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Math. Slovaca 29,1979, No. 2,117—130 

SEQUENTIAL CAUCHY SPACES 

JAMES M. IRWIN—DARRELL C KENT 

Two general theories of convergence have evoled during the past two decades; 
one is based on filters and the other on sequences. Despite many obvious 
resemblances, there has been surprisingly little interaction between these two 
schools, each having developed more or less independently of the other. That the 
interrelationship between these two theories deserve further investigation is 
indicated by a recent paper by R. Fric, K. McKennon, and G. Richardson. 
These authors have shown in [4] that the notion of sequential envelope introduced 
by J. Novak (see [9] and [10]) can be characterized by adapting the c-embedding 
technique developed by E. Binz and others for filter spaces to the realm of 
sequential spaces. 

This paper, like [4], applies methods and concepts developed in filter converg­
ence spaces to the study of sequential spaces. We introduce the notion of 
a "sequential Cauchy space", the sequential analogue of the (filter) Cauchy space 
which has been studied by various authors (see [5], [8], [12], and [13]) and used to 
obtain completions of the uniform convergence spaces of C. H. Cook and 
H. R. Fischer [1]. It is shown that a UL* space (in the sense of A. Goetz, [6]) 
induces a sequential Cauchy space in a natural way. A completion theory is 
developed for a class of sequential Cauchy spaces based on a function space 
approach similar to that used by R. Gazik and D. C. Kent for (filter) Cauchy 
spaces in [5]. This leads, in turn, to a completion theory for a more general class of 
UL spaces than that studied by R. Fric in [3]. 

0. 

Let X be a set. Sequences with range in X will be denoted by small Greek letters 
a> j3, £, £, 17, etc. The kth term of the sequence £ is denoted by C(k). The small 
Latin letters s9t9u9v9w9 denote increasing mappings of N into N. Such maps will 
be called sequences of indices. The composition ^ oS is the subsequence of ^ which 
has ri(s(k)) as kth term. 
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Given sequences a and (3, then aQs and j3 0s are corresponding subsesequences. 
The term corresponding subsequence is distinguished from common subsequence. 
The sequences a and /? are said to have a common subsequence if there exist s and 
l such that aos =(3ot. By (x ) is meant the constant sequence whose kth term is x 
for all indices k. Let a and /3 be sequences. The conjunction of a and /3, denoted 
by a A/3, is defined to be the sequence 77, where ^2k — \) = a(k), and rj(2k) = 
/3(k) for all k in N. 

Sequences of functions will usually be denoted by capital Latin letters. Let F be 
a sequence of real-valued functions with domain X and £ be a sequence on X. 

Then lim F(n) (£(k)) = a means that given e > 0 there is a natural ra such that n, 
n, k 

k>m implies \F(n)(t)(k))-a\<e. 

The concept of a UL space was introduced by A. G o e t z in 1962 (See [6]), and 
has been subsequently studied by various authors. 

Definition 1.1. A UL space is a pair (X, n) where Xis a set and n an equivalence 
relation between sequences with ranges in Xsubject to the following conditions: 
(i) (x)n(y) iff x=y\ 

(ii) If ^nt;, then for each s it is true that ^0s)n(^0s). 
A UL space (X, n) is called a UL* space if it satisfies the additional condition: 
(*) If for each sequence of indices s there is a sequence of indices t such that 

(%oSot) n ^oSot), then Z;n^. 
A UL space is called a ULa space if it satisfies the additional condition (cf. [11]): 
( • ) If for each sequence of indices s there are sequences of indices t and u such 

that (^oSot) n (rjosow), then 'E>n^. 
The relation n of the UL space (X, n) is called a nearness relation; sequences ^ 
and § are said to be "near" if ^nZ;. 

Definition 1.2. A convergence structure on a set Xis a relation between a certain 
set of sequences on X and the points of X subject to the following conditions: 
(1) (x) —>x for each x in X; 
(2) § —>x implies %os—>% for each s ; 
(3) §—>x and §—»y implies x=y. 
The pair (X, —>) is called a convergence space. A convergence space is said to be 
a * convergence space if it satisfies the following additional condition: 
(4) If for each s there exists t such that £,oSot-^>x, then £—>x. 

A UL space (X, n) induces a convergence space (X, —>) by: §—>x iff %n (x). 
G o e t z , [7], defines the notion of a Cauchy sequence in a UL space (X, n). A 

118 



sequence £ is said to be n-Cauchy if £n (f os) for every sequence of indices s. It is 
easy to see that every convergent sequence in a UL space is n-Cauchy; it is also 
clear that a subsequence of an n-Cauchy sequence is n-Cauchy. Furthermore, 
a sequence which is near an n-Cauchy sequence is itself n-Cauchy. 

Definition 1.3. A Cauchy space is a pair (X, L) where X is a set and 
L a collection of sequences with range in X which satisfies the following conditions: 
(1) (x) eL for each x in X; 
(2) £ e L implies £os e L for each s ; 
(3) If £ and ^ are sequences in L with a common subsequence, then £ A rj e L ; 
(4) If ^A(x) eL and ^A(y) eL, then x=y. 
If a Cauchy space (X, L) satisfies the additional condition 
(5) ^eL whenever (a) for each s there is t such that ^oSoteL, and (b) if ^ oS and 

^ot are two subsequences of ^ in L, then (i7os)A(r/ot)eL, 
then (X, L) is said to be a * Cauchy space. If £eL , then £ will be said to be 
a Cauchy sequence. We shall use the abbreviation C.S. for Cauchy space. 

The effect of condition (5) in the definition of a * Cauchy space can be brought 
out by considering the real line with its usual matric. Every bounded sequence of 
real numbers has a Cauchy subsequence. Hence, every bounded sequence of real 
numbers satisfies condition (a). Yet every bounded sequence of real numbers is not 
Cauchy in the usual sense because (b) is lacking; e.g. consider the sequence 0,1, 0, 
1, 0, 1, .... 

A C.S. (X, L) induces a convergence space in the following natural way: ^-*x 
iff ^ A (x ) e L. Moreover, if (X, L) is a *C.S., then the induced convergence space 
is a * convergence space. 

A C.S. is said to be complete if every Cauchy sequence converges in the induced 
convergence space. 

The propositions that follow involve UL spaces, C.S. 's, and their interrelation­
ships ; the straightforward proofs are omitted. 

Proposition 1.4. Let (X, n) be a UL* space. If £ and ^ are n-Cauchy sequences 
and t>n^, then t,A^ is also an n-Cauchy sequence, and £n(£Arj). 

Proposition 1.5. Let L be the set of all n-Cauchy sequences in a UL* space 
(X, n). Then (X, L) is a *CS. 

Proposition 1.6. Let (X, L) be a C.S. Define a relation ~ between sequences in 
L as ^~t; iff ^A^eL. Then ~ is an equivalence relation on L. 

We will call ~ the intrinsic equivalence relation on L. We say that a UL space 
(X, n) intrinsically induces a C.S. (X, L) if L is the set of all n-Cauchy sequences 
and the partition of L into equivalence classes by n is the same as the partition of L 
by the intrinsic equivalence relation. It follows from the definition of ~ that a UL 
space (X, n) intrinsically induces a C.S. (X, L) iff whenever £ and ^ are n-Cauchy 
sequences such that t)n^, then £A?7 is n-Cauchy. 
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R e m a r k . The sequences which converge to x in the convergence space induced 
by the C.S. (X, L) are those in the equivalence class [(x)] with respect to the 
intrinsic equivalence relation. The sequences which converge to x in the converg­
ence space induced by the UL space (X, n) are those sequences on X which are in 
the equivalence class [(x)] with respect to n. Moreover, as all r*-convergent 
sequences are rz-Cauchy it follows that if (X, n) intrinsically induces (X, L) , then 
the convergence space induced by (X, n) is the same as the convergence space 
induced by (X, L) . 

Proposition 1.7. A UL* space intrinsically induces a *CS. 
We will say that a UL space (X, nx) is finer than a UL space (X, n2) iff £,nx n 

implies £,n2r\. Conversely, (X, n2) will ba said to be coarser than (X, nx). 

Proposition 1.8. Let (X, L) be a C.S. Define a relation nL between sequences 
with ranges in X as follows 

CnLr] iff t,=Y) or ^AT]eL. 

Then (X, nL) is a UL space. Moreover, (X, nL) is the finest UL space intrinsically 
inducing (X, L) . 

Let (X, n) be a UL space. G o e t z [6] denotes by (X, n*) the finest UL* space 
coarser than (X, n). The relation n* is defined by £rz* r\ iff for each s there exists t 
such that (^oSot) n (rjoSot). 

Let (X, L) be a C.S. The * modification L* is obtained by adding to L all 
sequences £ which satisfy the following two properties: 
(1) For each s there exists t such that £oSot eL; 
(2) If u and v are such that £oweL and £oveL, then (t,ov) A (£ow)eL. 
It can be proved that (X, L*) is a *C.S. 

Proposition 1.9. Let (X, n) be a UL space which intrinsically induces (X, L) . 
Then the * modification of L is the set of all n*-Cauchy sequences iff each 
n*-Cauchy sequence contains an n-Cauchy subsequence. 

Proposition 1.10. Let (X, L) be a *CS. Then (X, nf) is the finest UL* space 
inducing (X, L) intrinsically. 

2. 

A real-valued function / on a Cauchy space (X, L) will be said to be continuous 

if whenever £ —>x in the induced convergence space, it follows that l im/(£(k ) ) 
k 

= f(x). The collection of continuous functions on a Cauchy space will be denoted 
by C(X, L). The continuous functions are completely determined by the induced 
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convergence space. Hence all Cauchy spaces inducing a given convergence space 
.have the same set of continuous functions. 

A real-valued function on (X, L) is said to be Cauchy-continuous if for all 

sequences t,eL, it is true that l im/(£(£)) exists. We will denote the set of 
k 

Cauchy-continuous functions by C(X, L) . Note that a Cauchy-continuous function 
is continuous since if f—*x in the induced convergence space, then £ A ( J C ) eL. 

Hence it follows l im/(£(£)) = f(x). Therefore C(X, L) is contained in C(X, L) . 
Ac 

The Cauchy-continuous functions are not completely determined by the induced 
convergence space. However, if the C.S. is complete, then C(X, L) = C(X, L). In 
general, the collection C(X, L) is an intrinsic property of the Cauchy space (X, L) . 
A complete C.S. (X, L) can be considered as a convergence space and hence 
convergence notions are well-defined for (X, L) . For instance, we say that 
a complete *C.S. (X, L) is sequentially regular, which means that £ —>x iff 

l im/(£(£)) = f(x) for each feC(X, L) (i.e. the convergence --> is projectively 
k 

generated by C(X, L)), and sequentially complete if £ converges in (X, L) 

whenever l im/(£(£)) exists for each feC(X, L). 
k 

Let M be the set of all sequences F with range in C(X, L) such that lim F(n) 
n, k 

(£(k)) exists for all f e L. We call M the continuous Cauchy structure on C(X, L) . 
Let (XULX) and (X2, L2) be C.S. 's. A mapping <P:XX—>X2 is said to be 

Cauchy-continuous if 77 e L , implies <P(r])eL2, where (<P(r]))(k) = <P(t](k)). 

Theorem 2.1. Let (X, L) be a C.S. Then (C(X, L), M) is a complete *Cauchy 
space. 

Proof. The verification that (C(X, L) , M) is a *C.S. is routine and is left to 

the reader. Completeness will be shown. Let FeM. Then F—>/ in the indu­

ced convergence space iff F A ( / ) 6 M . But F A ( / ) E M iff lim F(n)(t,(k)) = 
n, k 

= l im/(C(k)) for all C e L . 

k 

Let FeM. Define a function/ on X by f(x) = limF(n)(x) for all xeX. Then as 

(x ) e L for all JC e X, /(JC) is defined for all x e X . Let £ e L. Since F 6 M it follows 

that lim F(n)(£(fc)) = L, exists. Hence given E > 0 , there exists a pair of natural 

numbers (n0, k0) such that (n, k) £ (n0, k0) implies |F(rz)(£(k)) - L ^ e / 2 . 
Given k§k0 there exists nx(k)^n0 such that |/(C(k)) - F(rz1)(£(k)) |<f/2. 
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Hence 

| /(£(*)) -Lx\ =§ | /(£(*)) -F(nx)(£(k))\ + 
+ \F(n1)(£(k))-Ll\<e/2 + e/2 = e. 

Therefore lim f(£(k)) = L1. 
k 

Note that if £ and <f are Cauchy sequences belonging to the same equiva­
lence class in the C.S. (X, L) , i.e., £ A £ eL, then for all / e C(X, L) it follows that 

lim / (£(k ) ) = lim / (£(k ) ) . A C.S. (X, L) is said to be Cauchy-separated if the 
Ac Ac 

Cauchy-continuous functions separate the Cauchy equivalence classes; i.e., given 
Cauchy sequences £, t] such that £ ATJ &L, then there exists / e C(X, L) such that 

lim / (£(k ) ) -j-= lim f(r](k)). Cauchy-separated implies that the Cauchy-continuous 
k k 

functions separate points. 
Let (X, L) be a C.S. The C.S. (C(X, L) , M) determines a collection LM of 

sequences on X. A sequence £ is defined to be in LM iff lim F(AZ)(£(A;)) exists for 
n, k 

all FeM. It is clear that Lc=LM. Moreover, if C(X,L) separates points, then 
(X, LM) will be a C.S. 

Proposition 2.2. If (X, L) is a C.S. such that L=LM, then (X, L) is 
Ca uchy-separa ted. 

Proof. Suppose £ and rj are Cauchy sequences belonging to different Cauchy 

classes. Then t>/\r\iL=LM. Hence there exists FeM such that lim F(/z)(£(k)) =£ 
n, k 

lim F(n)(t](k)). As (C(X,L), M) is complete, it follows that F-*feC(X,L). 
n, k 

Hence 

lim/(£(*)) = lim F(n)(e(*))* 
k n, k 

* lim F(n)(n(k)) = lim f(n(k)). 
n, k k 

We designate by (£ 2(X, L), M2) the continuous Cauchy structure formed on 
the set of real-valued Cauchy-continuous functions on the complete C.S. 
(C(X, L), M). Then X can be mapped into (C2(X, L), M2) by the canonical 
map /, where i(x)(f) =f(x) for all fe C(X, L). Note that if £ eL and FeM, then 

lim /(£(fc))CF(")) = limF(rz)(£(k)) exists. Hence /(£) eM 2 , and i is Cauchy-cont-
n,fc n,k 

inuous. 
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Theorem 2.3. The canonical map / : (X , L) -» (£ 2 (X, L) , M2) is a Cauchy 
embedding iff L=LM. 

Proof. Suppose L = L M . Then since C(X, L) separates points, it follows that / 
is one-to-one. The canonical mapping / is always Cauchy-continuous. Let £ e M2 

be such that the range of £ is contained in i(X). Let ^=^\t)) and FeM. 

Then lim £(k)(F(n)) exists. Since lim F(n)^(k)) = lim /(r/(k))(F(rz)) = 
k, n k, n k, n 

= lim £(k(F(n)) exists, it follows that ^eLM. Therefore, if L = L M , / * is Cauchy-
Ac, n 

-continuous, and (X, L) is Cauchy embedded in (C2(X, L) , M2). 
Suppose (X, L) is Cauchy embedded in (C2(X, L) , M2). Let £ e LM. Then for all 

F e M , it follows that lim F(n)(£(k)) = lim i(Z(k))(F(n)) exists. Hence /(£) e M 2 . 

Since i"1 is Cauchy-continuous, it follows that £ e L . Therefore, we have LZDLM. 

As L czLM is always true, it follows that L =LM. 

Definition 2.4. A C S . (X, L) /s sa/d to be C-embedded if i:(X,L) —> 
(C2(X, L) , M2) /s a Cauchy embedding. 

Notation 2.5. Let (X, L) be a C.S. The collection of all sequences £ on X such 

that lim / (£(«)) exists for all feC(X, L) will be denoted by LF. 
n 

Notation 2.6. Let (X, L) be a C.S. Denote by c the set of all sequences F 

on C(X, L) siicI2 that lim F(n)(£(k)) exists whenever £ —>x in the induced con-
n, k 

vergence space. We call c the continuous convergence structure on C(X, L) . 

Notation 2.7. Let (X, L) be a C.S. The collection of all sequences £ on X such 

that lim F(n)(£(k)) exists whenever Fee will be denoted by Lc. 
n, k 

If the continuous functions separate points, then (X, LF) and (X, Lc) are both 
C.S. 's. It is always true that Lc czLF. In [4] it was shown that, when (X, L) induces 
a sequentially regular convergence space, then LC=LF. In [14] it was implicitly 
shown that (C(X, L) , c) is a complete sequentially regular *C.S. We will denote 

convergence in the induced convergence space by T—>/; this convergence is called 

continuous convergences. (C(X, L) , c) is the Cauchy space determined by the 
continuous convergence structure. The straightforward proof of the following 
theorem is omitted. 

Theorem 2.8. Let F - 4 / and £ e L c . Then lim F(n)(£(k)) = lim f(£(k)). 
n, k k 
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Notation 2.9. Let (X, L) be a CS. Then Lp will denote the set of all sequences £ 

on X such that lim /(£(k)) exists for all feC(X, L). 
k 

It is always true that LM<zzLp. If C(X, L) separates points, then (X, Lp) is a C.S. 

Theorem 2.10. A C.S. (X, L) is C-embedded iff L=Lp. 
Proof. Assume that L =LP. It is always true that LczLMczLp. So when L =Lp, 

it follows that L=LM. Hence, by Theorem 2.3, (X, L) is C-embedded. 
Now assume (X, L) is C-embedded. Since (C(X, L), M) is a complete C.S., it 

follows that M2 is the same Cauchy structure as the one determined by the 
continuous convergence structure on C(C(X, L), M). Thus it follows that 
(C2(X, L) , M2) is sequentially regular. Let / be a continuous real-valued function 
on the C.S. (C2(X, L) , M2). Then define a function f(x) = f(i(x)) for each x e X. 
As (X, L) is Cauchy embedded in the complete C.S. (C2(X, L), M2), it follows 
that f(x) is Cauchy-continuous. In particular, if £ e Lp it follows that /(£) e (M2)F . 
But, as (C2(X,L),M2) is sequentially regular, i(E,)e(M2)c. Hence by Prop­
osition 3.1 in [14], /(£) converges in (C2(X, L), M2), and so / ( t ) e M 2 . Hence 
£ e L , and LpczL. As LczLp is always true, it follows L=Lp. 

Definition 2.11. A C 5 . (X, L) is Cauchy-regular if, whenever a sequence £ on 
X has no Cauchy subsequence, there exists a Cauchy-continuous function f such 

that lim/(£(/?)) does not exist. 
n 

Theorem 2.12. A C.S. (X, L) is C-embedded iff (X, L) is a Cauchy-separated, 
Cauchy-regular *CS. 

Proof. If (X", L) is C-embedded, then L =Lp. The C.S. (X, Lp) has the desired 
properties. 

Now suppose that (X, L) satisfies the three conditions. Let t,eLp. Then, since 
every subsequence of £ is in Lp, it follows that every subsequence of £ has a Cauchy 
subsequence. Moreover, as (X, L) is Cauchy-separated, it follows that all Cauchy 
subsequences of £ belong to the same Cauchy class. Then £ e L since (X, L) is 
a *C.S. and so LpczL. The inclusion LczLp is always true. Hence L=Lp, and 
(X, L) is C-embedded. 

A complete sequentially regular *C.S. which is sequentially complete is clearly 
Cauchy-separated Cauchy-regular *C.S. and hence by Theorem 2.12 it is C-em­
bedded. It was proved in [4] that (C2(X, L), M2) is sequentially complete. Since it 
is also sequentially regular, it is C-embedded. 

Theorem 2.13. If (X, Lc) is a C.S., then (X, Lc) is C-embedded. 
Proof. The sets C(X,LC) and C(X,L) are identical. Denote by M the 

continuous Cauchy structure on C(X, Lc). A simple computation shows that 
(C(X, Lc), M) = (C(X, L), c). Thus (LC)M = LC, and, by Theorem 2.3, (X, Lc) is 
C-embedded. 
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Theorem 2.14. The pair (X, Lc) is a CS. iff C(X, L) separates points. 

Theorem 2.15. Let (X, L)beaCS. If C(X, L) separates points, then LC=LF. 
Proof. Since C(X, L) separates points, (X, Lc) is a C.S. Theorem 2.13 implies 

that (X, Lc) is C-embedded. Hence, 

LC = (LC)F = (LC)F = LF. 

Theorem 2.16. If (X, L) induces a sequentially regular * convergence space, 
then (X, Lc) induces the same convergence space. 

Proof. A sequentially regular * convergence space is projectively generated by 
the real-valued continuous functions. This is the same convergence induced by the 
C.S. (X, LF). Since (X, L) is sequentially regular, LC=LF. 

Proposition 2.17. For any sequentially regular * convergence, there exist 
a C-embedded C.S. which induces it. 

Proof. The set Lc can be determined from the convergence space. The C.S. 
(X, Lc) is a C-embedded C.S. inducing this convergence space. 

Note that all the CS. 's which induce a given convergence space have the same Lc 

and LF. 

Definition 2.18. We will say that a CS. (X, L,) is finer than a C.S. (X, L2) iff 
LiCzL2. 

Theorem 2.19. Let (X, —>) be a sequentially regular * convergence space. Then 
there is a finest C-embedded C.S. inducing (X, —>). 

Proof. Proposition 2.17 states the existence of a C-embedded C.S. which 
induces (X, —>). Let (X, L) be any (^-embedded C.S. inducing (X, —>). Then 
Lc c=LM = L, and (X, Lc) induces (X, —>). Since (X, Lc) will be the same for all 
C.S. 's which induce this convergence, the result follows. 

M  

Proposition2.20.LetF-+fand£eLM. Then limF(rz) (£(£)) = lim/(£(£)). 
n, k k 

Theorem 2.21. Let (X, L) be a C.S. If (X, LM) is a C.S., then it is C-embedded. 
Proof. Note that C(X, L) = C(X, LM). Since (LM)M = LM, Theorem 2.3 implies 

that (X, LM) is (^-embedded. 

Theorem 2.22. / / (X, LM) is a C.S., then LM = LF. 
Proof. Note that C(X, L) = C(X, LM). Theorem 2.10 now gives the result. 

Corollary 2.23. If C(X, L) separates points, then LM = Lp. 

Theorem 2.24. If the canonical mapping i: (X, L) —> (C2(X, L), c2) is a Cauchy 
embedding, then L=LF = LF and the C.S. 's (C2(X, L), M2) and (C2(X, L), c2) 
are the same. 

Proof. The sequence £ e L implies that /(£) belongs to c2 since i was assumed to 
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be a Cauchy embedding. Since (C2(X, L), c2) is complete, it follows that /(£) 
converges. Hence for all real-valued continuous functions / on the C.S. 

(C2(X, L), c2) it is true that lim /(*(£(*))) exists. Define a function f(x)=f(i(x)) 
k 

for all xeX. When / is a continuous function on (C2(X, L)c2) it follows that 
f(x) e C(X, L) . Assume this is the case and n e LP. Then lim f(r)(k)) = lim f(i(r\)) 
exists. Since the sequentially regular space (C2(X, L) , c2) is sequentially complete 
([14]), i(r\) converges in (C2(X, L), c2). Hence i(r7)ec2. Since the mapping i is 
a Cauchy embedding it follows that neL. Therefore LFaL. The opposite 
inclusion LaLF is always true. Thus LF = L. 

Now let f e L . Then since i is a Cauchy embedding it follows that /(£) e c2. Let 

feC(X, L). Then </> € c Therefore it follows that lim /(£(*))(/) = lim / (£(£)) 

exists. Therefore t,eLF. Thus LczLF. But LF is always contained in LF and LF has 
been shown to be L. Therefore it follows that L=LF = LF. This observation implies 
C(X, L) = C(X, L) . Since (X, L) is sequentially regular we have LC=LF = L. 
Therefore the C.S. 's (C(X, L) , M) and (C(X, L) c) are the same, and this fact 
implies the desired conclusion. 

Let (X, L) be a Cauchy space, and let Clx be the a-th iteration of the closure 
operator relative to the convergence space induced by (X, L) , where a is an 
ordinal number not exceedind a)x. It is well-known that Clx

x is closure operator of 
the topological modification of the induced convergence structure; in other words, 
this closure is idempotent. 

In this section, we define the natural completion (X', L') of a C-embedded 
Cauchy space (X, L) and show that this completion is unique relative to this class. 

D finition 3.1. Let (X, L) be a C-embedded Cauchy space, and let X' = 
Cl^'ifX), where the closure is relative to (C2(X, L) , M2). Ler L' be the Cauchy 
structure which X' inherits from (C2(X, L) , M2). Since X' is closed, (X', L') is 
a complete C.S. and is called the natural completion of (X, L) . 

Note that the natural completion of a C-embedded C.S. is also C-embedded. 

Proposition 3.2. Ler <P: (X, L)—>(X1? Lx) be a Cauchy-continuous map. Let 
feC(XuLx). Then fo<PeC(X,L). 

Theorem 3.3. Let <P:(X, L)—>(XU Lx) be a Cauchy-continuous map. Define 
®X:C(XULX) -> C(X,L) by &,(/)= fQ<P. Then &X:(C(XU Lx), Mx) -> 
(C(X, L) , M) is Cauchy-continuous. 

Proof. It follows by the previous proposition that <PX: C(XU Lx) —> C(X, L) . 
Hence it suffices to show &x is Cauchy-continuous. Let FeMx and £ e L. Then the 
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lim 4>,(F(n))(C(A:)) = lim F(n)(<P(£(k))) exists since 0>(£)eL,. Hence 
n, k n,k 

®,(F)eM. 
Let <P: (X, L)—»(X„ L,) be Cauchy-continuous. We have seen that 

<*>,: (C(XU L,), Af,)->(£(X, L), M) 

defined by <Pt(f)(x) = f(&(x)) is Cauchy-continuous. Hence it follows that 

<*>2: (£2(X, L), M1)^(t1(Xu L,), M?) 

defined by ^2(9 )(/) = # (<£,(/)), i.e., <l>2(g) = g°<Pi is Cauchy-continuous. 
Hence in particular 

^(iOOXD = i(x)(<P>(f)) = i(x)(fo <P) 
= (fo<P)(x) 
= u(0(x))(f). 

In this sense we may think of &2 as a Cauchy-continuous extension of 0 which 
takes C2(X, L) into C2(XU Lx), and i(X) into il(X1). 

Theorem 3.4. Let 0 be a Cauchy-continuous mapping of a C-embedded C.S. 
(X, L) into the complete C-emedded C.S. (Xu Li). Then there is a unique 
Cauchy-continuous extension W of 0 which maps (X', L') into (X-, Lx). 

Proof. By the observations which precede the theorem, <P2: (C
2(X, L), M2)—> 

(C2(XU Lr), Mi) is Cauchy-continuous and <2>2(/(X)) cz i1(X1). Consequently, 
®2(CKH(X)) = 4>2(X')<=a£. (/1(X1)) = /1(X1), Thus V = iT1o<P2 is the desired 
extension. The uniqueness of W is obvious,. 

The primary purpose of this section is to use the C.S. completion for C-embed­
ded C.S. to obtain a UL space completion for UL spaces which intrinsically induce 
a (^-embedded C.S. It will be shown that every CjL* space which has a completion 
in the sense of Fric [3] intrincically induces a C-embedded C.S. and thus has 
a completion described above. 

Lemma 4.1. Let <P: (X, Lt)-^(Y, L2) be a Cauchy embedding of a C.S. (X, L2) 
into a C.S. (Y, L2). Let (X, n) be any UL space intrinsically inducing (X, L2). Let 
m be a relation between sequences with range in Y defined by^mr] iff any one of 
the three following conditions hold: 
(1) £(£), r\(k)e 0(X) VkeNand &-\t;)n&-\r\); 
(2) Z(k) = r}(k)VksN', 
(3) CAr/eL2. 
Then (Y, m) is a UL space intrinsically inducing the C.S. (Y, L2). The mapping <P 
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is a uniform embedding of (X, n) into (Y, m). Moreover, if (X, n) is a UL* space 
and (Y, L2) is a *Cauchy space, then the CS. induced by (Y, m*) is (Y, L2). 

Proof. Clearly m is symmetric and reflective. If t,m^, the for the same reason 
that two sequences are near, the corresponding subsequences are near. Suppose 
t)m^ and ^m'E).\i the two pairs are near because they satisfy the same condition (of 
the three possible conditions), or if the reason that one of the two pairs is near is 
equality of the sequences, then it follows easily that £m§. Hence assume without 
loss of generality that 0~x(t))n0~l(n) and ^A^eL2. Hence ^eL2, and 
0 Xrf) e L i , as O is a Cauchy embedding. But in a UL space (X, n) any sequence 
near an rz-Cauchy sequence is «-Cauchy, and so 0 _ 1 (£ ) must also be n-Cauchy. 
Since the partition of Lx by n is the same as the intrinsic partition of L,, it follows 
that 0~\t>)/\0~x(n)eLx. Hence the image of 0~x(t>)/\0~x(n) by 0 is £ A ? ] e L 2 

since 0 is a Cauchy embedding. Since t,^eL2 and ^/\'E)eL2 and these two 
sequences have the common subsequence ^, it follows that 

(? A?])A(r/A?)eL2. 

But ( £ A § ) is a subsequence of ( ? A ^ ) A ( ? 7 A § ) . Hence ^A^eL2 => £m§. 
Therefore ( y , m) is a UL space. 

It follows by the definition of m that 0 is a uniform embedding of (X, n) into 
( y , m). Since 0 is also a Cauchy embedding, it follows that any m-Cauchy 
sequence £ with range in 0(X) belongs to L2. 

Let ^ be an m-Cauchy sequence whose range is not contained entirely in 0(X). 
If there exists an s such that (r/os)(l) =£ ^(l), then (^os)m^ implies 
(^os)A^eL2. Hence ^eL2. If no such sequence of indices s exists, then ^ is 
a constant sequence which belongs to L2. 

Clearly, be definition of m, sequence in L2 is m -Cauchy. It is easy to see that 
( y , m) induces ( y , L2) intrinsically. 

Finally, if (X, n) is a UL* space and ( y , L2) is a *C.S., then it follows by 
Proposition 1.10 that ( y , ,n t2) intrinsically induces ( y , L2). It can be shown that 
( y , nt2) and ( y , m*) intrinsically induce the same *C.S. 

Definition 4.2. A UL space (X, n) is said to be of type C if (X, n) induces 
a C-embedded C.S. intrinsically. 

Let (Xk, nk) be a UL space of type C, Lk the intrinsically induced Cauchy 
structure, and ik:(Xk, Lk) —> (C2(Xk, Lk), Ml) the canonical Cauchy embedding. 
Denote by mk the UL relation between sequences with range in C2(Xk,Lk) 
defined by conditions (1), (2), and (3) of Lemma 4.1. Then (C2(Xk,Lk), mk) 
intrinsically induces the (^-embedded C.S. (C2(Xk, Lk), Ml) and ik: (Xk, nk) —• 
(C2(Xk, Lk), mk) is a uniform embedding. Furthermore, mk can be replaced by m* 
if nk is a UL* relation. 

Theorem 4.3. Let (Xk, nk), k = 1, 2, be UL spaces of type C, Lk and mk be as 
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specified in the preceding paragraph. Let €>: (Xu nx) —> (X2, n2) be a uniformly 
continuous mapping. Then there is a uniformly continuous mapping W: 
(C2(XULX), mx) —> (C\X2,L2), m2) such that: (a) for each xeXx we have 
^(ii(x)) = i2(^(x)), (b) W(CI"HX(XX)) cz Crn2(X2). 

Proof . Since &: (XULX) —> (X2, L2) is Cauchy-continuous, the mapping W\ 
(C2(XU Lx), M2) -> (C2(X2, L2), Afl) defined for g e C2(XU Lx) a n d / 6 C(X2, L2) 
by (l-t/(.^))(/) = g(fo0) is Cauchy-continuous (cf. Section 3). Simple calculations 
show that W is an ml — m2 uniformly continuous mapping satisfying conditions (a), 
(b). . 

Definition 4.4. Let (X, n) be a UL space of type C, L the intrinsically induced 
Cauchy structure, i: (X, L) —» (C2(X, L), M2) the canonical Cauchy embedding, 
and (C2(X, L), m) the UL space of type C defined above. Let X' = C/Wl/(X) in 
(C2(X, L),m) and let n' be the inherited UL structure on X'. Then (X',n') will 
be called the natural completion of (X, n). 

Note that (X' , n') is a complete UL space of type C. 

Theorem 4.5. Let (X,n) be a UL space of type C, (X',n') its natural 
completion, and (Xx, nx) a complete UL space of type C. Then each uniformly 
continuous map &: (X,n) —> (Xunx) has a uniquely determined uniformly 
continuous extension W: (X', n') —> (Xu «,). 

The existence of W follows from Theorem 4.3. The uniqueness follows by 
a standard topological argument. 

Let (X, n) be a UL space. Denote by U= U(X, n) the set of all uniformly 
continuous functions on (X, n) and by U0 a subset,of U. 

A UL space (X, n) is said to be U0-regular if the following condition is satisfied: 
((7oR) if £ and r\ are two sequences such that ^osnrjos for all corresponding 

subsequences, then there is / in U0 such that lim | / (£(k)) - /(^?(^))| = 0 does not 

hold. 
R e m a r k 4.6. A [/0-regular space (X, n) is [/-regular and U0 separates points. 

A UL* space (X, n) is t/0-regular iff n is projectively generated by U0. 
R e m a r k 4.7. Let & be a collection of real-valued functions on X=£0 which 

separates points. Denote by (X, n) the l/L space projectively generated by &. 
Then ^cz U(X, n) and (X, n) is an ^-regular ULa space. 

Theorem 4.8. Let (X, n) be a U0-regular UL* space. Then (X, n) is of type C. 

Proof . From Proposition 1.7 it follows that (X, n) intrinsically induces a *C.S. 

Denote it by (X, L) . By Theorem 2.10 it suffices to prove that L=LP. The 

inclusion L czL^ is trivial. Let £ £L. Then there is s such that fos £ £. Consequent­

ly, there is / i n U0cz U(X, n) cz C(X, L) such that l im/(£(£)) does not exists. 
k 

Thus t,£Lp, and hence LpcL. 
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СЕКВЕНЦИАЛЬНЫЕ ПРОСТРАНСТВА КОШИ 

Джеймс М. И р в и н и Дерл С К е н т 

Р е з ю м е 

Вводятся пространства Коши определенные последовательностями. Используясь методами 
введеными для общих пространств Коши, строится пополнение этих пространств. Это позволяет 
получить пополнение для некоторого класса СЯ.-пространств. 
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