Martin Kochol
Latin parallelepipeds not completing to a cube

Persistent URL: http://dml.cz/dmlcz/129220

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1991

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these *Terms of use.*

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz
LATIN PARALLELEPIPEDS
NOT COMPLETING TO A CUBE

MARTIN KOCHOL

ABSTRACT. In this paper we construct a latin \((n \times n \times (n - d))\)-parallelepiped that
cannot be extended to a latin cube of order \(n\), for every \(d \geq 3\) and \(n \geq 6d\) or
\(n = 3d, 4d, 5d\). For \(d = 2\), it is similar to the construction already known.

1. Introduction

A latin square of the elements \(z_1, \ldots, z_n\) is an \(n \times n\) array such that the entries
are members of \(\{z_1, \ldots, z_n\}\) and no member occurs in any row or column more
than once. Moreover, if some cells may be empty we have an incomplete latin
square of the elements \(z_1, \ldots, z_n\).

Let \(A_1 = [a_{i,j,1}], A_2 = [a_{i,j,2}], \ldots, A_k = [a_{i,j,k}]\) be latin squares of the elements
\(z_1, \ldots, z_n\). The ordered \(k\)-tuple \(A = (A_1, A_2, \ldots, A_k)\) is called a latin \((n \times n \times k)\)-
parallelepiped of elements \(z_1, \ldots, z_n\) if the elements \(a_{i,j,1}, \ldots, a_{i,j,k}\) are mutually
distinct, for every \(1 \leq i, j \leq n\). In the case \(k = n\), \(A\) is called a latin cube of the elements
\(z_1, \ldots, z_n\).

Usually \(z_i = i, 1 \leq i \leq n\). In this case we speak in abbreviation about latin
squares or cubes of order \(n\) and about \((n \times n \times k)\)-parallelepipeds (and do not
use the words “of elements 1, 2, \ldots, \(n^\)”).

A latin cube \(A'\) of order \(n\) is an extension of a latin \((n \times n \times k)\)-parallelepiped
\(A = (A_1, \ldots, A_k)\) if there exist latin squares \(A_{k+1}, \ldots, A_n\) such that \(A' = (A_1, \ldots,
A_k, A_{k+1}, \ldots, A_n)\).

The following problem (see [4]) was mentioned during the Sixth Hungarian
Colloquium on Cmbinatorics, Eger 1981. Given a latin \((n \times n \times k)\)-paral­
leelepiped \(A\), does there exist a latin cube of order \(n\), which is an extension of \(A\)?
An analogous problem for latin rectangles was answered in the affirmative by
Hall in [3]. On the contrary there are known constructions of the latin
\((n \times n \times (n - 2))\)-parallelepipeds that cannot be extended to a latin cube of
order \(n\): these constructions are done for \(n = 2^k, k \geq 3\), in [4], for \(n = 6\) and

AMS Subject Classification (1985): Primary 05 B 15
Key words: Latin square, Latin parallelepiped

3
In this part we prove the following theorem.

Theorem: Let $d \geq 3$, $n = 3d$, $4d$, $5d$ or $n \geq 6d$. Then there exists a latin $(n \times n \times (n - d))$-parallelepiped that cannot be extended to a latin cube of order n.

Proof: Let $d \geq 3$. Take a latin cube $B = (B_1, \ldots, B_d)$ of order d such that $b_{i,j,k}$, the entry in the i-th row and the j-th column of B_k satisfies $b_{i,j,k} \equiv i + j + k - 2 \pmod{d}$, and $b_{i,j,k} = d$ if $i + j + k - 2 \equiv 0 \pmod{d}$.

Replace, in the latin cube B, each number $t \in \{1, \ldots, d\}$ by an arbitrary latin $(3 \times 3 \times 2)$-parallelepiped $C^{(t)}$ of the elements $t, d + t, 2d + t$. We get a latin $(3d \times 3d \times 2d)$-parallelepiped. The same idea will be used in the following construction.

Let $d \geq 3$. Let ϕ be a map of $\{\langle i, j \rangle; 1 \leq i, j \leq d\}$ onto the five element set $\{p, r, s, t, u\}$ satisfying:

\[
\begin{align*}
\phi \langle 1, 1 \rangle &= p, \\
\phi \langle i, 1 \rangle &= r, \text{ for } 2 \leq i \leq d, \\
\phi \langle 1, j \rangle &= s, \text{ for } 2 \leq j \leq d, \\
\phi \langle 2, j \rangle &= t, \text{ for } 2 \leq j \leq d, \\
\phi \langle i, j \rangle &= u, \text{ for } 3 \leq i \leq d, 2 \leq j \leq d.
\end{align*}
\]

We will use five distinct latin $(3 \times 3 \times 2)$-parallelepipeds $C^{(u, y)}$ (where $y \in \{p, r, s, t, u\}$) if $t = 1, 2$. Let us construct.

Construction A:

Take partial latin squares $D^{(u, y)}_x$ of the elements $t, d + t, 2d + t$ (for $x \in \{2, 3\}, t \in \{1, 2\}, y \in \{p, r, s, t, u\}$) as it is illustrated in Fig. 1. We can check that there exist latin cubes $E^{(u, y)}_x = (E^{(u, y)}_1, E^{(u, y)}_2, E^{(u, y)}_3)$ of the elements $t, d + t, 2d + t$ for $t \in \{1, 2, \ldots, d\}, y \in \{p, r, s, t, u\}$ satisfying (1) and (2):

1. If $t = 1, 2$, then $E^{(u, y)}_x$ is an extension of $D^{(u, y)}_x$, where $x \in \{2, 3\}, y \in \{p, r, s, t, u\}$.
2. If $t = 3, \ldots, d$, then the entry in the first row and the first column of $E^{(u, y)}_3$ is equal to t. Furthermore, all $E^{(u, y)}_3$ are the same for all $y \in \{p, r, s, t, u\}$.

Then let us define $C^{(u, y)} = (E^{(u, y)}_1, E^{(u, y)}_2, E^{(u, y)}_3)$, the $(3 \times 3 \times 2)$-parallelepiped of the elements $t, d + t, 2d + t$ for any $t \in \{1, \ldots, d\}, y \in \{p, r, s, t, u\}$.
Construction B:

We have the latin cube $B = (B_1, \ldots, B_d)$, $B_k = [b_{i,j,k}]$, $1 \leq k \leq d$. Replace each $t = b_{i,j,k} = i + j + k - 2$ (mod d) by $C^{(t, \varphi(i,j))}$. We get a new latin $(3d \times 3d \times 2d)$-parallelepiped $F = (F_1, \ldots, F_{2d})$. The latin square F_k, $k = 1, \ldots, d$, arises from B_k if we replace $t = b_{i,j,k}$ by $E_1^{(t, \varphi(i,j))}$. Similarly the latin square F_{k-1}, $k = 1, \ldots, d$, arises from B_k if we replace $t = b_{i,j,k}$ by $E_2^{(t, \varphi(i,j))}$.

Construction C:

Now we construct a new latin $(3d \times 3d \times 2d)$-parallelepiped G from F. Take the members $1, 2$ from F_2, F_4, \ldots, F_{2d} as shown in Fig. 2. for $d = 4$. More precisely, take the numbers 1, 2 which are in the intersections of the 1st, 5th, 7th, \ldots, $3(d-1) + 2nd$ rows and the 2nd, \ldots, $3(l+1) + 2nd$, $3l + 1st$, $3(d-1) + 2nd$ columns of F_{2k}, where $l = d - k + 1$ if $k \neq 1$. In every F_2, F_4, \ldots, F_{2d} we interchange this 1 and 2. We get new latin squares G_2, G_4, \ldots, G_{2d}.

Let $F_k = [f_{i,j,k}]$, $1 \leq k \leq 2d$. If $1 = f_{i,j,k}$ is interchanged in F_k by 2, then (3) or (4) holds:

(3) There exists $l \in \{2, 4, \ldots, 2d\}$ such that $f_{i,j,l} = 2$ is interchanged in F_l by 1.

(4) No member $f_{i,j,l}$ is equal to 2 for any $l \in \{1, \ldots, 2d\}$ (this follows from the condition (1) for $y \in \{s, t\}$).

Similarly, if $2 = f_{i,j,k}$ is interchanged in F_k by 1, then (5) or (6) holds:

(5) There exists $l \in \{2, 4, \ldots, 2d\}$ such that $f_{i,j,l} = 1$ is interchanged in F_l by 2.

(6) No member $f_{i,j,l}$ is equal to 1 for any $l \in \{1, \ldots, 2d\}$.

Thus $G = (G_1, G_2, G_3, \ldots, G_{2d})$ is a latin $(3d \times 3d \times 2d)$-parallelepiped provided $G_{2k+1} = F_{2k+1}$ for $k = 0, \ldots, d - 1$.

Now we prove that G cannot be extended to a latin cube of order 3d. Let $G_k = [g_{i,j,k}]$, $1 \leq k \leq 2d$. Let us denote by $M_{i,j}(G)$ the subset of the members 1, 2, \ldots, $3d$ which do not occur in the set $\{g_{i,j,1}, g_{i,j,2}, \ldots, g_{i,j,2d}\}$, $1 \leq i, j \leq 3d$. $M_{i,j}(F)$ can be defined similarly.

From (1), (2) and the construction of $C^{(r,s)}$ it follows that:

$M_{3k+1,1}(F) = \{1, 2, \ldots, d\}(0 \leq k \leq d - 1),$

$M_{3k+1,3l+1}(F) = \{2, 3, \ldots, d, d + 1\}(0 \leq k \leq d - 1, 1 \leq l \leq d - 1).$

From the Construction C we can see that:

$M_{3k+1,1}(G) = M_{3k+1,1}(F) = \{1, 2, \ldots, d\}(0 \leq k \leq d - 1),$

$M_{1,3l+1}(G) = \{1, 3, 4, \ldots, d, d + 1\}(1 \leq l \leq d - 1),$

$M_{3k+1,3l+1}(G) = M_{3k+1,3l+1}(F) = \{2, 3, \ldots, d, d + 1\}(1 \leq k, l \leq d - 1).$

Denote $I = \{\langle 3k + 1, 3l + 1 \rangle; 0 \leq k, l \leq d - 1\}.$

Let $H = [h_{i,j}]$ be a latin square of order $3d$ such that $h_{i,1} = 1$ and $h_{i,j} \in M_{i,j}(G)$ for all $1 \leq i, j \leq 3d$.

Since $h_{1,1} = 1$, there exists exactly one $\langle i, j \rangle \in I$ such that $h_{i,j} = 1$.

Clearly $h_{1,3l+1} \neq 2$ for any $l = 0, \ldots, d - 1$. Thus there exist at most $d - 1$ members $\langle i, j \rangle$ of I such that $h_{i,j} = 2$.
Similarly there exist at most $d - 1$ members $\langle i, j \rangle$ of I such that $h_{i, j} = d + 1$. There exist at most $d(d - 2)$ members $\langle i, j \rangle$ of I such that $h_{i, j} = 3, \ldots, d$.

Thus there exist at most $d^2 - 1$ members $\langle i, j \rangle$ of I such that $h_{i, j} \in \{1, 2, \ldots, d, d + 1\}$. But if $\langle i, j \rangle \in I$, then $h_{i, j} \in \{1, 2, \ldots, d, d + 1\}$ — a contradiction with the fact that $|I| = d^2$. Thus G cannot be extended to a latin cube of order $3d$. Note that we do not know whether G can be extended to a latin cube.
By H.-L. Fu [1], [2] every latin cube of order \(m \) can be embedded in a latin cube of order \(n \) for every \(n \geq 2m \). Using this we can easily to see that \(G \) can be embedded in the latin \((n \times n \times (n - d))\)-parallelepiped \(H \), where \(n \geq 6d \) and \(M_{i,j}(G) = M_{i,j}(H) \) for \(1 \leq i, j \leq 3d \). Therefore \(H \) cannot be extended to a latin cube of order \(n \). Thus we have proved the theorem for \(n = 3d \) and \(n \geq 6d \).

We prove the theorem if \(n = 4d \). For this purpose let \(V^{(t,y)} \) be the partial latin squares of the elements \(t, d + t, 2d + t, 3d + t \) (for \(x \in \{3, 4\}, t \in \{1, 2\}, y \in \{p, r, s, t, u\} \)) satisfying (7) and (8):

(7) The 4th row and the 4th column of \(V^{(t,y)}_x \) are empty.

(8) Removing the 4th row and the 4th column of \(V^{(t,y)}_x \) we get \(D^{(t,y)}_x \).

Analogously to the Construction A there exist latin cubes \(Q^{(t,y)}_x = (Q^{(t,y)}_1, \ldots, Q^{(t,y)}_d) \) of the elements \(t, d + t, 2d + t, 3d + t \) for \(t \in \{1, 2, \ldots, d\}, y \in \{p, r, s, t, u\} \) satisfying (9) and (10):

(9) If \(t = 1, 2 \), then \(Q^{(t,y)}_x \) is an extension of \(V^{(t,y)}_x \), where \(x \in \{3, 4\}, y \in \{p, r, s, t, u\} \).
(10) If \(t = 3, \ldots, d \), then the entry in the first row and the first column of \(Q_4^{(t,y)} \) is equal to \(t \). Furthermore, all \(Q_4^{(t,y)} \) are the same for all \(y \in \{p, r, s, t, u\} \).

Let us define analogously \(W^{(t,y)} = (Q_1^{(t,y)}, Q_2^{(t,y)}, Q_3^{(t,y)}) \), the \((4 \times 4 \times 3)\)-parallelepiped of the elements \(t, d + t, 2d + t, 3d + t \), for all \(t \in \{1, \ldots, d\} \), \(y \in \{p, r, s, t, u\} \).

We can continue in the construction in the same way as for \(n = 3d \) (i.e. we can replace each member of the latin cube \(B \) by an appropriate \(W^{(t,y)} \) as in the Construction B and use a similar switching as in the Construction C) to get a latin \((4d \times 4d \times 3d)\)-parallelepiped which cannot be extended to a latin cube of order \(4d \).
The case $n = 5d$ can be proved in the same way as the cases $n = 3d, 4d$, concluding the proof of the theorem.

Note that in [5] we have proved that there exists a latin $(n \times n \times (n - 2))$-parallelepiped that cannot be extended to a latin cube of order n if and only if $n \geq 5$. That is why we conjecture that the above theorem hold if and only if $n \geq 2d + 1$, for every $d \geq 2$, i.e. each latin $(n \times n \times (n - d))$-parallelepiped can be extended to a latin cube of order n whenever $n \leq 2d$, but there exists a latin $(n \times n \times (n - d))$-parallelepiped that cannot be extended to a latin cube whenever $n \geq 2d + 1$.

REFERENCES

Received December 5, 1988