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A MEASURE DECOMPOSITION THEOREM 

VLADIMIR PALKO 

There is shown in this note that various measure decomposition theorems 
may be proved by the same technique. Let (X, £f) be a measurable space (in the 
sense of [2]) and M the set of all measures on £f. If ve M and A is locally 
^-measurable, then vA denotes the measure defined via vA(E) = v(A n E), E e ^ . 
Jf(v) denotes the family of all v-null sets. 

Theorem. Let for every TEM a a-ring £f(T) a <? be given, in such a way that 
the following conditions I—IV are true: 

I. Jf{%) C <f(T) 

II. EE^(T), FeS?,FczE implies FE^(T) 

III. AeSf(T)iffAeSr{TA) 
IV. If Aeif and T(B) = sup {T(Q: C a B, CeSf(r)}for every 9>-measurable 

subset B cz A9 then AE9*(T). 

Then every veM may be written as a sum of measures vX9 v2 where 9*(vx) = £f 
and6T(v2) = Jr(v2). 
Proof. For every TEM9 denote 2E{x) the cr-ring of all sets AEZS such that 
BczA, BE^(T) implies T(B) = 0. Clearly, 

(1) EE^(T), FCZE9 FE9> implies FE2£(T) 

(2) Sf(r) n 2{T) = JT(T) for every TE M. (2). 

If VE M is given, define vx and v2 by the formulas 

vx(E) = sup{v4(£): AE^(V)}9 EE&> 

v2(E) = sup{v5((£): BE£?(V)}9 EE<?. 

Families {vA}Ae^(v) and {vB}Be#(v) are increasingly directed, hence vx and v2 are 
measures (see [1], Theorem 10.1.). Let EE9" be given. If vx(E) = oo, then the 
equality v(E) = vx(E) + v2(E) is obvious. Let vx(E) be finite. There exists a 

00 

sequence AnE&?(v), Ana E and vx(E) = lim v(An). Denoting F= M An9 we 
H - O O n=x 

have FE^(V) and vx(E) = v(F). Moreover, F\FE2£(V). Let BE^(V) be arbi­
trary. v(BnF) = 0 by (2), hence v(F\F) = v(BnE). Thus, v2(E) = v(F\F). 
Consequently, v(E) = vx(E) + v2(E). 
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Let us observe the following consequences of II and (1): 

(3) A e Sf(v) implies ( v ^ = vA 

(4) Ae2£(v) implies (v2)A = vA. 

Let A be an arbitrary set of Sf. vx(A) = sup{v(£): B cz A, BeSf(v)}. BeSf(v) 
implies BeSf(vB). By (3), v(B)=vx(B) and Sf((vx)B) = Sf(vB). Thus, 
BeSf((vx)B). Hence BeJ"(vx). Summarizing, v^A) = suplv^Z?): B cz A, 
BeSf(vx)}. Hence by IV, Sf(vx) = Sf. 

Suppose, AeSf(v2) and v2(,4) > 0. Then there exists Be%(v) such that 
BaA and v(B) > 0. Clearly, BeSf(v2). By (4), (v2)B = vB and 
Sf((v2)B) = ^(v 5 ) . Using III, we have BeSf(v). Thus, v(B) = 0 by (2), a con­
tradiction. Thus, ^(v2) = Jf(v2). The theorem is proved. 

We show four possible applications of this theorem. If//, ve M, then v is said 
to be absolutely continuous with respect to // (written v «§ //) if //(IT) = 0 implies 
v(E) = 0, EeSf. ju, v are said to be singular (written // _L v) if //̂  = vB = 0 for 
some disjoint locally ^-measurable sets A, B such that ^ u B = X. Denoting by 
Sf(T) the family of all sets A eSf such that TA <? //, one obtains that v = Vj + v2 

where vx <| // and <Ŝ (v2) = J^(v2). If v fulfils the Countably Chain Condition, 
then the last equality implies the singularity of v2 and //. Thus, we have obtained 
the Lebesgue decomposition. 

A set AeSf is called r-atom (briefly atom) if T(A) > 0 and B cz A, BeSf 
implies T(B) = 0 or T(B) — T(A). T is called non atomic if it possesses no atom. 
r is called purely atomic it every set of positive measure r contains an atom. 
Defining Sf(T) = {AeSf\ TA is non atomic}, one obtains from the Theorem 
that every veM is a sum of a non atomic and purely atomic measure. 

Denote by Sf(T) the family of all sets AeSf such that TA is semifinite. Then 
it follows from the Theorem that every veM is a sum of a semifinite mea­
sure v, and of a measure v2 which attains only values 0 or oo. 

Assume that Sf contains every countable subset of X. We say that re A/ is 
determined by countable sets if for every EeSf there exists a countable set C 
such that C cz E and r(C) = T(E). Denote by S^(T) the family of all sets A eSf 
such that TA is zero on countable sets. Then it follows from the Theorem 
that every ve M is a sum of vx nad v2 where v, is zero on countable sets and v2 

is determined by countable sets. 
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ТЕОРЕМА ОБ РАЗЛОЖЕНИИ МЕРЫ 

V1аа,^т^^ Ра1ко 

Резюме 

В работе доказывается абстрактная теорема об разложении меры, определенной на 
ст-кольце. Из нее следуют четыре конкретные теоремы, например теорема об разложении 
Лебега и другие. 
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