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ON MAGIC LABELLINGS OF m-PRISMS
MARTIN BACA
1. Introduction

Various types of labellings of graphs have been intensively studied by com-
binatorialists for some time. The notion of magic labellings has its origin in very
classical Chinese mathematics. Only recently have these labellings been inves-
tigated by using modern notions of the graph theory. The notion of magic
labellings of plane graphs was defined by Ko-Wei Lih in [1], where magic
labellings of type (1, 1, 0) for wheels, friendship graphs and prisms are given.

This paper describes a magic labelling of type (1, 1, 0) for graphs of convex
polytopes.

2. Terminology and notation

G is a finite connected plane graph without loops or multiple edges, V(G)
is its vertex set and E(G) is its edge set. A labelling of type (1, 1, 0) assigns labels
from the set {1, 2, ..., |V(G)| + |E(G)|} to the vertices and edges of a plane graph
G in such a way that each vertex and edge receives exactly one label and each
number is used exactly once as a label. If we label only vertices or only edges,
we call such a labelling a vertex labelling or an edge labelling, respectively. The
weight of a face under a labelling is the sum of the labels of vertices and edges
surrounding that face.

A labelling is magic if, for every integer s, all s-sided faces have the same
weight [1].

We allow different weights for different values of s.

A labelling is jump-magic if, for every integer s, there exists a finite subset T*
of integer numbers such that the weight of each s-sided face is an element of 7°.
We allow different sets T° for different values of 5. Two labellings f and f’ are
complementary if, for every integer s, the sum of the f-weight and f’-weight of
each s-sided face is a constant.

We make the convention that x;

j,n+ 1
—1y —1)y+!
=£__12__'___1 and ﬂ:.(M
2 2

= x;, and we shall use the expressions
(for j=0, 1, 2, ..., m) to simplify later

notations.
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3. Labellings of m-prisms

Form > 1 and n > 3 let R be the Cartesian product P, , , x C, of a path on

m + 1 vertices with a cycle on n vertices, embedded in the plane and labelled as
in Fig. 1. We will call the plane graph R]" an m-prism.

Define the vertex labelling f; as follows.

filx) =alG+ D)n+1—il+ B@n+1i) for 1<i<n and 0<j<m.

Theorem 1. The vertex labelling f, of R, is jump-magic if m > 1 and n > 3,
n#4,

Proof. The weights of all 4-sided faces constitute the set
W= {wé, wi, ., wi_ ),

where for 1 <i<mnand 0<j<m—1

Fi(x) + [ixgi010) F G000 + 11065 104010) = Wit

The weights of both n-sided faces constitute the set
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Wn = {ws, wi} where w¢= Y fi(x,)
i=1

and w) = if,(x,,,,,.).

It is simple to verify that the vertex labelling f; is jump-magic.
Define the edge labelling £, as follows.

n<m_j+[]_.])+iz-j if ik 1
n
.ﬁ( jl+]) .
n<m—j+[f-]+1)+i—j if i<k+1
" |
n<2m+1—j-[l])—i+j+2 if izk+2
n
fz(xj,ixj+ L) = .
n<2m——j-—l:i:|>—i+j+2 if i<k+2,
n

wherekzj—[J]n 1<z<n 0<]<mandtheexpress1on[

] denotes the
n

n

greatest integer less than or equal to L
n

Theorem 2. The edge labelling f, of R is jump-magic if m>1,n>3,n+#4
and it is complementary to the jump-magic vertex labelling f,.
Proof. The weights of all 4-sided (n-sided) faces constitute sets

U= {ug, ut, ..., ut_ 3}, U"={uf, u’},
where for | <i<nand 0<j<m-—1

S, 01) F LG 1% 4 1ie1) T 0600, + f2(X500% +1,i+1)=uj4

and

Z f2(x0 :x0|+1) u = Z f‘Z(xm lxm1+l)
i=1
The edge labelling f, is jump-magic. Since wj + uj =4V(R) + |ER)) + 4
foreach 1 <i<n 0<j<m—1and wy + uj =w,, + u, =n[|V(R™| + 1] it
follows that the labellings f, and f, are complementary.
Our previous results lead to the following theorem.
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Theorem 3. For m > 1, n > 3, n # 4 the graph of the m-prism R has a magic
labelling of type (1, 1, 0).

Proof. Label the vertices and the edges of R by f, and |V(R])| + f>,
respectively. The resulting labelling is a labelling of type (1, 1, 0) with labels from
theset {1, 2, ..., [V(R)| + |E(R)|} and the common weight for all 4-sided faces
is 8|V(R))| + |E(R))| + 4 and for both n-sided faces it is n[2|V(R))| + 1].
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O MATMYECKHUX PABMETKAX m-ITPU3M
Martin Baca
Pe3ome

IMycts G — cBs3HbIH 110ckuii rpag c |V(G)| BepumHamu U |E(G)| pebpamu.

Pa3mertka tuna (1, 1, 0) npunuceiBaeT MeTkn U3 MHOXecTBa {1, 2, ..., |V(G)| + |E(G)|} Bep-
LIMHAM U pebpaM TakuM o6pa3oM, YTO KaxI0i BeplMHEe U pebpPy NMpHUNUCHIBAETCA TONBLKO OJHA
MeTKa, MPUYEM KaxJaas MeTKa UCIOJIb3YETCs TONbLKO OIMH pa3.

Bec rpaHH OTHOCUTENIBHO JAHHOW Pa3METKH PaBEH CyMME METOK, IPUITMCAHHBIX €€ BEpIINHAM
u pebpam.

Pa3MeTka Ha3bIBAETCS MAruyecKoil, €CJIM BCE IPAHU C OAHUM H TEM K€ YUCIIOM CTOPOH UMEIOT
OIMH M TOT e, 3aBUCSLIMIA OT YUCIJIa CTOPOH, BeC.

B pa6oTe mocTpoensl Marudeckue pazmetku tuna (1, 1, 0) ans ogsoro xiacca rpados Bbin-
YKJIBIX MHOTOT DaHHHUKOB.
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