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ASYMPTOTIC BEHAVIOUR OF SOLUTIONS
OF THE DIFFERENTIAL EQUATION
OF THE FOURTH ORDER

JOZEF ROVDER

1. Introduction

In this paper we shall consider the equation

(1) y@+q(t)y’ +r(t)y=0,

where ¢(¢) and r(¢) are functions having continuous first derivatives on [a, ). We
shall investigate the behaviour of solutions of (1) as ¢ — % when the ratios of certain
powers of q(¢t) and r(¢) are small (improper integrals on [a, ®) exist), unlike in
other papers (e.g. [1], [2]), where t*q(¢) and £’r(t) are supposed to be small, or g ()
and r(¢) to approach a constant. ,

The method of proving our theorems lies in reducing equation (1) to the
equivalent system of equations to which the following Coddington—Levinson
theorem ([1], p. 92) will be applied.

Theorem 1. Let A be a constant matrix with characteric roots 7;,,j=1,2, ..., n,
all of which are distinct. Let the matrix V(s) be differentiable and satisfy

[velas<e
1]
and let V(s)—0 as s > . Let the matrix R(s) be integrable and
flR@nm<m.
[}

Let the roots of det [A + V(s) —1E]=0 be denoted by 1,(s),j=1, 2, ..., n. Fora
given k, let

Dy(s)=Re [1(s) — 7;(s)].

Suppose all j, 1 <j=<n fall into one of two classes I, and I,, where

jel, if f D,;(s)ds—>® as t—» and
[
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f "Dy(s)ds>—K (s:=5,=0)

jel, if szk,-(s)ds<K (a,=5,=0),

where k is fixed and where K is a constant. Let p, be a characteristic vector of
A associated with ., so that

Api = TupDx -
Then there is a solution ¢, (s) of
(2) x'=[A+ V(s)+R(s)]x
and a so, 0<s,< %, such that

lim @ (s) exp [—f 7 (S) dé] =p:.

If the hypothesis is satisfied for all k, 1 <k <n, then @ (s), k=1, 2, ..., n form
a fundamental system of (2).

The symbol L{a, ) will refer to the set of all complexvalued functions which are
Lebesque integrable on [a, ®).

The following theorem is needed.

Theorem 2. (Hinton [3]). Let q(s)>0 on [0, ®) and q (s)/q'*""(s) be in
L[0, ) forn=1, 2, ..., n. Then

(i) gq'"(s) is not in L[0, »)
(i) [q'(s)/q""""(s)]’ is in L[O, %)
(i) [q'(s)/q"*"™(s)] is in L[0, ).

The system associated with (1) is
(3 '=A()z,
where z=[y,y’, ¥, y'"']" and

0 1
0 0
AO=1 9 o

oo = O
(=N =)

If in (3) we change the depedent variable z by setting w =Tz, where T(¢) is
a diagonal and nonsingular matrix, and substitute it in (3), we obtain

4 ‘ w' =[TOAOT ')+ T OT'(t)]w.
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The form of (4) depends on the matrix T(¢). If q(¢t)#0, we shall consider T
= dia[q, ¢*°, q¢', 1], and if r(¢)#0, then T = dia [|r|**, |r]"? |r|"*, 1].

2. Theorems

a.q(t)>0

Theorem 3. If q''/q*”?, r’/q’", and r'/q*” are in L[a, =), then there are four

linearly independent solutions z., k=1, 2, 3, 4 of (3) and t,=a such that

-1 ‘r®)
Tz,q" exp [ . 2() d(S]—)pl

-1/3 _ ! v, 1 r((S)
Tqu exp[ J;) Tq +3 ((5) d(ﬁ]—-)pk
k:2, 3, 4 aﬂd T1=0, T2=—1, t3,4=%i?i, plz(l’ O, O, O)T, Dk = (i’k, 1, Tk

—‘Ek)T, k=2, 3, 4.

Theorem 4. If q''/q*” and r/q are in L[a, =), then there are linearly indepen-
dent solutions z., k=1, 2, 3, 4 of (3) and to,=a such that

Tz\q ' > p:
Tzq ™" exp [—rkj qm(é)dé]—)pk, k=2,3,4

where 1., p.« are the same as in Theorem 3.

B.q(t)<0

Theorem 5. If the hypotheses of Theorem 3 hold, then there are linearly
independent solutions z«, k=1, 2, 3, 4 of (3) and t,=a such that

oo [ 803

—1/3 ! 1/3 1 r(a)
Tug™ e | [ [ @)-3 1G] d0]-n
for k=2, 3, 4 and where 1,=0, 1,=1, 15, = —%i-\/?g = (1,0,0,0,)7, pu

= (1, w, s, 7.
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Theorem 6. If the hypotheses of Theorem 4 hold, then there exist four linearly
independent solutions z., k=1, 2, 3, 4 and t,=a such that
Tz.q '—>p,

Tzq '’ exp [ka q'°(6) dé]—-)pk ,

where 1., p« are the same as in Theorem 5. .
v.r(t)>0

Theorem 7. If q'/r**, r''/r’*, and q°/r** are in L[a, =), then there are four
linearly independent solutions z, k=1, 2, 3, 4 of (3) and t,=a such that

3.8 _ ' /4 1Q(6) 2] ]
Tzer exp[ L [tkr (6)+4—r(6) T, | do = px,

k=1, 2, 3, 4, where T, are the roots of t*+1=0 and p. = (1, w, T%, T2)".
Theorem 8. If r'’/r’* and q/r are in L[a, »), then there are four linearly
independent solutions z«, k=1, 2, 3, 4 of (3) and t,=a such that

Tzur® ® exp [~ka r'4(8) dé]ﬁpk, k=1,2,3,4,

where 1. and p, are the same as in Theorem 7.
6.r(H)<0

Theorem 9. If the hypotheses of Theorem 7 hold, then there are four linearly
independent solutions zx, k=1, 2, 3, 4 of (3) and t,=a such that

t

Tz (—r)** exp [ —f

to

w1
[Tk(_r)l 4+Zg tijl dé]—"Pk ’
where T, are the roots of t*—1=0, and p, = (1, T, Ts, T2)".
Theorem 10. If the hypotheses of Theorem 8 hold, then there are four linearly
independent solutions zx, k=1, 2, 3, 4 of (3) and t,=a such that
Ta(=n" exp [ [ [-r(@)]" do]-pi,

where T, p. are the same as in Theorem 9.

3. Corollaries and examples

4/3

Corollary 1. Ifq"/q
y(x) of (1) in the form

, r/q are in L[a, ©) and q # 0, then there exists a solution
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! / -2/ 1 ! /3
s~ rem (- a0 o4 o 3 L7 )

V3 o, V3,
-<c3cosTI q”d6+c4sm7J:“ q”da]-[1+o(1)].

Corollary 2. If r"/r*", qr are in L[a, ) and r+ 0, then there exists a solution
y(x) of (1) in the form

y(x)=r"" [exp (%f r'’* d6 c cos—f " d

1

+ ¢, sin \JJ e dé) + exp ( > ' dé) .

to

(01 cos—f r*dé +c, sm—f 4 dq ][1+0(1)]
if r(t)>0, and

y@) = evewp (= [ (-0 d8)+erenp ([ (-ras)+

s cosj (=) dé +c. sinf (=)™ dé][1+0(1)],

if r(t)<0, where c,, ¢z, c,, ¢4 are arbitrary numbers.

Example 1. Let r(t) be in L[b, ©) and a be an arbitrary nonzero number.
Then the differential equation

y®“+a'y' +r(t)y=0

satisfies the assumptions of Corollary 1, and therefore its solution is

y(x)= [cl +Ce " + 3™ cos ? at + c,e™ sin \/75 at] [1+0(1)].

Example 2. If t°q is in L[b, ©), a <4, and a is an arbitrary nonzero number,
then equation

Y +q()y +1y=0

satisfies the assumptions of Corollary 2, and therefore its solution is in the form of
the above Corollary.
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4. Proofs of theorems

We begin the proofs of theorems with two lemas.
Lemal. Letq(t)>0on [a, ®) andf q'>dt=o. Let T(t) = dia[q(t),q> (1),

q' (1), 1]. If we make the change of variable s = w(t) = J’ q'*(6) dé in (4), then
it leads to
(5) x'(s)=[Aoct A f(s)+A:9(s)]x(s),

where x(s) = w(a(s)), f(s) = r(a(s))/q*’(a(s)), g(s) = q'(a(s))/q* *(a(s)).
a(s) is an inverse function of s =w(t) and

0100 0000 1 0 00
oo 10 |l 0000 102300
Ao= 00 0 1 A= 0 00O A= 0 01/30

0-1 00 -1 00 0 0000

Proof. First atall we see that if we put T=dia [q,q" >, q' >, 1]in (4), we obtain

0 q1/3 0 0

1 0 0 13 0 ,
TAT = 0 0 qO q1/3 =A<>CI”+AIF/‘I

-rq™" —q'? 0 0

q'q”" 0 0 0
-1 O (2/3)‘1"]-1 0 O — |
T = 0 0 (1/3)q'q" 0 A4'q
0 0 0 0
and the equation (4) will have the form
VOey 13 r() q'(t)
(6) w(6)=(Aug(0)+ A, TOR q(t))w(t).

The function s = w(t) =f q'*(8) db has a derivative w’(t) = q'”(¢)>0, hence it
increases on [a, ©). This means that s =w(¢) has an inverse function = a(s)

defined on [0, ), since J’ q'”(t) dt = . Putting t = a(s) into (6) we get

w'(@(s)q" (@) = | Ao (a(s) + A, ;((‘(’1‘(?)’) +A, ‘fl'((j((j))))]ww(s)) .

Consequently, if the last equation is divided by q'”*(a(s)), we obtain (5).
Similarly we can prove the following lema
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Lema 2. Let r(t)>0 on [a, ») andf r'*(tydr=o. Let T(1) = dia [r*(s),

r' %(t), r' *(¢), 1]. Then making the change of the variable s = w(t) = f‘rm(d) ds
in (4), we get ’
(7) x'(s)=[Bo+ Bih(s)+ B:k(s)]x(s),

where x(s) = w(a(s)), h(s) = q/r’“‘(a(s)), k(s) = r'/r”*(a(s)). a(s) is an
inverse function of s = w(t) and

0100 0000 340 0 0
0010 ~loooo 1 0120 0
B=1o9001] B=loooo| BT 00140
100 0 0-1 00 000 0

Proof of Theorem 3. We show that all hypotheses of Theorem 1 are fulfilled
for the equation (5). The characteristic equation of A, is 7°4+7=0 so the

V3.
*——1i of A, are distinct. The vectors

. 1
characteristic roots 7, =0, T.=—1, Ts., = >

pl = (1, O’ 0’ O)T’ pk = (fk’ 17 Tka fk)T’ k

coresponding to Ti.
Denote V(s) = A.f(s) + A:g(s), i.e. R(s)=0 in Theorem 1. In order to be

f |V'(s)| ds < it is sufficient to prove thatf If'(s)| ds < and fm[q’(s)] ds <
0 0 o

. In both integrals we put a(s)=t¢. Then from the definition of the functions f(s)
and ¢g(s) there follows

[l as=[ @) s as=

2
2, 3, 4 are characteristic vectors of A,

Sf:”r'(a(s))q““(a(b“))a'(S)]/[q““(a(s))]z, st
+gLml[ql/s(a(s))q'(a(s))r(a(s))a'(s)]/[qm(a(s))]zl G

= [(1rwva=olac: [ roa ore o) .

The first integral is in L[a, ®) by hypothesis. By applying the Cauchy inequality
to the second integral we get

f2lra’ Va0 de = [ RO/ g (a7 de <
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1/2

<[[(reamora] | [Cleoaor ol

4/3 7/6]

From Theorem 2 it follows that if g"/q"" is in L[a, =), then[q’/q isin L[a )

and hence both above integrals are in L[a, «). Therefore f If'(s)] ds <.

4/3]

Similarly, from Theorem 2 it follows that [q'/q
f [g'(s)] ds <oo. Consequentlyf [V'(s)| ds <oo.
0 0

is in L[a, ©) and so

From Theorem 2 we also get

[ 1P

as = [ lirtats)ia* @)F ds= [ 1y o) dr<eo

and

flqunm fuqmm“mr”mnmz

=LIMWVWWMﬂm<w.

Since ¢g'(s) and g°(s) are in L[0, ®), then g(s)—0 as s — . Similarly we obtain
f(s)—0 as s>, and therefore V(s)—0 as s — .
Let us calculate the characteristic roots of

g(s) 1 0 0
_ 0 (2/3)g(s) 1 0
AtVEI=1 0 0 asygs) 1
-f(s) -1 0 0
The characteristic equation of A+ V(s) is
11 2
9) P(7)= t—2qt+9gr+(1——9- >r+f—g—0.

Since f(s), g(s)—0 as s — o, we get that P(t)— 1"+ 7 as s — ». Hence the roots
of (9) converge to the roots of 7*+ t=0. Thus we may write for s €[0, )

(10) T(s)=1+6(s),

where 6(s)—0 as s — .
In order to find whether the hypoth6:51s of Theorem 1 is fulfilled we show that the
function 6(s) may be written as a sum

6(s)=pB(s)+v(s),
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where f(s) and y(s)—0 as s—o and y(s) is in L[0, «). Substituting z(s)
= 1+ f(s)+y(s) into (9), we get

Plz+B(s)+v(s)]l=

=y*+[4(t+pB)—2g]y’+ [6(r+{>’)2—6g(r+/3)+19—1 gz]yz+

+a By 60+ Y+ g+ )+ (1-3°) [+ P +B),

(10 P(r+B)=p"+ (41 ~29)B"+

(61 —6gt+%g )[3’2+(4r3—6gt2+% gzr+1—§g3]ﬂ—2gr3+

11 ’r? 2 2 s T+f—
t39 9 99 g.

Then the equation (9) may be written as

(12) y{y3+[4(r+ﬁ)—zg1y2+[6<r+ﬁ)2—6g<r+/3>+19—192]v+

+a@+p) — 69T +pr+ o g e +B)+(1-2 )y =P+,

Let us denote the expression in the complex bracket as A (s). Since f, g, B, Yy —0 as
s— oo, then

lim A(s)=47’+1
Thus for every £ >0 there is a number s’ € [0, ©) such that
|A(s)— (4T +1)|<e forse[s’ =),

from which it follows that |A(s)|>[|4t’+1|—e=1—-¢. (If 7,=0, then
|[471+ 1| =1, for other values of 7. there is [47;+ 1|=3.) For £=1/2 we have
|A(s)=1/2 on [s’,

From (12) it follows that

IP(x+B)=IYA(s)| >3 [v(s)|

and then
(13) [v()|<2[P(z+B(s))|,
from which we get that y(s) is in L[0, ) if P(t+f(s)) is in L[0, ).
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Choose 8 in (11) such that
ar’B+pB-2g97+f—g =0,
i.e.

(14) ﬁ(s)=29(s)r4:3.ti(sl)—f(S)‘

Then we obtain

(15) P(T+ﬁ)=ﬁ4+[4f—291[33+[6’2—6gr+1971-‘12}ﬁ2+

+ [—6gt3+% gzr—g g’]ﬁ +% gzrz—g g’'t.

Substituting B(s) from (14) into (15) we get that each term of P(z + f3) contains
f? or g* or fg. Since f* and g* are in L[0, ), then fg is in L[0, ©) too and
consequently P(t+ () is in L[0, »). Hence from (13) it follows that y(s) is in
L[0, «).

From the above we get that the roots 7.(s) of P(7)=0 may be written as

2g(s)Te+q(s) = f(s)

(16) T (s)=1n + P

+Yk(s)7

1 3. .
where 1,=0,7,=—1,734 = 5 + > b the second term in (16) converges to zero as

s— and ¥ (s) is L[0, ©), y:(s)—>0 as s — oo,

Then Dy (s)=Re [1;(s)— 1. (s)] for all j, k=1, 2, 3, 4 may have the following
forms

a) Dy (s)=G(s)

b) Dy(s)=c+F(s)+ G(s)

¢) Dy(s)=—c+F(s)+G(s),
where ¢ >0, F(s), G(s) are functions such that F(s)—0, G(s)—0 as s —» and
G(s) is in L[0, »).

a) In this case j € I,, because from the hypotheses stating that G(s) is continuous
on [0, ©) and G(s) is L[0, ©) it follows that there exists K >0 such that

f lD,-,‘(s) ds <K for all s,=5,=0.
b) Since F(s)—0 as s — , then there exists a number s’ € [0, ©) such that for

every number s >s’ there is ¢ + F(s)+ G(s) = ¢/2+ G(s). Then f D,(s)ds=
Y]

= j [c+F(s)+ G(s)] ds = = since f [c/2+ G(s)] ds =, and sz,k(s)ds>
0 0 - S
—K for all s,=5,=0 and K>0, ie. jel..
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¢) Similarly as in case b) it follows from the condition F(s)—0 as s — o that
there is a number s”€[0, ©) such that —c+ F(s) + G(s) < —c/2 + G(s) on

[s", ), from which it follows that - f Da(s)ds = f [—c+F(s) + G(s)]ds
0 0

= —o andf 2[—c +F(s) + G(s)] ds <K for some K >0 and every s,>s,>0, i.e.

jeL.
Thus all assumptions of Theorem 1 are fulfilled. Then, because of it, there are
four linearly independent solutions x.(s), k=1, 2, 3, 4 of (5) such that

X (s) exp [—f ©(9) d6]—>pk.
Substituting 7, (s) from (16) into the last expression we have
xi(s)exp | - [ [9(6)=1(6)+ 1i(®)] d6]—ps,

and after substituting f(6) and g(8) we get

o[ - [ [LEQY=HEOD L 31 45] .

If we denote f ¥1(8)dé =K and put a(d)=§, ie. d =w(§), where w(§)

£
= f q'"”(9#) d¥, into the preceding formula, we get
- “q'(6)—r(d 1/3
xi[w(1)]- K -exp [— ) %7)’?(_61)(—) q " (6) dé]—>p1.

Dividing the fraction under the integral sign into two parts we finally have

e on[ [ 583 0]

where Tz, =w,(t)=x,[w(t)]e"e .
Similarly for k=2, 3, 4 we have

Tzq ™" exp [—J: [r q”3(¢5)+; ;((?5))] dé]—-)pk

Proof of Theorem 4. Let us denote in the equation (5) V(s)=A.g(s),
R(s)=A f(s) and now apply Theorem 1.

The matrix A, is the same as in Theorem 3, so its characteristic equation has
distinct roots. Further V'(s) is in L[0, «) if and only if g'(s) is in L[0, «). From
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the proof of Theorem 3 it follows that q"/q** in L[0, ) is sufficient, which is
fulfilled by hypothesis. Similarly

[q’(t) ]2

q’ ().

fng(s)l ds=f

and so V(s)—0 as s — . From this hypothesis it also follows that

r(t)

R A dS= A| dt<
L IR f q(t)
The characteristic equation of
f(s) 1 0 0
B 0 (2/3)g(s) 1 0
Aot Vis)= 0 0 (13)gG) 1
0 -1 0 0
is
— 3 ﬂ 2,2 _z A\
(17) P(t)=1"-2g1 + 9 gt +<1 9g )r g=0.

By the same consideration as in Theorem 3 we get that the roots of (17) may be
written as

3

')
L(s) =1, + ’:+ 96 n(s), k=1,2,3.4,

ed T(s)=g(s)+y.(s), u(s)=1 +%g(s)+yk(s), k=2, 3, 4 and y.(s) is in

L[0, ). Then, by Theorem 1, we obtain that there are four linearly indcpendent
solutions z,(t) of (3) such that

Tz.q ' —>p,
Tag™" exp | -7 [ q") a0, k=2.3.4.

Proof of Theorem 5. If q(¢)<0 instead of (1), we shall consider the equa-
tion y’ — G(t)y' + r(t)y=0, where q(¢) = —q(t)>0. Hence Lema 1 and
Theorem 3 will remain if we replace Aq(ax) by Ao(Jax|), q(¢) by —G(¢), charac-
teristic roots of A, by characteristic roots of A,, which are 7,=0, 1,=1,

1 3. .. < .
Ty a= — EiT i, characteristic vectors of A, by characteristic vectors of A, which

are p,=(1,0,0,0), p. = (1, ©, 1%, 1), k=2, 3, 4, characteristic vectors of A,
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+ f(s)A, + g(s)A; by characteristic vectors of A, + f(s)A; + §(s)A,, which
may be written as

24(s)te—f(s)—4(s)

T(s) =t + -1 +1:(s),
where
c_ @) o g(als)
f(s)_q_4/3(a(s))’ g(s) q—4/3(a(s))'

Therefore there is a fundamental system x,(s) of
! =(A()+f_(s)A| +g(S)A2)x

such that

x:(s) exp [—J-s 7 (6) dé]—»pk.

S0

Substituting a(6)=§& and putting —g =¢ into the last expression we get the
conclusion of the Theorem.

Proof of Theorem 6 is analogous to the proof of Theorem 4.

Proof of Theorem 7. Denote V(s) = B,h(s)+ B,k(s). Since

[ e as=[ la@eyr aenras [ laor ol d+

+‘gtLmI[q(t)r’(z)]/r”“(t)l dtSLwlq'(t)/r_“(t)l de+

172

4 '+% [ f “la@r T dt] [ f O OF dt]”2<°°.

Likewise k'(s), k°(s), h*(s) are in L[0, ©), and so V'(s) is in L[0, ©) and
V(s)—0 as s >,
The charactgristic equation of B,+ V(s) is

=4_3_3§22<_is_§ _
(19) P(O)=1"+3 ke’ +3 K0+ (h 42k>r = bk +1=0.

Similarly as in Theorem 3 the roots of (19) may be written as
(20) rk(s)=tk—%k(s)+%h(s)ti+yk(s),

where 7, are the roots of 7+ 1=0 and y,(s) are in L[0, «) The functions Dj(s)
are equal to ¢ or ¢ + G(s), where c#0 and G(s) is in L[0, ). Thus j € I,, resp.
jel, for all k. All hypotheses of Theorem 1 are fulfilled and hence there is
a fundamental system x,(s) of (7) such that '
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xi(s) exp {—fl 7 (9) dé}ﬁpk.

t

After substitutings =w(¢)= [ r'*(8) d8 we get the conclusion of this Theorem.

to

The proofs of the Theorems 8, 9. 10 are analogous to the proofs of the
Theorems 4, 5, 6.

Proof of Corollary 1. Since T=dia[q.q°",q'", 1),z = [yx» Y &', ¥
then from Theorem 4 it follows that dia [¢, ¢° . ¢", 1] - [y yLyi yi"]" - q ' —
(1,0,0,0)7, ie. y»—>1and so y,=1+0(1).

Similarly for k=2, 3, 4 we get

renyT
k )

ye=—12q P exp (rf g"" d8)(1+o(1)).

If we take Re y; and Im y., we get the assertion of the Corollary. This assertion is
valid for ¢ (¢) <0 too.
The proof of Corollary 2 is analogous.
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ACBIMITTOTUYECKOE MOBENEHUE PEIEHWY OVi®QEPEHLIMAILHOTO
YPABHEHUA YETBEPTOI'O TTOP10KA

HPoced Posacp

Pesrome

B paGoTe paccMaTpHBarOTCS aCMMITOTHYECKHUE NOBERCHNS pelleHnil ypasHeHus (1) npu f — «, ecnu
HecOGCTBEHHBIE MHTErpasibl U3 HEKOTOPBIX Lpobeit MYyHKUMA ¢ U r ABNSIOTCS KOHEYHbLIMHU.
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