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A MEASURE DECOMPOSITION THEOREM
VLADIMIR PALKO

There is shown in this note that various measure decomposition theorems
may be proved by the same technique. Let (X, %) be a measurable space (in the
sense of [2]) and M the set of all measures on &. If veM and A is locally
& -measurable, then v, denotes the measure defined via vo(E) = (ANE), Ee¥.
N (V) denotes the family of all v-null sets.

Theorem. Let for every te M a o-ring (1) < & be given, in such a way that
the following conditions 1—IV are true:

I. /(1) F(7)
II. Ee¥ (1), Fe ¥, F c E implies Fe (1)
III. Ae&L(7) iff Ae F(1,)
IV. If Ae & and ©(B) = sup {1(C): C = B, Ce ¥ (1)} for every &-measurable
subset B < A, then Ae ¥ (7).
Then every ve M may be written as a sum of measures v,, v, where & (v|) = &
and ¥ (vy) = N (V).
Proof. For every 7e M, denote Z°(7) the o-ring of all sets 4€.% such that
B c A, Be #(7) implies 7(B) = 0. Clearly,

(1) Ee # (1), Fc E, Fe¥ implies Fe Z (1)
) F()n Z (1) = N (1) for every e M. )
If ve M is given, define v, and v, by the formulas
Vi(E) = sup{vE): Ac ¥ (V)}, E€ ¥
V(E) = sup{vy((E): Be Z(v)}, Ee <.
" Families {V,} e #() and {Vz}z. »(,, are increasingly directed, hence v, and v, are

measures (see [1], Theorem 10.1.). Let Ee & be given. If v,(E) = oo, then the
equality E) = v(E) + w(E) is obvious. Let v|(E) be finite. There exists a
sequence A,€ ¥ (v), 4, < E and v|(E) = lim v(4,). Denoting F= | ) 4,, we

n=1

have Fe ¥ (v) and v,(E) = v(F). Moreover, E\Fe Z(v). Let Be Z(v) be arbi-
trary. (BN F)=0 by (2), hence V(E\F) Z2v(Bn E). Thus, v(E) = V(E\F).
Consequently, V(E) = v|(E) + w(E)..

167



Let us observe the following consequences of II and (1):

3) Ae &£ (v) implies (v), = v,
4) Ae Z (v) implies (v;), = v,.

Let A4 be an arbitrary set of &. v,(4) = sup{v(B): B < A, Be ¥(v)}. Be ¥ (v)
implies Be¥(vy). By (3), v(B)=wv(B) and S((v)y) = S (vg). Thus,
Be #((v)p). Hence Be./(v)). Summarizing, v,(4)=sup{v(B): Bc 4,
Be #(v))}. Hence by IV, &£ (v)) = &.

Suppose, A€ £ (v,) and v,(4) > 0. Then there exists Be Z'(v) such that
BcA and v(B)>0. Clearly, Be%(wv,). By @), (v);=v; and
FL((vy)p) = F(vp). Using 111, we have Be ¥ (v). Thus, v(B) = 0 by (2), a con-
tradiction. Thus, & (v,) = A"(v,). The theorem is proved.

We show four possible applications of this theorem. If y, ve M, then v is said
to be absolutely continuous with respect to u (written v <€ p) if g(E) = 0 implies
UE) =0, E€e . u, vare said to be singular (written u L v) if g, = vy =0 for
some disjoint locally #-measurable sets A, B such that A U B = X. Denoting by
& (1) the family of all sets 4 € & such that 7, < y, one obtains that v= v, + v,
where v, € u and & (v,) = A (v,). If v fulfils the Countably Chain Condition,
then the last equality implies the singularity of v, and u. Thus, we have obtained
the Lebesgue decomposition.

A set AeS is called r-atom (briefly atom) if 7(4) >0 and B< 4, Be ¥
implies 7(B) = 0 or 7(B) = ®(A4). tis called non atomic if it possesses no atom.
7 is called purely atomic it every set of positive measure 7 contains an atom.
Defining & (r) = {A€ ¥ : 7, is non atomic}, one obtains from the Theorem
that every ve M is a sum of a non atomic and purely atomic measure.

Denote by £ (7) the family of all sets 4 €% such that 7, is semifinite. Then
it follows from the Theorem that every ve M is a sum of a semifinite mea-
sure v, and of a measure 1, which attains only values 0 or co.

Assume that & contains every countable subset of X. We say that 7e M is
determined by countable sets if for every E€ & there exists a countable set C
such that C = E and 17(C) = 7(E). Denote by & (1) the family of all sets A€ &
such that 7, is zero on countable sets. Then it follows from the Theorem
that every ve M is a sum of v, nad v, where v, is zero on countable sets and v,
is determined by countable sets.
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TEOPEMA OB PA3JIOXKEHWU MEPbLI
Viadimir Palko

Pe3ome

B pabote noka3seiBaeTcs abCcTpakTHas Teopema o0 pa3sIOKEHHH Mepbl, ONpENEEHHOH Ha
o-xonbue. M3 Hee CeqyloT 4YeThIpe KOHKPETHbIE TEOPEMBbI, HAIPUMEP TeopeMa 06 pa3JIoKeHHH
Jlebera u apyrue.
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