y are
any real numbers and i the imaginary unit (i®> = —1). Zero and unit elements
will be denoted by 0 and 1, respectively. If z = z + y1i, then the conjugate
complex number of z will be denoted by z# = z — yi. The mapping z — z#
is evidently a non-identical automorphism of (C, +,).

Let ¢ be an indeterminate over (C,+,-). Denote C|[t] the ring of polynomials
of the indeterminate ¢ with the coefficients from (C,+,:). If a(t) = aot™ +
a;t" ' + .-+ + an—1t + a,, (n is positive integer, ap # 0) is a polynomial
from C[t] then its degree will be denoted by n = oa and by a#(t) = aftn +
a#t"“ + -+ a#_lt + a# we will denote a polynomial with the conjugate

coefficients a; = z; —y;i, j € {0,1,...,n}. It is clear that oa* = oa.
Let C(t) be a quotient field of C(t). If u(t) € C(t), then
alt) "
= —t b(t
w)) =5, HO#0

for some a(t), b(t) € C[t]. The operation of addition (multiplication) in C(t)
will be denoted by “+” (“-”).
#
Z#E:; , where u(t) = W) € C(t). The mapping u(t) — u#(t)
is a non-identical automorphism of the field (C(t),+,-) and u##(t) = (u#)#(¢)
= u(t) holds. Define a new binary operation “o0” as follows: |
_ ad) _ )
For all u(t) = TOR v(t) = a0 from C(t) we state
a#(t) c(t+ ga—ob)
t t) = . .
u(t) e v(t) b#(t) d(t +oa— ob)

a(t)

Let u#(t) =

(16)

THEOREM 12. (C(t),+,0) is a non-planar right quasifield of the first type
without unity.

Remark 3. A right quasifield is an ordered triplet G = (Q,+,-), where
Q is a non-empty (at least two element) set with two binary operations “+7”,
“.” satisfying

(q1) (@, +) is an abelian group with a zero element 0 € Q.

(@2) (Q%#,) is a groupoid, where Q* = Q \ {0}.

(q3) For all element a € @: 0-a=0.

(q4) a-(b+c)=a-b+a-c forall a,b,c€ Q (the right distributive low).

(a5) #{(I,y) €Q?| zaty=b&ac+ty =d} =1

for any a,b,c,d € Q, aF#c.
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A right quasifield G is termed a planar (non-planar), whenever the condition
of planarity holds (does not hold):

(a6) #{z€Q| az=bz+c}=1 forall a,bceQ, a#b.

A right quasifield is called a right quasifield of the first (second) type if (Q¥#,-)
is a quasigroup (is not a quasigroup).

Proof of Theorem 12. The axioms (ql), (q2), (q3) hold evidently.
The groupoid (C#(t),-), where C#(t) = C(t)\ {0} is certainly non-commuta-

tive. We will prove (q4). Let u(t) = %— , v(t) = 2&:; w(t) = ;((3 € C(t).

Put r = 0a — ob. We have

R
_at(t) c(t+n)f(t+r)+d(t+rie(t+r)
bH(t) dit+r)- ft+r)
at(t) [e(t+r) | e(t+r)
T bR(t) ldt+r) f(t+r)] = u(t) o v(t) + u(t) o w(t),

hence (q4) holds.

Now we are going to prove that the left distributive law [u(t)+v(t)] ow(t) =

u(t) o w(t) + v(t) o w(t) does not hold in (C(t),+,0). Let r = oa — ob,
s = oc — od. For the right side we have

_ a#(t) e(t+r)  c*(t) e(t+s)
u(t) o w(t) +v(t) o w(t) = #o Jain T # @) TiT 5

On the other hand for the left side we have

[u(t) + v(t)] o w(t)
_a(t)-d(t) +b(t) - c(t) e(t)  a¥(t)-d¥ (1) + b¥ (1) - c*(t) _e(t+m—n)
=T A 0 W (D) - F (1) T+ m—n)

a#(t) e(t+m—n) () e(t+m—n)
@) Ferm—n) " @) farm—n)’

where m = o(ad + bc) = max(oa + od, cb+ oc), n = ob + od. Consider the
three cases:

oa+ od
m=< ob+oc

‘ca+od=cb+oc.
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We can see that the left side of the left distributive law is equal to the right side
only for the third case. Hence the left distributive law does not hold.
a(t)

Now we will prove that (C#(t),0) is a quasigroup. For any u(t) = o)

and v(t) = sgg from C#(t) the equation u(t)o z(t) = v(t) has the following

unique solution

bt —r)-c(t—1)
2(t) = at(t—r)-dit-r)’

where r =coa—ob.

It follows from the computation
_ a(t) #(t—r)-c(t—r)
wt)o2(t) = 35y ° GF e =) dit=1)
a#(t) Wt—r+r)-ct—r+r) _ <) ®
TV af(t—r+r)di—r+r) dr)

Similarly for any u(t), v(t) € C#(¢) the equation y(¢) o u(t) = v(t) has the
unique solution
(1) = b#(t —r +s)- c#(t)
YW= G#(t—r +s) d#(t)

It follows from the computation that
N oulf) = bt —r+s)-ct(t) a(t) _ B*F(t—r+3s)- HFH()
vt oult) = Farts) aF@) b)) - aFF(E 1 +5) dFFQ)
alt—r+s) bt—r+s)-ct) alt—r+s) <) ®).
"Bt—r+s) alt—r+s)-dt) bt—r+s) dit)

We have used the property a##(t) = a(t), which is satisfied for all a(t) € C(t).

The quasigroup (C#(t), o) is not a loop since it has no unity. For 1 the
equation 10 u(t) = u(t) holds but u(t) ol = u#(¢) = u(t). Hence 1 is a left
unity.

Since/“o0” does not satisfy the associative law the quasigroup (C #(t), o) is
not a semigroup. In order to prove that the associative law does not hold it is
sufficient to compute the following.

a(t) c#(t) e(t+s)
o o) 0ut)] = 5t o 505 555
_ a#(t) cH(t+r)-e(t+s+r)
TRt dF(t+r)- f(t+s+r)]

where r =ca—o0b, s=o0c—-od.
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where r = 0a —ob, s =0c—od.

On the other hand we have

[u(t) o v(¢)] o w(t)

_ [a#(t) - c(t+r)] o e(t)  a*#(t)-c#(t+r) e(t+r+s)
CLe#(t) d(t4r)]  f(t) T bE#E(R)-d*(t+r) f(t+r+s)
_a(t)-cF(t+r)-e(t+r+s)

Cb(t)-d#(t+r)- fEHr+s)

Hence u(t) o [v(t) o w(t)] # [u(t) o v(t)] o w(t).

Since (C#(t),0) is a quasigroup it is easy to prove the validity of (¢5), i.e.
for any r(t), s(t),u(t), v(t) from C(t), r(t) # u(t) the following system of
equations

z(t) o r(t) +y(t) = s(t)
2(t) o u(t) +y(t) = (?)
has the unique solution (z(t), y(t)) .

From the first equation we can express y(t):

y(t) = —z(t) or(t) + s(t) (17)
and substituting it in the second one we obtain
z(t) o [u(t) — r(t)] = v(t) — s(t).

Since (C#(t), 0) is a quasigroup the last equation has the unique solution. From
(17) we can find the unique y(t).

Now we will prove that the quasifield (C(t),+,0) is not planar. That means
there are u(t), v(t), w(t) € C(t), u(t) # v(t) for which

u(t) o z(t) = v(t) o z(t) + w(t)
has no solution. Let u(t) =1, v(t) = —t, w(t) = 1. We will prove that

z(t) = —toz(t)+1 (18)
has no solution. Suppose z(t) = ZE—:; (b(t) # 0, a(t) and b(t) are coprime
elements) is a solution of (18). That means

at) _ _t alt)
be) ~ 108 TH
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Using (16) we have

t-a(t+1)-b(t)+a(t) -b(t+1)=b(t)-b(t+1). (19)
Put m = oa(t) = ca(t + 1), n = ob(t) = ob(t +1).
From (19) we have
l+m+n=n+n = m=n-1. (20)
From (19) we have

t-a(t+1)-b(t) = [b(t) - a()] - B(t + 1).

Since b(t) divides without remainder the left side of the last equation it must
divide also the right side. Since a(t) and d(t) are coprime elements b(t) must
divide the polynomial b(t+1). It is possible only when n = 0. By (20) m = -1,
which is a contradiction. Consequently (q6) does not hold in (C(t),+,0).
Summarizing we obtain that (C’(t), +,0) is a non-planar right quasifield of

the first type. Its multiplicative group (C#(t), o) is non-associative, having no
unit. O

The element 1 from the constructed right non-planar quasifield (C(t), +,0)
is only a left unit with respect to “o”. Using the construction 1 from [4] we can
change the operation “o” so that the element 1 would be a right as well as a
left unit. In order to do it we define a mapping

0:C(t) = C(t),  a(t) - a(t)ol
and the new operation “e” of the multiplication in C(t) is defined

u(t) e v(t) = ¢ [u(t)] o v(t), for all u(t), v(t) € C(¢).

In order to prove that 1 is a left and right unit with respect to the new operation
(13 ”

o7, we will express “e” by the original operation “o” in the field (C(t),+,0).
Since ¢[z(t)] = (t) o1 = z#(t) and the automorphism z(t) — z#(t) is

involutorial, ¢ [x(t)] = z#(t). Hence for any u(t) = aEt; v(t) = Eg from

C(t) we have

at# c oca—o
u(t) e v(t) = u#(t) ov(t) = b##g; . dgj— oa— al;);

_a(t) c(t+oa—ob)
T b(t) d(t+ oa— ob)

=u(t) - v(t + oca — ob).

Changing “o” to “e” the properties of (C(t),-{-,o) are preserved, except
those of the non-existence of unit and the non-associativeness of “o0”. More

precisely
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THEOREM 13. (C(t),+,e) is a non-planar right nearfield.

Proof. See the proof of Theorem 5.1 in [3]. The Theorem 13 is a special
case of Theorem 5.1 from [3] in such a sense that in our case F is the field of
complex numbers and the indexing set J is a singleton. 0O

THEOREM 14. The centre of the nearfield (C(t),+,o) is the field (C,+,-) of
complex numbers.

Proof. See the proof of Theorem 5.2 in [3]. The operations “o”

o and [43 ° ”
coincide on C'. a

(c0) (n)

(k) (m)
D', / C’

0]
Al —
. / B
B
R 9
A/?/ @ P (c0)
(e) g (9)
Q p
B
)
h >/
D
(5]

Figure 1 and Figure 2.

65



66

JAROSLAV LETTRICH

N, M
R K y
R K’ N’
AN N
L’ M
Figure 3.
= k
(o) (z=1) (n) (k)
Ny M, (m)
(e) Ko -0
L~ Lo
(e8]
A=R E
R'CQ [J (0)
B2 B3\ B1\ B4 0,0)
Dy
No
1=Kg
Ca
C
Cs
D=Ly Mg
C2
Figure 4.



THE ORTHOGONALITY IN AFFINE PARALLEL STRUCTURE

(== ((=a)")

(a’)\

(a) B (2.9 \ 1 ()]

(o]
Figure 5.
((b'l)’)\ (c0)
Y
1)
(e)
OO\~
! ) -1
©,9 o
F 9 x ©
F
—
Figure 6.

67



JAROSLAV LETTRICH

REFERENCES

[1] ANDRE, J.: Uber Parallelstructuren. Teil I: Grundbegriffe, Math. Z. 76 (1961), 85-102.

[2] ANDRE, J.: Uber Parallelstructuren. Teil II: Translationsstrukturen, Math. Z. 76 (1961),
155-163.

[3] DAVIS, E. H.: Incidences systems associated with non-planar nearfields, Canad. J. Math.
XXII (1970), 939-952.

[4] HAVEL, V.—STUDNICKA, I.: Terndrringe ohne Planarititsbedin gung, Casopis Pést.
Mat. 104 (1979), 65-74.

[5] LETTRICH, J.—OKTAVCOVA, J.: Reidemeister condition in the translate structure
over a non-planar quasifield. (Slovak), Price a stidie VSDS v Ziline, séria mat.-fyz. 8
(1990), 55-63.

[6] NAUMANN, H.-REIDEMEISTER, K. : Uber Schliessungssitze der Rechtwinkelgeometrie,
Abh. Math. Sem. Univ. Hamburg 21 (1957), 1-12.

[7) SCHUTTE, K.: Schliessungssdtze fir ortogonale Abbildungen euklidischer Ebenen, Math.
Ann. 132 (1956), 106-120.

Received April 15, 1991 Department of Mathematics

Revised April 12, 1992 University of Transport and Telecommunications
ul. M. Hurbana 15
010 01 Zilina

Slovakia

68



		webmaster@dml.cz
	2012-08-01T08:08:35+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




