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ONE GENERALIZATION OF QUASIFIELD

JAROLIM BURES—JOSEF KLOUDA

Among other affine planes the translation planes are characterized by the
transitivity of their translation group (to any two points of the plane there exists
exactly one translation, carrying the first into the second one). In paper [1] by
J. André translation planes are described via so-called congruences. These are
coverings of the group by its proper subgroups such that any two distinct ones of
them generate the whole group.

In this article another algebraic description of translation planes by means of
generalized quasifields is introduced A generalized quasifield differs from the
quasifield in such a way that the solution of the equation a.x=25 and the
conditions 1.a=a and 0.a =0 are not supposed.

In §§ 1, 2 we introduce the basic notations and generalize the notation of the
quasifield. In §§ 3 and 4 are concerned with coordinate transformations and
quasifields associated to the same affine plane. The method due to G. Menichetti
[3] is generalized here. In the last § 5 we investigate the geometric properties of
algebraic systems introduced in the preceding paragraphs. This work was prepared
under the direction of V. Havel.

§ 1. Translation planes

Definition. A partition in an additive non-trivial group G is defined as a set % of
non-trivial subgroups of G such that to every non-zero x € A. A partition ¥ in
a group G is called congruence if

VA, BeX; A+¥B A+B=G

In [1] pp. 165 it is proved that the existence of a congruence % in G implies
commutativity of G and

VA, Be¥; A+B A®B=G

Let J be a congruence in G. By a #-endomorphism of G there is meant an
endomorphism ¢ of G satisfying p(A)c A for every Ae. The set of all
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J{-endomorphisms with the sum and product defined in the usual way is said to be
a kernel K(¥) of a congruence %. In [1], pp. 167 it is proved:

Proposition 1. Kernel K(%) of a congruence ¥ is a skewfield.

If & is a congruence in G we can consider G as a vector space over K(%). Then
every A € & is a vector subspace of the vector space G.

Let W be a vector space over a skewfield F, W+ its additive group and 7 a
congruence in W™ such that every A € % is a vector subspace of W. For each fe F
define a map a,: W— W by a,(x)=f.x. Obviously a, € K(%).

Definition. Let W be & vector space over a skewfield F and 5 a congruence n
W+ such that every A € 5 is a vector subspace of W. If K(¥) = {q,, f € F}, we shall
say that X is a congruence in W.

Let J be a congruence in a vector space W. Let us construct a plane a( W, %) in
the following way: The points of a( W, %) are just the elements of W and the lines
of a(W, ) are just subsets of W of the form U+a, UeJX, ae W.

Proposition 2. a( W, &) 1s a translation plane. For proofs, see [1] pp. 163.

§ 2. Generalized quasifield

Definition. A right generalized quasifield or GVW-system Is an algebraic
structure consisting of a set Q of at least two elements provided with two
operations, addition and multiplication satisfying the following axioms:

(VW 1) (Q, +) is a group, its neutral element will be denoted by 0.

(VW2)Va,b,ceQa.(b+c)=a.b+a.c

(VW 3) There exists in Q the right unit element 1 € Q satisfyingV ae Qa.l=a.

(VWA Va, beQ; a=0 3! xeQ x.a=b

(VWS)Va,b,ceQ; a#¥b 3I! xeQ —a.x+b.x=c

This in a GVW-system neither a left distributivity nor associativity of multiplica-
tion is supposed. One does not require that 0.4 =0, 1.a =a for a € Q. Neither is
the equation a.x = b supposed to have a solution for any given a, b€ Q, a#0.
Notice that (VW 2) implies VaeQ a.0=0and Va,beQ —(a.b)=a.(—-b)

Proposition 3. The addition of any GVW-system is commutative.

Proof. Given a GVW-system Q, construct a translation plane a(Q) as follows:
Points of a(Q) are just the ordered pairs (x, y) Q X Q. Lines of a(Q) are just all
the subsets of points (x, y) satisfying either y =a.x+ b (for a, b fixed), or x=a
(for a € Q fixed). Translations of a(Q) are precisely all the mappings (x, y)+>
(r+a y+b), a,beQ. The group T(a(Q)) of all translations of a(Q) 1s
isomorphic to the direct sum Q*+ Q% { the additive group Q* of the
GVW -system Q. A, T{a(Q)) 1s abelian, Q" is also abelian
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Delinition. Let G be a non-trivial additive group and ¥ a system of its
endomorphisms satisfying:

(1) Ya,beG; a+0 3! Xef Xa=b
Q) VX, Ye¥; X+Y (X-Y)G)=G

Then the ordered pair (G, £) will be called an L-system.

Let G, %) be an L-system, ae G; a#0. For Vx, ye G define x.y=Xly
(X:e#). The group G provided with this multiplication is a GVW-system
Q.(G, %), the unity element of which the element a is. Conversely, if Q is
a GVW-system, we can consider the set of endomorphisms %, = {@, ; Q.(¥) =a.x,
aeQ}. ‘

Denote by Q* the additive group of the GVW-system Q. Then (Q*, %) is an
L-system. Obviously Q,(Q*, %,)=0Q

Proposition 4. If (G, L) is a L-system, then G is an abelian group.
Proof. Being additive group of the L-system Q,(G, %) is abelian.

Definition. Let (G, £)be an L-system. An $-endomorphism of G is an
endomorphism @ of G commuting with every Xe %, 1.e. VaeGV XeZ pXu=
Xoa.

Definition. The set K(G, £) of just all £-endomorphisms of G is cafied kernel of
ZL-system (G, L).

Proposition 5. Kernel K(G, &) is a skewfield.

Proof. Sum and product of two #-endomorphisms is defined by (o + o)(e) =
o(a) +a(a), (co)(a) =e(o(a)).

Obviously K(G, £) is an associative ring with unity element. It suffices to prove
that every endomorphism ¢ € K(G, ¥) 0#0 is automorphism of G. In fact, if
€ K(G, %) is an automorphism it is o(X(g 'x))=Xx which means Xo 'x=
o 'Xx.

Thus we consider g€ K(G, ¥) for which there exists g€ G, g+0C such that
0(g)=0. Then for VA e G it is 040 X%(g) = X3(0)=01.e. 0=0. For 0+0, 0(g)=0
implies g =0. Let us show now that for p#0 itis o(G)=G. Let H, k€ G, k#0.
Then o(X¢%k)=X%*(ok)=H. So we have shown that every pe K(G, &£); 0#0 is
an automorphism of G, finishing the proof.

In this sense we can take G as a vector space over the field X(G, &£). £ is then
the set of endomorphisms of this vector space.

Definition. The kernel K(Q) of a GVW-system Q is the set
{xeQ; (a+bx=a.x+b.x, (a.b).x=a(b.x) Va,beQ}

Proposition 6. The kernel K(Q) of a GVW-system Q is a skewfield.



Proof. Obviously 0,1e K(Q). etx, K( ) Th nforall a,beQ:

(a+b) (x+y) (a b). (a+b).y
=a.x+b.x+a '+b.y .( +y)+b.(x+y)

(a.b)x+y)=(a.b)y+(a.b)x—ab. Y+a.(b.y)=a.(b.(x+Y))

(a+b)(x y)=(C b).x)y (a.x+b.x)y—
=(a x)y+(b.x)y=a ( )*+b (x.y)

(ab).(x y) (( B)x)y a.((bx)y)—a.(b(xy))

Let x¥0 x, y K(Q). Th nth r e 1sts ex tly one) el m nt ze Q such that
zZ.x—y.

((a+b))x—(a+b) » a.y b. —a( .x)+b ( .x)=
-(a.z).x ) ( z b2z2)x

and according to (VW ) g
at+b).z .z+ Y ,beQ
Furthemore
((a.b) 2).x (a. v a(b.) ) (a(b.2)).x

and by (VW 4) (a.b).z—a (b ) a,beQ Thu if xeK(Q), x#0, then
x'eK(Q), x '.x—1 ndthep £ f = d

Propositi n 7. K(Q.(G, ¥ r c (G 2.

Proof. For Vre K(Q (G, %) ro— an e domorphism of G. Since
(er)(Xey)=(x.y(. =x y.) yr) ( (y)forallx ) e G, @rbelongs
to G(G, ¥). For Vse K(G ) ef a As for er xeG there is
x.(s.a)—X:(s.a)-s X ) for r x €G

(x+y).(s.a)= (x ) s. s — (s.a)+y (s.a)
(x.y) (sa) . y X X y-X@u( a-
—x (. t ys K(Q (G, 2))
HseK(Q, %), eh o s() ( =s(x) for every x € G, getting thus

@Ys =s, which implie that i m" iv F h rmore for € K(Q,(G, %)) there
isYyor=q@r(a)=a.r. Butb caus a1 aum vy element of the field K(Q,(G, %)),
there is a.r=r or Yor r whi h h s that vy 1s a mapping of K(G, %) onto
K(Q.(G, ¥). Now to complet th po f t remains to verify that there is
Y, +5)=vPs,+vs, (5,8)— s (.,

Defin’tion. Let (G, (" )Ybto ms ¢ a homomorphi m of G into
G',Yamappingof it £ I VX V G o(Xx)— ($X)(@x), we call the
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ordered pair (9, V) a homomorphism of an L-system (G, %) into an L-system
(G',&"). If (9,V) is a homomorphism of (G, ¥) into (G', %), ¢ is an
isomorphism of L-systems (G, ¥) (G', &').

If (g, ¢) is an isomorphism of the L-system (G, ¥) and (G’, £'), we have
VX =¢Xo ' for every X € £. Conversely, if pG— G’ is an isomorphism such that
oLy '=%', let us set X=X '. Then (¢, ¢) is an isomorphism of the
L-systems (G, £) and (G', £’). Thus we can speak about an isomorphism @ of the
L-systems (G, ¥) (G', £') if it is an isomorphism of G onto G’ such that
L' ={pXop™', XeZL}.

If two L-systems (G, ¥) and (G', £'4 are isomorphic, then the fields K(G, £)
and K(G', £') are also isomorphic. Namely if ¢ is an isomorphism of (G, .¥) onto
(G', &') it suffices assign to any A e K(G, ¥) an element A¢ '€ K(G', &').

Proposition 8. If ¢ is an isomorphism of an L-system (G, £) onto an L-sy tem
(G', &), then @ is an isomorphism of the GVW-system Q,(G, £) onto Q.
(G, &'). If the GVW-systems Q,(G, %), Q,(G', ¥) are isomorphic, then the
L-systems (G, %), (G', £') are also isomorphic.

Proof. Let ¢ be an isomorphism of the L-systems (G, £) onto (G', £'). Then
oX:p '(p(a))=9X:;a=@(x). Hence for all x, ye G we get

o(x.y)=0(Xiy) =0X)o '(9y) =X
(@) =9(x)(y) .
For the proof of the converse part let us suppose that is an isomorphism of the
GVW-system, Q,(G,.¥) onto the GVW-system Q,(G’, ¥’'). Then ¢ is an
isomorphism of G onto G'. For any X% € % and any y € G there holds

eX:0' (py)=0(x.y)=@(x)p(y)=X33(»)
and therefore Lo~ '=2¢".

Definition. A right generalized quasifield Q is called a right VW-system (right
Veblen-Weddeburn system, right quasifield) if there is

(VW6) VaeQ 0.a=0

(VW7) VaeQ l.a=a.

A GVW-system Q,(G, %), where (G, £) is an L-system is a VW-system if and
only if £ contains the zero endomorphism 0 and the identity endomorphism 1.
Namely, if we have 0, I € £, then 0.x = X6x =0(x) =0, a.x = X2x =I(x) =x for all

xeG.
Example. R@®R is a vector space over the field R of real numbers. For

VA a,b,eR, g>*+b*=1 we define (A, a, b)(x,, x;)=(((2a>— 1)x, + 2abx,),
M(2abx,+ (262 - 1)x,)).
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Foravetor (3, ) ednoen(y,y)—vi+y A simple calculation shows
that tl ere is

Ax x) N(( a, b)(x,, x,)).

Now we are going to prove that the mapping (A, a, ) — (M’ a, b) is injective for
(W a,b)#(,a',b'). T o responding mappings are distinct). If there is A £\,
we ha e

[ (( )( 15 X ))_)\Zl\r(xh x2 )
N(( , 6 (x, ) —AN3N(x,, x,).
N(xy,x, N N(x, x,)

if and only if Nyx 1) -0, x,—0 x, O
Let us have wov A—. 0.T n

[had -~ " DC, ) ((@* a)x, r(ab—a'b')x
0 ") (B =b") ).
Because of
a a —a b’|_ a b
a'b b b a’, b"#o

we get from [(A a, )—( ,a’,b)}(x, x,) (0,0) that there 1s x, x =0. We
show that tt ¢ et of all mappigs (A, a, b) 1s transitive on R@ R, i.e. that to every
(x, x:)#(00) (yi..y) R®R there exits a mapping (A a,b) such that
M, a, b)(xi, v-)—(y, y

If (y,,y.)—-(0,0, we tk A- (. hus et (y,y,)#(00), that 1s to say
N(y,y) -0, N(a, x)# ) nl there exit peR, pu#0 such that N(y,,y ) -

UN(x, x,). Choosing . Vi ve g t N(A 'yi, A 'y,)=N(x,, x,). Now there exists
{ 0)e RXxR such that

P+ (2) , O +y)((2V) -0
b

+5* 1
(A, a, b) is the desited anping Let us d note by £ the set of all mappings
(M a,b) Thua ((R+2)* )YisanL-s t m.
§ 3. Lire r coordinates

Leta(W, %) b a r slatior pl ne A 7 .S asubspace of W, 1somorphic to A
andsuchthat ABS W,pe V1 >+ A S be anisomorphism. If a € W, then
th r existsexa1tyo e ( ) uc ttata—p—y ®x The vectors x, y are
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linear coordinates of the point a in the coordinate system (p, A, S, ®@). To any
BeJ, B¥ A there exists an endomorphism X, of A such that

B={Xpgx+®x; xeA}
We denote by £(A, S) the system of all endomorphisms X, B+ A.

Proposition 9. (A, Z(A, S)) is an L-system.

Proof. Let xe A, x#0, y € A. There exists exactly one element B € % such that
y +®xe B+ A. That means that there exists exactly one element X e %(A, §)
such that Xx =y. Further let X, ye £(A, §), X# Y, ze A. Because

{Xx+®x; xeA} @D {Yy+®Py; yeA}=W
Xx+Px+Yy+dy=z

we get

Px+Py=0, x=—-y, (X-Y)(x)=Xx—Yr=z
ie. (X-Y)(4A)=A4

Let us consider a line A +& and let (x,, y,) be coordinates of the point b.
Coordinates of any point y + b, y € A are then (x,, y, + y) and the line A+ b is
described by the equation x = x,. Conversely, the sct consnstmg of all points (x, y)
satisfying x=c, c€ A is the line A + ®c.

Let us have now a line B+ b, B# A. The coordinates of any pomt Xpz+ Pz +
Yy +@x,, z€ A are (Xpz+y,, z+x,). Hence the equation of B+b is y=
Xgx — Xpx, +y,. Conversely, the set of (x, y) satisfying y = Xzx + ¢ is the line
B+ ¢. Choosing in A a unit element a =0, we geta GVW-system Q,(A, L(A, 5))
and then any line of a is described either by the equation y=b.x+corbyx=c.

The translation plane a(Q,(A, £(A, S)) is isomorphic to the plane a. The
described isomorphism is a mapping sending every (x, y) to y + ®x.

Proposition 10. Let a(W, K) be a translation plane (p, A, S, ®) a coordinate
system. Then K(a) is isomorphic to K(A, (A, S)).

Proof. Let s € X(a).s is an endomorphism of W* leaving every element of the
congruence invariant. We define @s=s/A (restriction of s to A) ® is an
isomorphism of A with S i.e. s®(x) = ®(sx) i.e. s®(x)=D@sx for every xe A.)
Further let Xe #(A, S). Then {Xx+ ®x; xe A} e ¥ and thus for s € K(a) we
have s (Xx + ®x) =5 Xx + ®sx € { Xx + ®x; x € A}, which means that there exists
y € A such that s Xx + ®sx = Xy + ®y. From the uniqueness of this expression it
follows ®sx = ®y and because P is an isomorphism, we have y =sx, s Xx = Xsx,
i.e. (ps)Xx = X(ps)x. We have shown that s e K(A, (A, 9)).

Let re K(A, £(A, S)). We define y(r) to be an endomorphism of W* such
that: (yr)(x+y)=rx+®r® 'y where xeA, yeS. Since (Yr)(A)cA,
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Yr({Xx+®x;x  })) {r x+ m,xeA}—{Xrx+®Prx; xeA}cXy+bdy;
yeA}, XeZL(A, S). We have yre K(o). It can be easily seen that

QY idka 24 sy > Y@ =1dk
Y+ r)=y(r) +y(r), Y(r, r2)=W(r1)w(r2)

and from this our a sertion immediately follows

For an L-system (G,%) K(Q.(G, %)) is always isomorphic to K(G, %).
Therefore K(a) 1 isomorphic with K(Q,(A, %(A, S)). But generally for
a GVW-system Q, K(Q) ne d not be 1somorphic with K(a(Q)).

Example.Q {0,1,2 3}. An dditive roup of the GVW-system is defined in
t e followin w y:

| 1 2 3
1 0 3 2
3 01
210
Multi lctnmmQid f e folo (eg 2.1-2,0.2=2)
1 01 2 3
0 00 2 2
1 0110
2 0 2 3 1
3 0 3
K(Q)—{0,1} be 1 3).2-3, but 1.2+3.2=1 (1+3).3=1, but

1 3+3.3=3.

The t pito a( )1 the tQXQ.A groupof just all translations of the
tran lat n pl ne a Q) s morph c to the group.O“‘@Q* A congruence in
Q*@OQ* relat dt the lan «(Q) consi t o the groups

{(00),(10),(3,2),22)}, {(00),(1,1),(3,0), (2,1)}
{(00),(1,2) 2,3) ( D}, {(0,0) (3,3),(2,0),(1,3)}
{(0,0), (0,1), (0,2 (0,3)}

K(a(Q)) conta1 the zero ndo orphi m, the identity endomorphism as well as
the endomorphism (0,1)—(0,.)—(0,3) (1,3)—(3,3)—(2,0) and (0,1)—(0,3)—
(0,2) As |K(Q)| 2, |K(a(Q))|—4, K(Q) and K(a(Q)) cannot be isomorphic.
Ch singAeiX hereX1 co ruencein G and S asubgroup of G isomorphic
with A chthat A®S G e na ingt (A, S)suchthat(A,%(A,S))is
an L-sy tem. Then th ern 1 K(A, ¥(A, S)) is i omorphic to the field of all
X-endomorphism A uch that 'A®dx —®Ax for all xe A, where ® is a given
i omorph’ m of Then the follo 1 g can be easily proved.

Propos't 11. T e k rn I K(Q) 1s isomorphic with a subfield of K(a(Q)).
27



§ 4. Quasifield

Definition. We call an L-system (G, ¥) a QL-system if contains the zero and the
identity endomorphisms.

If (G, %) is a QL-system then Q,(G, ) is a quasifield. If Q is a quasifield, then
(Q*, %) is a QL-system. Let a(W, %) be a translation plane. A, B, Ce ¥,
A#B# C#A. Then there exists an isomorphism ® of A onto B such that
{x+®x; xe A} = C. The coordinate system (p, A, B, ®) will be denoted in this
case by (p, A, B, C) and instead of £(A, §) we write €(A, B, C). Itis easy to see
that (A*, €(A, B, C)) is a QL-system.

Proposition 12. Let Q be a quasifield Then the kernel K(Q) is isomorphic to the
kernel K(a(Q)).

Proof. Let us choose A={(x,0); xe Q}, B={(0, x); xe Q}, C={(x, x);
x € Q}. The sets of (x, y) satisfying x =0, resp. y =0, resp. x =y are lines and
therefore A, B, C are elements of the congruence J corresponding to the
translation plane a(Q). An easy argument shows that the QL-system (Q*, %) is
isomorphic to the QL-system (A, $(A, B, C)). As K(a) is isomorphic to
K(A, €(A, B, C)), K(a) is isomorphic to K(Q*, %,). But K(Q*, %) is 1somor-
phic to K(Q) and the proposition 1s proved.

To any given coordinate system (p, A, B, C) and unit element ae A; a#0
there can be associated a unique quasifield Q = Q,(A, €(A, B, C)). But after the
passage to another unit element or another coordinate system, the new quasifield
need not be isomorphic with the quasifield Q. '

That is to say we can have various non-isomorphic quasifields associated to a
given translation plane.

Proposition 13. Let o(W,X) be a translation plane. Two quasifields
Q.(A, €(A, B, C)) and Q,(A, €(A, B, C)) are isomorphic if and only if there
exists an affinity & of the plane a(W, %) such that ®,(A)=A, ®,(B)=B,
@,(C)=c; Py(a)=b (Pu(c—d)=d(c)—A(d)).

Proof. Let Q,(A, €(A, B, C)) be isomorphic to Q,(A’, €(A’, B', C')). Then
there exists an isomorphism ¢ of the QL-system (A, €(A, B, C)) onto the
QL-system (A', €(A’, B', C')) such that @(a) = b. Let ® be an isomorphism of A"
onto B such that {x + ®x; xe A} = C and a ®' isomorphism of A’ onto B’ such
that {x+®'x; xe A’} =C. We define an automorphism of W* setting y(x +
Dy)=px+P'py  Obviously Y(A)=A', Y(B)=B', Y(C)=C". Let
Xe¥€(A, B, C)) then y{Xx+Dx; xeA} {(pXo Vx)+P'ox; xeA}eH.

Thus we have shown that vy is an automorphism of W™ preserving the
congruence J. It is not difficult to verify that v is a semilinear automorphism of W
and Y(a)=>b.

Let ¢ be a semilinear automorphism of W preserving the congruence J¢, and let
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o{A)=A", o(B)=B', ¢(C)=C, @(a)=b. Let y=q/,. Then v is an isomorph-
ism of A* with A",

As o{x+@x)=@x + Dx =yx +pDx e C’', there exists y € A’ such that yx +
Ox=y+®P'y. Moreover as A'@B'= W, we have y=yx, oPx=>'Yx. For
Xe€{A,B,C) we get p{Xx+Px, xe A}={(YXYP Yx+odx, xeA}=
{(WXpYy+@'y, yeAdA’'}. Thus Xy 'e€(A’, B',C'). Conversely if
Ye€(A'.B',C'), then @ '({Yy+®'y, yeA'N={(y Y)W 'y)Py 'y,
yeA'Y={""Vypx+Px, xe A} e ¥, whichimpliesy ™'Yy e $(A, B, C). Thus ¢
is an isomorphism of the QL-sysiem (A, €(A, B, C)) orto the QL-system
(A, C(A',B', C")) and therefore the quasifields Q,(A, €(A, B, C)) and
Quamoa=s{A’, €(A', B', C")) are isomorphic. The proof is finished.

For the sake of brevity introduce the symbol «. If (G, %) is a QL-system,
F* =L u{=}, we shall call the pair (G, £*) a QL*-system.

Defimition. Let (G, L*) be a QL*-system, S, T, Ue %, S¥ T+ U+ S. Then

a) (o, T, NX=(X-TW{U-T)" forall XeX%
(e, T, U)o =00

b) (8,0, NX=(X-8S}(U-S5) forall XeXZ,
(8,0, U)S=c X#S
(8,00, Uyeo=0

) (5§, T, 0)X=(X-8)(X-T) forall Xe%
(S, 7T, 0)§=w X#+S
(S, 7T, ©)o=]

d) (5,7, NX=(X-8)"'(X-TWU-T)(U-S)
forall Xe ¥, X+58
(5,7, )=
(5, T, Uyo=(U-T)"(U-S)
1 — identical endomorphism.

Delinitioa. A QL*-system (G, £*) is said to be associated to a QL*-system
(G', £'*) if there are given @ — an isomorphism of G onto G" and S, T, U € £*,
S* T+ U+ 8 such that £'*={@(S, T, U) X', Xe £*}, where pog ' = o,

Delinition. We say that a quasifield Q is associated to a translation plane a if a is
isomorphic to the plane a(Q).

Prepesition 14, Two quasifields Q, Q' are associated to a translation plane a. if
and onlfy if the QL*-system (Q™, X&) is associated to the QL *-system (Q'*, L&.).

Proof. Let us suppose that (Q*, %,) is iscmorphic to (A, €(A, B, C)) and let
@ be an isomoerphism of A onto B such that {x + ®x, x € A} = C. We assume first
that the quasifields are associated to the same affine plane.

a) (Q'*, %) is isomorphic to (A, €(A, B', C')). Let B'={Tx+ ®x, xe A},
C'={Ux+®x, xeA}. For the mappings ®': A-»B' ®'x=T(U-T) 'x+
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®(U~-T) 'x there holds {x+®'x, xe A}={x+T(U-T)"'x+&U-T) 'x,
xeA)={(U-TNy+Ty+®y, yeA}=C'. 1If Xe%(A,B,(C), then
{(X-TYWU-T)"'x+®'x, xeA}={(x—T)y+Ty+ Py, yeA}l={Xy+dy,
yeA}.

b) (Q'*, %) is isomorphic to (A, €(A’, A, C')). Let A'={Sx +Dx, xe A},
C’'={Ux+ ®x, xe A}. The mapping ®'(Sx + ®x)= (U — S)x is an isomorphism
of A onto A for which there holds {x+®’x, xe A’} ={Sx+ Px+ Ux — Sx,
xeA}=C'. For Xe%(A,B,C), X+S there is {S(X-8)'(U-S)z+
P(X-8) (U-8)z+D'(5z+D2), Sz+®, . ZeA'}=
{(S(X-8)"'y+®(X-8)"'y+y, yeA}={Sx+Px+(X—-9)x, xcA}=
{Xx+Px, xeA}.

¢) (Q'*, %) is isomorphic to (A, ¢(A’, B’, A)). Let A’={Sx+®x, xc A},
B'={Tx+®x, xe A}. If we define @'(Sx+ Px)=T(—x)+d(—x) we gct an
isomorphism of A’ onto B’ such that {Sx+®x+P'(Sx+Px), x=A}—
{Sx+Px+T(—x)+P(—x), xeA}={(S—T)x, xc A} =A.

Now for Xe€(A,B,O), X#+S let us set D(X)-—
{(S(X-8)"'X-Tz+P(X-8)"(X-T)z+D'(Sz+ Dz), ZEA}=
{S(X=-8) 'X-T1)z+d(X-8)(X—T)z— Tz— Pz, ze A}. Further for X+ T
we have D(X)={Sy+®y-T(X-T)'(X=-8)y—-®(X-T)'(X-S8)y, ye A}.
But because of S-X)y=(X-TN(X-T)(S—X)y there 18
Xpy+X-D)'(S-X))=8Sy+T(X-T)"(S—X)y and thus D(X)=
{X+(X=D(S-X)+(y +(X-T)"(S-X)y), ye A}.

If now xeA, there exist a, b€ A such that Xx+ ®x=Sa+ Pa+ Th + ®b.
From this it follows that ®(x)=P(qa+d), x=a+b, X(a+b)=Sa+ Th, that is
(§-X)a=(X-T)b,b=(X-T)'(§—X)a.To any x € A we can find ¢ € A sach
that x=a+ (X —T)"'(S— X)a. Therefore D(X)={Xx+®x, xe A}. f X=T,
one can directly verify that D(T)={Tx+ ®x, xe A}.

d) (Q'*, L) is isomerphic to (A’, €(A’, B', C")), where A’#A, B'+A,
C'+A. Let A'={8x+®x, xeA}, B'={Tx+®x, xeA}, C' ={Ux+ ®x,
x € A}. The mapping @' (Sx+ Px)=T(U-T)"'(S—-Ux+Pd(U-T) (§- U)x
is an isomorphism of A’ onto B’ for there holds {y+®'y, yeA'}=
{Sx+Px+T(U-T)"'(S-U)x+(U~-T)(S— U)x, xeA)={Ux+dx,
xeA}=C. If D={Sx+®x+T(U-T)'(S§-U)x+d(U~T)(S- U)x,
xe€A}, then D={Ux+(U=T)"(S-U)x)+d(x+(U~T) (§-U)x),
x €A}, because Sx+ T(U—T)"'(§ — U)x= Ux+ U(U - T)"'(§ — U)x for every
x€A. If ye A, then there exists a, b€ A such that Uy + Py =8a+ Da+ Tb +
®b. This implies ®y=Pa+Pb, y=a+b, Ula+b)=Sa+Th, (§—U)a=
(U=-T)b,b=(U—-T)"'(S— U)a. Thus to every y € A there exists x € A such that
y=x+(U-T)"(§-U)x and therefore D={Uy+®y, ye A}=C".

For Xe€(A,B,C), X+5 we set D(X)={S(X-8)"(X-TYWU-T)"
(U=8)z+d(X-8)"(X=T)U-T)"(U-S8)z+D'(S5z+ Pz), zeA}=
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—{S(X-95) '(X Tyy+®(X-S8) (X-T)y—Ty—®y, yeA}. Because of
X-Ty=(X-S)(X-S) (X Ty, there 15 SX-8) ' (X-T)y-T)=
=X((X-$8) (X-T)y—y) and thus D(X)={X((X-S) '(X-Ty-y)+
+O(X-S) (X—Ty—y),yeA}.If x€ A, there exist a, y € A such that Xx +
+dx=Sa+Pa—Ty— Py From this it follows that Px=Pa - Py, x=a—y,
Xa—Xy=8a—Ty, (X—S)a=(X-T)y, x=(X-5) '(X-T)y-y, D(X)=
{Xx+dx, xeA}.

Let us suppose that (Q*, %,) 1s associated to (Q'*, %% ). Then there exist
S, T, U e %% and an isomorphi m @ of the group Q onto the group Q'" such that
LE{o(S, T, U)X, Xe Lt} If

a) S=w, letusset A'=A, B" {Tx+®x, xeA}, C'—{Ux+®x, xe A},

b) T=o, letusset A’={Sx+Px, xeA}, B A, C'={lx+Dx, xeA},

c) U=, let us set A’ —{85x Dux, A}, B —{Tx+®x xeA}, C'=A,

d) S¥o, T o, U o etusset A’ {Sx+dPx x A}, B'={Tx+ Px,
xeA}, C' —{Ux+®dx, xeA)}, then (Q'*, %) 1s isomorphic to
(A', €(A’, B, C)). This fimishes the proof.

Proposition 15. Let there b given a translation plane o(W, %) with
a coordinate sy tem (p A, B, C) and let (x,., y,) be coordinates of the point p’
with respect to the coordinate system Further let S T Ue ((A, B, O),
S#T+#U+S, A'={Sx+dx, xe A}, B'—{Ix &x, xeA}, ' —{Ux+ Dx,
xeA}. () § +®x1 anisomorphism of A onto A A pont z with coordinates
(x, y) with respect to the coordinate system (p, A B, C) has coordinates (x', y )
with respect to the coordin te sy tem

a) (p',A,B',C) ndthe is x (U-T) 'x"+x
y T(U-T)'x" y
b) (p'A',A,C ) andt ere 1 r=¢ 'y +x
y=( So'x" >¢9'y +y,
c) p,A'" B',A)andthereis X= ¢ x' @'y +x
y T 'x +Sp y'+y,
d (p',A',B',C') ndthrei
x (U TS O 'x +op 'y +ux,
y—TWW T)'(6-U)p x'+S¢ 'y’ +y

Proof.

a)z—p' —y'+®'x'-y + T U-T) 'x' +®(U—T) 'x . Further we have z —
p=y+®x—(z-p )+ p) y+TWUW-T) xX'+®(U-T) ¥'+y, +Px,,
b) —p =y +®dx’ sy +dp vV +P(Se r Do x')=S¢ )
®¢ 'y +(U—-S)p 'x' Farher we have z p v+®@x—(z—p)+ p —p)=

S 'y+®p 'y'+(U S 'x y Px.
c) ~—p' 'y Sp' ' ®g'y +@'(Sp 'x'+Pg 'x)=S¢ 'y'+
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D 'y — TP ix'— @@ 'x’'; thus we get z—p=y+®x=(z—p')+(p'—p)=
SCP 'Y'+T(D lx’+yp'+q)‘:p_1y’+¢(p_lxl+®xp"

d) 7—p' =y +Px'=S¢ 'y + P9 'y + d(Se 'x'+ P 'x') =S¢ ‘y’-'|~
o .y,+T(U—T)(S—U)cp“x’+<D(U—T) (§—=U)p~'x’, and from this
z—p=y+®Px=(z2-p)+(' -p)

ZSg ty + T(U=T) (§= V)@~ 'x" +3,+ @gly' + &(U~T) '(S= U)p '’
+ Px,..

§ 5. Geometrical properties of L-systems:

Lemma 1. Let (G, %) be a L-system, U, Ve%, U+V, £'(U)={X-U,
XeZ), LU, V)={(X-U)(V-U)", XeZ}.

a) (G, £'(U)) is an L-system such that &' (U) contains the zero endomorphism.

b) (G, £'(U, V)) is a QL-system.

Proof. The set {{(Xx, x), xe G}, Xe L}u{(x, 0), xe G} is a congruence in
the group GP G. We denote A = {(x, 0), xe G}.

a) Let us denote S={(Ux, x), x€ G}. The mapping ®: A—S defined by
®(x, 0)=(Ux, x) is an isomorphism. For every X € £ there is {((X— U)x, 0) +
®(x,0), xe G} ={((X—U)x + Ux, x), xe G} ={(Xx, x), xe G}.

b) Let us denote B={(Ux,x), xe G}, C={(Vx, x), xe G}. Because of
{(x, )+ (U(V-U)"'x, (V=-U)""x), xe G} ={(x+ U(V-U)'x, (V-U) 'x,
xeG}={((V-U)y+Uy,y), ye G} ={(Vy, y), y € G}, the mapping ®(x, 0)=
(U(V-=U)'x, (V=U) 'x) is an isomorphism of A onto B such that {(x, 0)+
®(x, 0); xe G} =C. For X e there holds {((X— U)(V-U)'x, 0) + ®(x, 0),
xeG}={((X-U}(V-U)"'x+U(V-U) 'x, (V-U)"x), xeG}=
{(X-U)y+Uy,y), yeG}={(Xy, y), ye G}.

An L-system (G, %) and an element a € G— {0} determine a GVW-system
Q,(G, &) and an affine translation plane a(Q.(G, ¥)). If b € G- {0}, the planes
o(Q.(G, &) and o( Q, (G, ¥)) are isomorphic. We say that an L-system (G, %) is -
associated to a plane a if there exists an a € G {0} such that a is isomorphic to
a(Q.(G, &)) and we write a=a(G, £).

From the construction performed in the proof of lemma 1 it follows:

Proposition 16. If (G, ¥) is an L-system, then for every U, Ve ¥; U+ V the
systems (G, %), (G, Z'(U)), (G, £'(U, V)) are associated to the same affine
plane.

For the sake of brevity we introduce the following mappings defined for all U, V,
X, Yee(G) (the set of all endomorphisms of the group G) for which the
expressions make sense:

1. ®,:¢(G)Xe(G)—¢e(G)
O,(X, V)=X+Y-U
2. Wy e(G)—e(G)
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Won(X)=(V-U)X-U) (V-U)+U
3 Yovi&(G) X e(G)—€e(G)
Yov(X, V)=(X-U)(V-U)y(Y-U)+U
4. 1, 8(G) X e(G)—€(G)
(X, V)=(X-UNV-U)y(Y-U)—(Y~— Uyv-U) (X-U).
Let us suppose moreover that G does not contain elements of the order 2 (i.e.
x +x =0 implies x =0).

Lemiaa 2. Let (G, %) be a L-system. If there exists U € £ such that (£'(U), + )
1s a group, then for every V, U, with V¥ U, (£'(U)), +) and (£"(U,, V), +) are
roups.
Proof. If #'(U) is a group, then
a) for every X, Ye % there is (X—U)+(Y - MeL'(U),ie. X+ Y-Ued
aud
b) the inverse element to X — U in £"(U) is an element X' — U svch that
(X=U)+(X'-U)=0,ie. X+ X'=2U and v'ee versa, (£'(U,), +)isa group 1f
and only if
1) ®,(HcZ
i) VXeZIx e X+X'=2U.

Let U,e¥. To Xe¥ there exists X' € £ with X+X'=2U and setting
Xi=X'+2U,-2U we have X+ X1=2U,, Xi=((X'+U,-U)+U)-U,, A=
X' +U,—U, A+U,-Uc¥. To U, e there e¥ists Ure L vith U, + Ui=2U
and for X, Ye% there holds X+ Y—-U,=((X+Y~— O+ U)-UeZ for
A-X+Y—-Ue%, A+ Ui—Ue¥. The second part fo'lows immediately from
the equality (X-UNV=-U)"+(Y-UXV-U)"'=(X+VY=-2U)-
(V—=U))"" and from the foregoing part.

Proposition 17. 1. A CQL-system (G, Z"(U, V)) satisfies the condition
XeP' (U, V)SX e (U, V) if and only if the QL-system (G, ¥) has the
property V(€)= L.

2. The QL-system (G, Z"(U, V)) is a skewfield with respect to the addition and
composition of homomorphisms ((£"(U, V), +, o) is a skewfield) if and only if for
some U, (£'(U)), +) is a group. Yuu(Ex L and V()= L.

3 Under the assumption of 2, #"(U, V) is a field if and only if 1. (£ X N =0,
1e. ¥xFcKer tyy.

Proof. 1. X=(A-UXV-Uj), X '=(V-U)A-U) 1,
(V=-U)YA-U)'=(Z-UYv-U)'eL(U, V) if and only if Z-
(V=-UYA-U)\"(V-U)+Ue¥Z."

2. X=(A-U)V-U)", Y=(B-U)V-U)" are elements £(U, V)
XoY=(A-U)V-U)y(B-U}V-U) '=(Z-U}V-U) 'eL” (U, V) if
and only if Z=(A—-U)(V-U) '(B-U)+UecZ. The identity isomorphism
I=(V-U)V-U)'e¥ (U, V) for every U, Ve £, X "¢ Z£"(U, V) by 1.
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3. XoY=YoX if and only if in the notation of 2 there is (A—U)
V-U)y'(B-U(V-U)y'=B-U(V-U)y'(A-U)(Vv-U)'=
Tuv(A, B)=0.
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