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ON CHARACTERIZATION OF SUMMABILITY
FIELDS BY INTEGRAL

JOZEF ANTONI

In paper [3]J. R.Edwards and S. G. Wayment defined a summability method
using the technique of the integration theory. By this method the characterization
of convergence fields of the (C, 1) method and some strongly regular matrix
methods are given. A summability integral defined by J. R. Edwards and
S. G. Wayment was obtained by a non-negative set function defined on a logic of
a set (see [4]).

This paper shows that for the characterization of the above mentioned converg-
ence fields a usual integral is sufficient defined by an additive measure on an
algebra of a subset of the set N (N means the set of all positive integers), which is in
a certain sense maximal. Also the characterization of convergence fields of some
matrix summability methods (not only strongly regular) is given. In paper X
denotes a Banach space and sequences consist of elements of X.

1.

In paper [1] R. C. Buck used the new measure theoretic approach to the density
of sets of positive integers. There is defined a system of measurables sets, which
have the characteristic functions (C, 1) summable (also a generalization for matrix
summability methods, which are not weaker than the (C, 1) method, is given).

Buck’s approach to density is used for a regular matrix summability method, but
the extension is made in another way.

The generalised density 6r(A) of a set A =N (in the following only density of
A) given by the regular non-negative matrix T =(a,..) we shall call the limit

lim ) a..xa(n) if this limit exists. A set A for which (A ) exists, is called the set

n=1

with the ér density. If T equals the matrix of the (C, 1) method, we have the usual
asymptotic density.
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Let D be an algebra of a set with the dr density, i.e., a system of a set AcN

satisfying the following conditions:
(i) if AeD,then N-AeD

(if) if A, BeD, then AuUBeD

(iii) if A €D, then 8:(A) exists.

Let & denote the set of all algebras D of set with the §; density. Then exist
maximal elements in & with respect to the ordering given by the inclusion. By the
Kuratowski—Zorn maximum principle it is sufficient to show that every chain
F <& has the upper boundary in &. Let ¥ =% be a chain. Let us put
D*={D:De %,}. Itis easy to see that D* is an algebra of sets with the 6r density
and D* the upper boundary of &, in &.

Remark 1. An example of such an algebra (see [1]) is the system D of sets,
which are finite unions of aritmetical progresions of positive integers or which
differ from these by finite sets (T is the matrix of the (C, 1) method). An
arithmetical progresion is a sequence of positive integers of the form {an +b}._,,
where a, b are positive integers and b can be equal to zero. The characteristic
function of the arithmetical progresion {an +b};_, is (C, 1) summable to the

1
number —.
a

The algebra D of remark 1 was extended by the Carathéodory method to the
system Dy of all sets measurable with respect to the outer measure u% defined in
the following way:

ui(A)=inf {6r(B):BeDand B5A} for AcN.
The symbol 5 means that if a finite set is deleted from A, we have Bo A.

Theorem 1. Let & be the system of all the algebras of sets with the 8; density
ordered by inclusion. D means a maximal element in & and Dur means the system
of all measurable sets in the Carathéodory sense with respect to the outer measure
u¥(A)=inf {6:(B):BeD,B5A} for AcN.

Then Dur<D.

Proof. It is sufficient to show that 6-(A) exists for every A € Dur (since D is
a maximal element in &, we have DurcD). Let there be A €eDur. Then
ui(E)=u¥(EnA) + u¥(EnA’) holds for every E = N. Let there be £>0. To
every € >0 there exists (from the definition of u%) a set B € D such that B5 A and
lut(B)—ut(A)| <e.

Since A e Dur; and B5 A, the following is valid

p¥(B)=u(A)+ux(BnA"),

u¥, where

|u$(B)—p%(A)|=u3(B—A) and u¥(B-A)<e.
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The last inequality yields that for every € >0 there exists a set CeD such that
C5B—A and §:(C)<e. Then we have

6:(B=A)=1im > tpxs-a(n)<
m—® p=1

C<lim S apye(n)=6:(C)<e.
m—® p=1

Since € >0 is arbitrary, there holds 6;(B —A) = u%(B —A)=0 and therefore we
have (u¥(B) = 6:(B))

[BHA) = 8r(A)| < U H(A) = REB)| + im S, G (ta (1) =

—xa(n))=|ut(A)—u*(B)| +6:(B-A)<e.

The last relation gives rise to the existence of the dr(A).
In the rest of the paper D denotes a maximal element of &. The density J; is an
additive measure on D (shall be denoted also ur or shortly u).

2.

Let (X, [[-[) be a Banach space, T a regular matrix method given by
a non-negative matrix and D a maximal element of . (N D, ur) is a measurable
space. Let there be the set of all simple measurable functions denoted by #,. An

x € $, iff there exist x,, x, ..., X, € X and B,, B,, ..., B, € D such that UB,=N;
i=1

B.nB;=# for i#j and x = D, XXs,

i=1

The validity of the following theorem can be easily verified. Fo can be

accompanied by the sup norm ||| (||x||,,=sup |Ix. || for x efo> .
Theorem 2. (o, || ||..) is a normed linear space.

Definition. Supposé x‘e Fo, X = Zx.-x,,i. Then we define the integral of x by the

i=1
formula
f x dpr = 2, xur(B:).

i=1

It is easy to see that ||fx dur||<|x|l=. Fo is a not complete normed space.
A completion of #, with respect to the sup norm will be denoted (#,, || - [|-). The #,
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is the uniform hull of the #,. The integral can be extended to #, in a natural way,
i.e. suppose x € $,, x =lim x", x" € $, and {x"},_, form a Cauchy sequence, then

jx dur =lim fx" dur.

The following theorem gives the necessary and sufficient condition for x € #,.

Theorem 3. Let x = {x, } be a sequence of elements of X. H(x) denotes the set of
all the limit points of the sequence x. Then x € ¥, iff the following condition is
fulfilled :

For every € >0 there exists a finite e-net {a,, a,, ..., &, } in H(x) and such a finite
system of sets {B,, B, ..., B,} € D that LnJB,- =NandB,c{neN:||x, —a;||<e€}.
i=1

The proof immediately follows from the fact that #, is dense in §#,.

Remark 2. The compactness of H(x) is a necessary condition for x € ¢,.

From Theorem 3 it follows that the operator defined by the integral is
a generalized limit. This generalized limit is the same as the usual limit for every
convergent sequence.

3.

In this section there will be shown the relation between the summability field
W(T) of the regular summability method given by the non-negative matrix and #,.

In paper [3] a charakterization of the summability fields of the (C, 1) method
and strongly regular methods which are not weaker than the (C, 1) method is
given. This characterization is given by the integral constructed for this purpose.
We can show that the mentioned summability fields can be characterized by the
above mentioned integral on #,. Proofs are done in the same way as in [3].

Let D denote a maximal element of & which contains all arithmetical progres-
sions. Let x = {x.} be a sequence of elements of X. We can define the sequence
x4 = {x7™}, where x7*"=x, for 1sn<m and x7*"=x for 1<i<m,
n=i mod m, for every positive integer m. The sequence x™“™ can be written in
the form

3

modm

x =2 xXs,, Where B.={mk+i:k=0,1,2,...}

and thus x™™ belongs to #, for every m.
The following theorem characterizes W((C, 1)) by the integral on #,.

Theorem 4. A sequence x belongs to W((C, 1)) iff lim J'x"‘“’"' dyc. 1y exists.
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Then there holds

(C, 1)~ lim x = lim Jx"“"’"' ditee. -

Proof. Let be x™*™ =Y x;xp,, B.={mk +i: k=0, 1, ...}. Then we have
i=1

m 1 m
fx"'“'" duc.y= gxel‘(a n(Bi) “m IER

i=1

Therefore the following holds

m—o

(C, 1)—lim x = lim % Sxi=lim [x™" duc.yy.
m—e i=1

An example of a regular transformation which is not strongly regular and for
which the summability field-can be characterized by integral, is a summability
method given by a matrix D =(d,..). The matrix D arises from the matrix of the
(C, 1) method putting (r — 1) columns consisting of zeros between two neighbour-

ing columns of the (C, 1) method, i.e. d... =;11— forn=rk+1(k=0,1,....,m—1)
and d,.. =0 for other n.

Lemma 1. Let B,={rkm +i: k=0, 1, ..., 1<i<rm}. Then uD(B,-)=;ln— for
i=rs+1,0<s<m and u,(B;)=0 for other i.

Proof. The set B; can be written in the form B, = {k: k=i mod rm}. In the first

place we determine the sum D, xs,(j). It is easy to see that we obtain >, xs,(j) = 0 for
i=1 =1

n<iand D xs(j)=k+1for krm +is<sn<(k+ 1)rm +i. It can be simply written
ji=1

Sitnli) =" |

rm

([a] denotes the integral part of a). Since d"i=% for j=imodrm, i=rs+1,

0<s<m, we have
i r(n—1)+1 . . 1 r(n—1)+1 . 1
up(B)=lim 3 d.xs(j)=1lim n > XB.(])=”"_ :
n—sx =1 n—swo i=1
For other i and j=i mod rm there holds d,; =0 and therefore po(B:)=0.
Theorem 5. A sequence x belongs to W(D) iff lim J x™¢™ dup exists. Then

D —lim x =lim | x™™ dup.

m—sc
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Proof. Since x™*™ belongs to %, we have

m—1

jx'““”" duo ="Z—1xnuo({k: k=nmodrm})= >, ;11—x,s+1

s=0
<d,,.,.=$ forn=rk+1, Osksm-1>_
For the D limit of x there holds

r(m=1)+1 m—1

D —lim x = lim 2 dpXn = lim D, ;nl—x,,u
n=1

m-—»co
m—s 70

and therefore

D —-lim x = linl x™ dup .

Remark 3. We can taken a Schur matrix instead of a regular non-negative
matrix. Then the system & has exactly one maximal element (the system of all
subsets of the set N). In this case the summability field can be characterized
analogously to that in Theorem 4.

The set of all integrable sequences with respect to the measure u; cannot be used
for the characterization of the summability field in the same way as in Theorem 4
(see [3] page 87).
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O XAPAKTEPU30OBAHHMU I10JI1 CXOOUMOCTH IIPU ITOMOIII UHTETPAJIA
HMosed AHTOHH
Peslome

B pa6ore (4] onpeneneH «HHTErpaja CyMMHPOBaHHSI» NP TIOMOILM MEPbI ONMPENENEHHOM Ha JIOTHKE
MOAMHOXECTB MHOXECTBA BCEX HATYPAIbHBIX YHCEN a TAKXKE XapaKTePH30BaHbI MOJIA CXOAUMOCTH 1S
HEKOTOPBIX CHILHO PEryiaspHbIX METOOB CYMMHPOBAHHA.

B HacToswei paGoTe MOKa3aHO, YTO OOGBLIKHOBEHHOE ONpeAelieHHEe MHTEerpaja Ha anreGpe noaM-
HOXECTBO MHOXECTBA BCEX HaTyPaJibHBIX YHCEN TOXE JOMYCKAET XapaKTEPH30BaTh MOJIS CXOAHMOCTH
TeM caMbIM 00pa30M Kak B [4], HO, HE TOJNIBKO AN CHWIBLHO PETyJSPHbIX METONOB CYMMHPOBAaHHS.
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