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CONTINUITY OF THE SPECTRUM
OF NORM -NORMAL MATRICES

MICHAL ZAJAC

Let X be a Banach space. We denote by X* the dual space of X. By an operator
on X we always mean a bounded linear operator. We denote by C the set of all
complex numbers. Let T be an operator on X. We denote by V(T) the numerical
range of T [2], i.e.

V(T)={f(Tx): xe X, fe X", |f|=|x|=f(x)=1} .

An operator is said to be norm-Hermitian if V(T) is real. An operator is said to
be norm-normal if it is of the form T =H +iK with commuting norm-Hermitian
H, K [2]. If T is an operator, we denote by o(T) its spectrum and by |T], its
spectral radius. It is well-known that the equality | T| = | T|, holds for every normal
operator on the Hilbert space. This equality holds also for every norm-Hermitian
operator (see [2], [3], [8]), but it need not hold if T is norm-normal. Indeed,

Crabb [4] has given a norm-normal operator T for which | T| =V2|T|,. We shall
give a simple proof of the fact that the inequality |A|=2|A|, holds for every
norm-normal complex n Xn matrix. This inequality holds for every normal
element of a Banach algebra [5, p. 138]. It can be seen [2, p. 8] that a norm-normal
operator T on X is a normal element of the Banach algebra B(X) of all operators
on X in the sense of [2, p. 54, definition 13].

Proposition 1. Let v be a norm on C". If A is a v-normal complex n X n matrix,
then

lAl.=]|A|=2]Al,

(|| denotes the operator norm induced by v).

Proof. The first inequality holds for every operator. Let us prove the other.
A = U +1V with commuting v-Hermitian U, V. According to [6, prop. 5.11] A is
diagonalizable and if

A =A|E1 +... +AkEk
is its spectral resolution and if a; =Re A;, f; =Im A,, then
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U=ao,E,+...+oE, ,
V=B.E, +...+BEx .
Hence there exists an integer m, 1 =m =k, such that
|U|, =max {|ai|, ..., |a|} =|an] -
Since U is v-Hermitian, |U|=|U]|, =|a.|.
Hence |A|, Z|a, +iB.|Z|a.| =|U|

and similarly |A|, =|V]|.
Hence |A|=|U+iV|=|U|+|V|=2|Al..

Ptiak and Zemanek [7] have proved that the spectrum of a normal operator on
a Hilbert space, as a set valued function, is Lipschtzian in the Hausdorff metric. We
shall prove a similar fact for a norm-normal complex n X n matrix. Let (E, d) be
a metric space. For x e E, M c E we define d(x, M) = inf {d(x, m): meM}. If
McE and r is a positive number, we set V(m,r) = {xeE:d(x, M)=r}.

Proposition 2. Let v be a norm on C". Let A and T be complex n X n matrices.
Let A be v-normal. Then there exists a positive number K such that

o(T)c V(o(A), K|T—A)).

Proof. A is diagonalizable. Let A =A,E, + ...+ AE, be its spectral resolution.
Let K=|E,|+...+|E.|. Let 2 be a complex number such that

d=d(A,0(A))>K|T—A]|.
It is easy to see that
A-A)Y'=(A-A)'E\+...+ (A —A)'E..
Hence [(A —A)™'|=K/d. It holds
A-T=A-A—-(T-A)=A-A)(1-(A-A)(T-A))

and [A—A)(T-A)| = (K/d) |T—A|<1. Hence (A —T) " exists. This fact
completes the proof.

Remark. Professor Ptdk has informed the author of this paper that the
proposition 2 can be obtained by an application of one so far unpublished result
due to B. Aupetit [1].
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HENPEPBIBHOCTb CIIEKTPA HOPMAIJIBHBIX B CMBICIIE
HOPMbI MATPHUI]

Muxan 3asy
Pe3ome

B crathe onpepensieTcs NMOHSATHE IPMMTOBCKOrO H HOPMANBHOIO B CMBICIE HOPMBI ONeEpaTopa
B npocTpaHcTBe Banaxa. B KOHEYHOMEPHOM Cllyyae JOKA3bIBAETCS, YTO WISl KAXAOTO HOPMANBLHOTO
B CMBICJIE HODMBI ONepaTopa A MMEET MeTco HepaBeHCcTBo |A|=2|A|,, rne |A| — wopma u |A |, —
CeKTpanbHBIA pafuyc onepaTopa A. PaccMaTpuBast CeKTp MaTpuubl Kak (DYHKLHMIO NPHHUMAIOLLYIO
3HaYEHUs B MHOXECTBE BCEX NMOIMHOXECTB KOMIUTEKCHOM ILIOCKOCTH, IOKa3bIBAETCS HENPEPBIBHOCTD
CreKTpa B KaX[0# HOPMaNbHON B CMBIC/E HOPMBI MaTpHLE.
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