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ON EXTENSION OF SUBMEASURES
IVAN DOBRAKOV

Let R be a ring of subsets of a non-empty set T. According to Definition 1 in [1]
we say that a set function u: &— [0, +) is a submeasure if it is 1) monotone, 2)
continuous: A, e R, n=1, 2, ..., and A, \\@ implies u(A,)— 0, and subadditively
continuous: For every A€ and £€>0 there is a § >0 such that Be ® and
u(B)< 6 implies p(A)—e=u(A -B)=u(A)=u(AuB)=u(A)+e. If the § in
condition 3) is uniform with respect to A € &, then we say that u is a uniform
submeasure. It is easy to verify, see page 68 in [2], that subadditive continuity is
equivalent to the following property 3)*: If A, A,e®R, n=1,2,... and
u(AAA,)—0, then u(A,)— n(A). Similarly, the uniform subadditive continuity
is equivalent to the following one: 3u)*: for each £ >0 there is a § >0 such that A,
Be® and u(AAB)< 8 > |u(A) — u(B)| <e. If instead of 3) we have u(AUB)=
u(A)+ u(B) for every A, BER, or uy(AuB)=pu(A)+ u(B) for every A, Be R,
AnNnB=0, then we say that u is a subadditive or an additive submeasure,
respectively. Obviously subadditive, and particularly additive submeasures (i.e.,
countable additive measures) are uniform.

We say that a set function u: & — [0, + ] is exhaustive if u(A,)— 0 for each
infinite sequence A, € R, n =1, 2, ... of pairwise disjoint sets. In Theorem 18 in [1]
we proved, see also [3] for another proof, that a uniform, subadditive or additive
submeasure u: R — [0, +) has a unique extension of the same type to o(®) — the
o-ring generated by @R, if and only if it is exhaustive. Two additional, rather clumsy,
conditions were needed to obtain the extension theorem for non-uniform sub-
measures. In this note, using a more transparent approach we show that these
conditions may be replaced by the following: (ii) below, and A, e ®, n=1, 2, ...
and u(A,AA,)—0 as n, m— o implies that u(A.) — u(A.)—0 as n, m— .

We start with a set function u: ®— [0, +«) having the following properties:

(i) u is monotone and (@) =0,

(ii) u has the pseudometric generating property, briefly the (p.g.p.), see
Theorem 1 in [2]: For each £ >0 there is a 6 >0 such that A, Be &, u(A),
u(B)< 6 implies u(AuB)<eg, and

(iii) n has the Fatou property, briefly the (F.p.): A, A,e®R, n=1,2,... and
A,/ A implies u(A,)/ u(A).
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Put R,(Rs)={A; there are A,€R, n=1,2, ... such that A, (\\)A}, and
R*={A: AcB for some Be®R,}. Clearly u has a unique extension u: R, —

[0, + ] defined by the equality u(A)= lim u(A,), where A, e R, n=1,2, ... and

A./'A, and u on R, shares the properties of u on R.
For A € R* define u*(A)=inf {u(B): Be R,, Bo A}. Then:

a) u*/R,=p,

b) wu* is monotone, and

c) there is a sequence of positive numbers &, k=1,2, ... such that 8:\0,
0<8=2"% and Are R*, u*(A) <&, k=1,2, ... implies

u*( ¥ A.-)§<Sk.

i=k+1

Obviously N*={N: Ne ®* and u*(N)=0} is a hereditary o-ring.
We shall also need another extension of u, namely we put

R,={A: there are A,e R, n=1,2, ... such that A, A
and u(A - A,)—0},

Ps={A: there are A, e R, n=1,2, ... such that A,\\A
and pu(A,—A)—0},
R ={A: AcB for some BeR,},
and for A € % we define i(A)=inf {u(B), Be %,, BoA}.

Then it is easy to see that R is a hereditary ring, the restriction of i to %, equals
u, and
c) there is a sequence of positive numbers &, k=1,2, ... such that 8\0,

0<8=2"* and A, e R, ((A) <&, k=1,2, ... implies that | J A, e and
1=k+1
a ( U A.)éék.
i=k+1

Clearly = {N: Ne®R, i(N)=0} is a hereditary o-ring, and since A(A)=pu*(A)
for each A e R, N N*.

For 2 =« ®#* we define its closure 2 by the equality 9 ={A: A € ®*, and there
are A,€2, n=1, 2, ... such that

p*(A.AA)—O0.
Similarly for 2« ® we define its closure 9 using & and f.

Theorem 1. Let 2=« R* be a ring, and let E,.€ 2, n=1, 2, ... be such that
u*(E.AE,)—0 as n, m— o, Then there is a subsequence {E,, )7 < {E,}7 such
that:

266



1) Fk=UEniEQtn Gk=nEni€96: 3nd H*(F“G)=O’ Where F=ﬁ OE’H:
=k i=k k=1 i=k

Iimksup E. and G=J NE, =liminf E,, (9, and 95 are defined using p*),

k=1 i=k k
and
2) u*(E.AF)—>0 as n— oo,
Analogous results hold in ® with fj.

Proof. Take a sequence {&k }i-1 according to the property c) of u* above, and
then a subsequence {E,}<{E.} such that u*(E,.,,AE,)<&: for each k=
1,2, .... Then

u* (

Fk = O E"i = E,.,(UD(E,.,-”AE,‘,.) € 5’2,,,
i=k i=k

8

(En,,,AE",,)) <601 for k=2,3, ..,
k

hence

and

G = n E,=E, - U (En.-nAEn.') € ‘926
i=k i=k

Further, since

F.— G = O(E"H—IAE"E)’
i=k
0= M*(F— G)§ H«*(Fk - Gk)é (Sk_l—>0.

Hence u*(F— G)=0.
2) now follows immediately from the inclusions

E.AF=E,AE, AE, AF,AFAF c(E,AE,)uU

(Ew AF)U(FAF) € (Bo AEw )0 (En, AE,).

i=k

Analogous arguments yield the corresponding assertions for % and fi.

Corollary 1. Any o-ring 2 = R*(R) is complete with respect to o, o(E, F)=
u*(EAF) (=A(EAF)).

Corollary 2. R*(R) is complete with respect to o.

Corollary 3. The closure @ (2) of a ring 2 = R* (R) is a ring which is complete
in o, and 9 < 6(2)UN* (2 = (2)UN).
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Theorem 2. Lct 9 < R* be a ring and let u*: 2 — [0, +%] be exhaustive. Then
) =o(2)UN*, and u*(A,AA)—0 whenever A, e 9,n=1,2, ... and A, — A (i.c.

if lim inf A, =lim sup= A), particularly u* is exhaustive on 2. Analogous results

hold in R with ji. Particularly, if u: ®# — [0, + ) is exhaustive, then R, = R,, hence
R=R* i=pu* on R*, N*=N=N, R=R=0(R)UN, and p*: o(R)U.N—
[0, + ] is continuous.

Proof. First we show that u*: 9 — [0, + %] is exhaustive. Suppose the contrary.
Take a sequence { &« )7 according to the property c) of u*. Then there is a positive
integer k and a sequence of pairwise disjoint sets A, € 9 — 2, n=1, 2, ... such that
*(A,)>6 for each n=1,2,.... For each n=1,2,... takec B,e ) so that
w*(A.AB,) <O 434n. Since  for n#m  B.nB,c(A.AB,)uU(A.AB,),
w*(B.NB,,)< & +24nrm. Put C;=B, and C, =B, — (Bu...uB, ) for n>1. Then
C.,n=1,2, ... are pairwise disjoint elements of 2, hence by cxhaustivity of u* on
2 there is an ne such that p*(C,)<O6k+s for each n=no. Since B,-C, =
(BinB,)u...u(B, inB,), u*(B, — C,)<&bk+2foreach n=1, 2, .... Thus u*(B,) =
uw*((B. — C,)uC,) < 8+1 for each n = no. Hence for n = ny, we have the contradic-
tion u*(A.)=u*((A.AB,) <.

The inclusion 9 < o(2)uUAN* follows from Corollary 3 above. Since clearly J is
a ring containing 2 and .¥*, to show that 6(2)UN* < 2 it is cnough to prove that J
contains the union of any sequence of pairwise disjoint sets from J.

Let A, e9, n=1,2, ... be pairwise disjoint sets. Since p*: 2 —[0, +] is

/

n, +p
exhaustive, for each k =2, 3, ... there is an n, > n, | such that p* ( U A,) < for

tong

n+1
ecach p=1,2,.... Thus u* (U A,»><6,- for each j=1, 2, ..., hence

i=n,

i—1 i=1

w* (QA;—"U' ,-)=u* (D A,->=(O 'UA,')é(SA i

i i=ny j=k i—n,

for cach k=2,3,.... Hence |JA,e 2, which we wanted to show. Thus J =

n=1
o(2)UN*,
Since A, — A means lim sup (A,AA)=#, and since 2 is a o-ring, for the second

assertion of the theorem it is enough to show that u* is continuous on J. Let
A,€92,n=1,2,..,andlet A,\\0. Then B,=A, — A,.,, n=1,2, ... arc pairwise

disjoint and A, = B:. Now in the same way as in the paragraph above we obtain

that u*(A,)—0.
Analogous arguments yield the results for & and fi. The rest of the theorem is
evident.
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Let u: #— [0, +») be a subadditive or a uniform submeasure. Then it is easy to
see that u*: R*—[0, + ] is subadditive, or is uniformly subadditively continuous,
respectively. Hence, as a corollary, we immediately have the extension theorem for
such submeasures, see also Theorem 18 in [1].

Corollary. An additive, subadditive or uniform submeasure u: R—|[0, +) has
a unique extension u: o(R)— [0, +=) of the same type if and only if it is
exhaustive.

The uniqueness of the extension follows immediately from Corollary 3 of
Theorem 15 in [1]. If u: R—[0, +) is additive, then the additivity of u*:
o(R)—[0, +») may be proved in the following way: Let A, B € 6(R), and lct
ANnB=0.Take A,, B, e ®,n=1,2, ... so that u*(A,AA)—0 and u*(B,AB)—
0. Then u*(A,)— u*(A) and u*(B.)— u*(B), hence by additivity of u on & we
have:

u*(AuB)=u*(AAB)=lim u(A,AB,) = lim u(A, - B,) +

lim u(B, ~ A,)=2u*(AUB) = *(A) ~ u*(B),

hence u*(AuB)=u*(A)+ u*(B).
Concerning subadditively continuous extensions we have

Theorem 3. The following conditions are equivalent:

a) fi: #—[0, + ) is subadditively continuous,

b) IfFA.eR, n=1,2,... and u(A.AA,.)—0 as n, m— «, then for each ¢ >0
there is a & >0 such that B € ® and u(B) < é implies u(A,)— e=u(A,—B)=
w(A)=u(A,UB)=u(A,)+¢ foreachn=1,2, ..., and

c) IfA,eR,n=1,2,...and u(A.AA,)—0 asn, m— o, then u(A,) — u(A.)—
0asn, m—o,

Proof. a)=>b). Let A,eR, n=1,2, ... be such that u(A.AA,)—0 as n,
m—» o, By Corollary 2 of Theorem 1 there is an A € R such that i(A,AA)—0.
Let £ >0. By the subadditive continuity of i on R there is 2 4 >0 such that B e R
and [i(B)<d. implies fi(A)—-2""e=a(A-B)=a(A)Sa(AuB)=a(A)+
27'-¢. Further, by the (p.g.p.) of fi there is a o< 84 such that B, B; € ? and /i(B),
[i(B1) < 8o implies [i(BUB;)<da. Take no so that i(AAA,) <8 for n = ne. Then
for n = no and for B € & with [i(B)< d, we have the inequalities i(A)—27"-¢=
(A —(BU(A - A,)))=/i(A. — B)S i(A.) S A(A.UB)S A(AU(A. — A)uB) =
fi(A)+27'-£. Hence for such n and B we have the inequalities 1(A,)— €=
(A, — B)=[(A,)=i(A.uB)=[i(A,) + ¢. Finally, by the subadditive continuity
of i we take 9, ..., O, corresponding to € and Ay, ..., A, respectively, and we put
8 =min {8, b1, ..., On}-

Clearly b) = ¢).
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c)=>a). For Ae® put u(A)=lim u(A,), where A,eR, n=1,2,... and

u(A.AA)—0. By ¢) u is clearly unambiguously defined. First we show that u:
R —[0, +) is subadditively continuous, and then that u(A)=fi(A) for each
AeR.

Suppose ji: R— [0, + =) is not subadditively continuous. Then there is an £ >0

and A, A,.€®R, n=1,2, .... such that u(A,AA)—0 and |u(A.)—u(A)|>e for
eachn=1,2, .... Take Aox, Ask€R, k, n=1,2, ... so that i(A¢«AA)— 0 and

(A, «AA,)—>0 as k— o, for each n=1,2,.... Then u(A)=£i_{r; w(Ao. ),
u(A,.)=£im u(An k) for each n=1,2,.. and lim w(AAA,)

= lim lim H(Ao'kAA,.‘k)=0.

n—so k—sw

Take a sequence {&;}7 according to the property c) of u*. By the last equality for
eachi=1, 2, ... there is an n; such that ll‘im w(Ao x AA,, )< &i. But then for each i

there is a k; such that u(Ao i, AA,«)<& and |u(A.«)—u(A,)|<i™'. By the
properties of the sequence {&;}7 the first inequality implies that the sequence
{Ao,kss Anpkiy --vs Ao, kis Anikis --- ) is 0-Cauchy, where o(E, F) = u(EAF), hence by
c¢) and the second inequality we have the contradiction

u(A)=lim p(An ) =lim p(A,).

There remains to be shown that u(E) = i(E) for each E€ R. Let E € ®. Take
asequence E,e R,n=1, 2, ... so that u(EAE,)— 0, and let have the notations of

Theorem 1. Then ji(E)=inf {u(B): EcB, Be@o}§i12fu(Fk)=£inl w(F) =

Eim u(E,)=u(E), since u(FAE,)—0 as k— o,

On the other hand, for each £¢>0 there is a Be R, such that BoF and
A(F)+ e=Zu(B)= u(BNF,) = u(F) for each k, hence i(F)= u(F)= u(E). There
remains to be shown that i(F)={a(E). Since u: #— [0, +») is subadditively
continuous, and since fi=pu on %,, by the definition of f, fi: R — [0, +») is
subadditively continuous from the right, i.e., for each A e R and £>0 there is
a >0 such that Be R, f(B)< & implies f(AUB)=/i(B)+ ¢. From this, since
A(EAF) =0 we immediately have the required equality (i(F) = i(E). The theorem
is proved.

From Theorems 2 and 3, and Theorem 3-b) in [1] we immediately have (the
uniqueness follows easily from Corollary 3 of Theorem 15 in [1]) our extension
theorem for submeasures, compare with Theorem 18 in [1].
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Theorem 4. (Extension Theorem for Submeasures.) A submeasure p: R —
[0, 4+ ) has a unique extension to o(R)- the o-ring generated by R, if and only if it
is exhaustive on R, A,e R, n=1,2, ... and u(A,AA,)—0 as n, m— « implies
u(A,)—u(A.)—0 as n, m— x, and for each € >0 there is a 3 >0 such that A,
Be®R and u(A), u(B)<4é implies uy(AuB)<e.
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O PACIIUPEHUU CYBMEP
Ivan Dobrakov
Pe3ome

IMycTs R kONMBLLO MOAMHOXeCTB Hemyctoro MHoxectBa T. CornacHo c [1] pyHKuusA MHOXeCTB u:
R— (0, ©) Ha3biBaeTcd CyOMepol, €CiM OHa MOHOTOHHa, HenpepbiBHa (A.\0 > u(A.)—0), u
nonyaaautieHo HenpepbiBHa (VAeR u Ve>036>0, Be R, u(B)<é > u(A)—-e=u(A-B)=
u(A)Su(AuB)=pu(A)+¢€). Ilocneanee ycnoBHe MOXHO 3aMEHMUThb clieAylommM: A, A, eR, n=
1,2,... n u(A,AA)—>0 > u(A.)—> u(A). Heo6xonuMble u OCTaTOYHbIE YCJIOBHS AJIS paclIMpEHHUS
cyOMepbl U3 Konbla R Ha MOPOXAEHHOE UM CHrMa Kojblo Gbinu ycraHoBiaeHbl Teopemoii 18 B [1].
Ycnosust I u 111 3Toit TeopeMbl cMIIKOM rpoMo3akue. B Hactosmei pa6oTe moka3bIBaeTcs, YTO UX
MOXHO 3aMeHHTb GoJiee MPOCTBIMH YCJIOBHSMH. A, UMEHHO, CIpaBefIMBa CleAyIoas

Teopema o pacunperun cy6mepnl. Cy6Mepa p: R — (0, + ) OgHO3HAYHO paclIMpaeTcs fO Cy6-
MepbI Ha CUrMa KoJiblie, MOPOXAEHHOM & TOrga ¥ TONBLKO TOTAa, KOTAAa OHA HE MMEET YCKOJMb3alouen
Harpy3ku Ha R, A€ R, n=1,2, ... u u(A,AA,)—0 g n, m— o > u(A.)—u(A.)—0 ans n,
m— o, u s Kaxporo € >0 cymectByet 8 >0 Tak, 410 A, Be R n u(A), p(B)<dé > u(AuB)<e.
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