Ivan Dobrakov
On extension of submeasures

Persistent URL: http://dml.cz/dmlcz/129282

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz
ON EXTENSION OF SUBMEASURES

IVAN DOBRAKOV

Let \(\mathcal{R} \) be a ring of subsets of a non-empty set \(T \). According to Definition 1 in [1] we say that a set function \(\mu : \mathcal{R} \to [0, +\infty) \) is a submeasure if it is 1) monotone, 2) continuous: \(A_n \in \mathcal{R}, \ n = 1, 2, \ldots, \) and \(A_n \setminus \emptyset \) implies \(\mu(A_n) \to 0 \), and subadditively continuous: For every \(A \in \mathcal{R} \) and \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that \(B \in \mathcal{R} \) and \(\mu(B) < \delta \) implies \(\mu(A) - \varepsilon \leq \mu(A - B) \leq \mu(A) \leq \mu(A \cup B) \leq \mu(A) + \varepsilon \). If the \(\delta \) in condition 3) is uniform with respect to \(A \in \mathcal{R} \), then we say that \(\mu \) is a uniform submeasure. It is easy to verify, see page 68 in [2], that subadditive continuity is equivalent to the following property 3)*: If \(A, A_n \in \mathcal{R}, \ n = 1, 2, \ldots \) and \(\mu(A \Delta A_n) \to 0 \), then \(\mu(A_n) \to \mu(A) \). Similarly, the uniform subadditive continuity is equivalent to the following one: 3u)*: for each \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that \(A, B \in \mathcal{R} \) and \(\mu(A \Delta B) < \delta \Rightarrow |\mu(A) - \mu(B)| < \varepsilon \). If instead of 3) we have \(\mu(A \cup B) \leq \mu(A) + \mu(B) \) for every \(A, B \in \mathcal{R} \), or \(\mu(A \cup B) = \mu(A) + \mu(B) \) for every \(A, B \in \mathcal{R} \), \(A \cap B = \emptyset \), then we say that \(\mu \) is a subadditive or an additive submeasure, respectively. Obviously subadditive, and particularly additive submeasures (i.e., countable additive measures) are uniform.

We say that a set function \(\mu : \mathcal{R} \to [0, +\infty) \) is exhaustive if \(\mu(A_n) \to 0 \) for each infinite sequence \(A_n \in \mathcal{R}, \ n = 1, 2, \ldots \) of pairwise disjoint sets. In Theorem 18 in [1] we proved, see also [3] for another proof, that a uniform, subadditive or additive submeasure \(\mu : \mathcal{R} \to [0, +\infty) \) has a unique extension of the same type to \(\sigma(\mathcal{R}) \) the \(\sigma \)-ring generated by \(\mathcal{R} \), if and only if it is exhaustive. Two additional, rather clumsy conditions were needed to obtain the extension theorem for non-uniform submeasures. In this note, using a more transparent approach we show that these conditions may be replaced by the following: (ii) below, and \(A_n \in \mathcal{R}, \ n = 1, 2, \ldots \) and \(\mu(A_n \Delta A_m) \to 0 \) as \(n, m \to \infty \) implies that \(\mu(A_n) - \mu(A_m) \to 0 \) as \(n, m \to \infty \).

We start with a set function \(\mu : \mathcal{R} \to [0, +\infty) \) having the following properties:

(i) \(\mu \) is monotone and \(\mu(\emptyset) = 0 \),
(ii) \(\mu \) has the pseudometric generating property, briefly the (p.g.p.), see Theorem 1 in [2]: For each \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that \(A, B \in \mathcal{R} \), \(\mu(A) \), \(\mu(B) < \delta \) implies \(\mu(A \cup B) < \varepsilon \), and
(iii) \(\mu \) has the Fatou property, briefly the (F.p.): \(A, A_n \in \mathcal{R}, \ n = 1, 2, \ldots \) and \(A_n \nearrow A \) implies \(\mu(A_n) \nearrow \mu(A) \).
Put $\mathcal{R}_\sigma(\mathcal{R}_\alpha) = \{ A : \text{there are } A_n \in \mathcal{R}, n = 1, 2, \ldots \text{ such that } A_n \nrightarrow A \}$, and $\mathcal{R}^* = \{ A : A \subseteq B \text{ for some } B \in \mathcal{R}_\sigma \}$. Clearly μ has a unique extension $\mu : \mathcal{R}_\sigma \to [0, +\infty]$ defined by the equality $\mu(A) = \lim_{n\to\infty} \mu(A_n)$, where $A_n \in \mathcal{R}, n = 1, 2, \ldots$ and $A_n \nrightarrow A$, and μ on \mathcal{R}_σ shares the properties of μ on \mathcal{R}.

For $A \in \mathcal{R}^*$ define $\mu^*(A) = \inf \{ \mu(B) : B \in \mathcal{R}_\sigma, B \supseteq A \}$. Then:

a) $\mu^*/\mathcal{R}_\sigma = \mu$,

b) μ^* is monotone, and

c) there is a sequence of positive numbers $\delta_k, k = 1, 2, \ldots$ such that $\delta_k \downarrow 0$, $0 < \delta_k \leq 2^{-k}$, and $A_k \in \mathcal{R}^*, \mu^*(A_k) < \delta_k, k = 1, 2, \ldots$ implies

$$\mu^* \left(\bigcup_{i=k+1}^{\infty} A_i \right) \leq \delta_k.$$

Obviously $\mathcal{N}^* = \{ N : N \in \mathcal{R}^* \text{ and } \mu^*(N) = 0 \}$ is a hereditary σ-ring.

We shall also need another extension of μ, namely we put

$$\hat{\mathcal{R}}_\sigma = \{ A : \text{there are } A_n \in \mathcal{R}, n = 1, 2, \ldots \text{ such that } A_n \nrightarrow A \text{ and } \mu(A - A_n) \to 0 \},$$

$$\hat{\mathcal{R}}_\alpha = \{ A : \text{there are } A_n \in \mathcal{R}, n = 1, 2, \ldots \text{ such that } A_n \nrightarrow A \text{ and } \mu(A_n - A) \to 0 \},$$

$$\hat{\mathcal{R}} = \{ A : A \subseteq B \text{ for some } B \in \hat{\mathcal{R}}_\sigma \},$$

and for $A \in \hat{\mathcal{R}}$ we define $\hat{\mu}(A) = \inf \{ \mu(B), B \in \hat{\mathcal{R}}_\sigma, B \supseteq A \}$.

Then it is easy to see that $\hat{\mathcal{R}}$ is a hereditary ring, the restriction of $\hat{\mu}$ to $\hat{\mathcal{R}}_\sigma$ equals μ, and

c) there is a sequence of positive numbers $\delta_k, k = 1, 2, \ldots$ such that $\delta_k \downarrow 0$, $0 < \delta_k \leq 2^{-k}$, and $A_k \in \hat{\mathcal{R}}$, $\hat{\mu}(A_k) < \delta_k, k = 1, 2, \ldots$ implies that $\bigcup_{i=k+1}^{\infty} A_i \in \hat{\mathcal{R}}$ and

$$\hat{\mu} \left(\bigcup_{i=k+1}^{\infty} A_i \right) \leq \delta_k.$$

Clearly $\hat{\mathcal{N}} = \{ N : N \in \hat{\mathcal{R}}, \hat{\mu}(N) = 0 \}$ is a hereditary σ-ring, and since $\hat{\mu}(A) \geq \mu^*(A)$ for each $A \in \hat{\mathcal{R}}, \hat{\mathcal{N}} \subseteq \mathcal{N}^*$.

For $\mathcal{Q} \subseteq \mathcal{R}^*$ we define its closure \mathcal{Q} by the equality $\mathcal{Q} = \{ A : A \in \mathcal{R}^*, \text{ and there are } A_n \in \mathcal{Q}, n = 1, 2, \ldots \text{ such that } \mu^*(A_n \Delta A) \to 0 \}$.

Similarly for $\mathcal{Q} \subseteq \hat{\mathcal{R}}$ we define its closure \mathcal{Q} using $\hat{\mathcal{R}}$ and $\hat{\mu}$.

Theorem 1. Let $\mathcal{Q} \subseteq \mathcal{R}^*$ be a ring, and let $E_n \in \mathcal{Q}, n = 1, 2, \ldots$ be such that $\mu^*(E_n \Delta E_m) \to 0$ as $n, m \to \infty$. Then there is a subsequence $\{ E_{n_k} \}$ in $\{ E_n \}$ such that:

266
1) \(F_k = \bigcup_{i = k}^{\infty} E_i \in \mathcal{J}_{\sigma}, \ G_k = \bigcap_{i = k}^{\infty} E_i \in \mathcal{J}_{\delta}, \) and \(\mu^*(F - G) = 0, \) where \(F = \bigcap_{k = 1}^{\infty} \bigcup_{i = k}^{\infty} E_i = \limsup_{n \to \infty} E_n \) and \(G = \bigcup_{k = 1}^{\infty} \bigcap_{i = k}^{\infty} E_i = \liminf_{n \to \infty} E_n \) (\(\mathcal{J}_{\sigma} \) and \(\mathcal{J}_{\delta} \) are defined using \(\mu^* \)), and

2) \(\mu^*(E_n \Delta F) \to 0 \) as \(n \to \infty. \)

Analogous results hold in \(\mathcal{R} \) with \(\hat{\mu}. \)

Proof. Take a sequence \(\{\delta_k\}_{k = 1}^{\infty} \) according to the property c) of \(\mu^* \) above, and then a subsequence \(\{E_{n_k}\} \subset \{E_n\} \) such that \(\mu^*(E_{n_{k+1}} \Delta E_{n_k}) < \delta_k \) for each \(k = 1, 2, \ldots. \) Then

\[
\mu^* \left(\bigcup_{i = k}^{\infty} (E_{n_{i+1}} \Delta E_{n_i}) \right) \leq \delta_{k-1} \quad \text{for} \quad k = 2, 3, \ldots,
\]

hence

\[
F_k = \bigcup_{i = k}^{\infty} E_i = E_{n_k} \cup \bigcup_{i = k}^{\infty} (E_{n_{i+1}} \Delta E_{n_i}) \in \mathcal{J}_{\sigma},
\]

and

\[
G_k = \bigcap_{i = k}^{\infty} E_i = E_{n_k} - \bigcup_{i = k}^{\infty} (E_{n_{i+1}} \Delta E_{n_i}) \in \mathcal{J}_{\delta}.
\]

Further, since

\[
F_k - G_k = \bigcup_{i = k}^{\infty} (E_{n_{i+1}} \Delta E_{n_i}),
\]

\[
0 \leq \mu^*(F - G) \leq \mu^*(F_k - G_k) \leq \delta_{k-1} \to 0.
\]

Hence \(\mu^*(F - G) = 0. \)

2) now follows immediately from the inclusions

\[
E_n \Delta F = E_n \Delta E_{n_k} \Delta E_{n_k} \Delta F_k \Delta F_k \Delta F \subset (E_n \Delta E_{n_k}) \cup (E_{n_k} \Delta E_{n_k}) \cup \bigcup_{i = k}^{\infty} (E_{n_{i+1}} \Delta E_{n_i}).
\]

Analogous arguments yield the corresponding assertions for \(\mathcal{R} \) and \(\hat{\mu}. \)

Corollary 1. Any \(\sigma \)-ring \(\mathcal{R} \subset \mathcal{R}^*(\mathcal{R}) \) is complete with respect to \(\varphi, \) \(\varphi(E, F) = \mu^*(E \Delta F) \) \((= \hat{\mu}(E \Delta F)). \)

Corollary 2. \(\mathcal{R}^*(\mathcal{R}) \) is complete with respect to \(\varphi. \)

Corollary 3. The closure \(\mathcal{J} (\mathcal{J}) \) of a ring \(\mathcal{J} \subset \mathcal{R}^*(\mathcal{R}) \) is a ring which is complete in \(\varphi, \) and \(\mathcal{J} \subset \sigma(\mathcal{J}) \cup \mathcal{N}^* \) \((\mathcal{J} \subset \sigma(\mathcal{J}) \cup \mathcal{N}). \)
Theorem 2. Let \(\mathcal{D} \subset \mathcal{R}^* \) be a ring and let \(\mu^*: \mathcal{J} \to [0, +\infty] \) be exhaustive. Then
\[\mu^*(A_n \triangle A) = 0 \quad \text{whenever} \quad A_n \in \mathcal{J}, \quad n = 1, 2, \ldots \] and \(A_n \to A \) (i.e.
if \(\liminf_n A_n = \limsup_n A_n = A \)), particularly \(\mu^* \) is exhaustive on \(\mathcal{J} \). Analogous results hold in \(\mathcal{R} \) with \(\hat{\mu} \). Particularly, if \(\mu: \mathcal{R} \to [0, +\infty] \) is exhaustive, then \(\hat{\mathcal{J}} = \hat{\mathcal{R}}, \quad \hat{\mu} = \mu^* \) on \(\mathcal{R}^* \), \(N^* = \hat{N} = \mathcal{N} \), \(\hat{\mathcal{R}} = \sigma(\mathcal{R}) \cup \mathcal{N} \), and \(\mu^*: \sigma(\mathcal{R}) \cup \mathcal{N} \to [0, +\infty] \) is continuous.

Proof. First we show that \(\mu^*: \mathcal{J} \to [0, +\infty] \) is exhaustive. Suppose the contrary. Take a sequence \(\{ \delta_n \}_{n=1}^\infty \) according to the property c) of \(\mu^* \). Then there is a positive integer \(k \) and a sequence of pairwise disjoint sets \(A_n \in \mathcal{J} \), \(n = 1, 2, \ldots \) such that
\[\mu^*(A_n) > \delta_k \quad \text{for each} \quad n = 1, 2, \ldots \]
For each \(k = 1, 2, \ldots \), take \(B_n \) so that
\[\mu^*(A_n \triangle B_n) < \delta_{k+3} \cdot n \cdot n_k \]
Since for \(n \neq m \) \(B_n \cap B_m \subset (A_n \triangle B_n) \cup (A_m \triangle B_m) \),
\[\mu^*(B_n \cap B_m) < \delta_{k+2+n \cdot n_k} \]
Put \(C_1 = B_1 \) and \(C_n = B_n - (B_1 \cup \ldots \cup B_{n-1}) \) for \(n > 1 \). Then
\(C_n, n = 1, 2, \ldots \) are pairwise disjoint elements of \(\mathcal{J} \), hence by exhaustivity of \(\mu^* \) on \(\mathcal{J} \) there is an \(n_0 \) such that
\[\mu^*(C_{n_0}) < \delta_{k+3} \quad \text{for each} \quad n \geq n_0. \]
Since \(B_n - C_n = (B_1 \cap B_n) \cup \ldots \cup (B_{n-1} \cap B_n) \),
\[\mu^*(B_n - C_n) < \delta_{k+2} \quad \text{for each} \quad n = 1, 2, \ldots \]
Thus \(\mu^*(B_n) \leq \mu^*(B_n - C_n) + \mu^*(C_n) < \delta_{k+4} \quad \text{for each} \quad n \geq n_0. \)
Hence for \(n \geq n_0 \) we have the contradiction
\[\mu^*(A_n) = \mu^*(A_n \triangle B_n) < \delta_k. \]

The inclusion \(\mathcal{J} \subset \sigma(\mathcal{J}) \cup \mathcal{N}^* \) follows from Corollary 3 above. Since clearly \(\mathcal{J} \) is a ring containing \(\mathcal{J} \) and \(\mathcal{N}^* \), to show that \(\sigma(\mathcal{J}) \cup \mathcal{N}^* \subset \mathcal{J} \) it is enough to prove that \(\mathcal{J} \) contains the union of any sequence of pairwise disjoint sets from \(\mathcal{J} \).

Let \(A_n \in \mathcal{J}, \quad n = 1, 2, \ldots \) be pairwise disjoint sets. Since \(\mu^*: \mathcal{J} \to [0, +\infty] \) is exhaustive, for each \(k = 2, 3, \ldots \) there is an \(n_k > n_k - 1 \) such that
\[\mu^*(\bigcup_{i=1}^{n_k} A_i) < \delta_k \quad \text{for each} \quad p = 1, 2, \ldots \]
Thus \(\mu^*(\bigcup_{i=n_k}^{n_k+p-1} A_i) < \delta_k \quad \text{for each} \quad j = 1, 2, \ldots \), hence
\[\mu^*(\bigcup_{i=1}^{n_k+p-1} A_i - \bigcup_{i=1}^{n_k-1} A_i) = \mu^*(\bigcup_{i=n_k}^{n_k+p} A_i) = \left(\bigcup_{i=n_k}^{n_k+p} A_i \right) \leq \delta_k. \]
for each \(k = 2, 3, \ldots \). Hence \(\bigcup_{n=1}^\infty A_n \in \mathcal{J}, \) which we wanted to show. Thus \(\mathcal{J} = \sigma(\mathcal{J}) \cup \mathcal{N}^* \).

Since \(A_n \to A \) means \(\limsup_n (A_n \triangle A) = 0 \), and since \(\mathcal{J} \) is a \(\sigma \)-ring, for the second assertion of the theorem it is enough to show that \(\mu^* \) is continuous on \(\mathcal{J} \). Let
\(A_n \in \mathcal{J}, \quad n = 1, 2, \ldots \), and let \(A_n \setminus \emptyset \). Then \(B_n = A_n - A_{n+1}, n = 1, 2, \ldots \) are pairwise disjoint and \(A_n = \bigcup_{i=1}^\infty B_i \). Now in the same way as in the paragraph above we obtain that \(\mu^*(A_n) \to 0 \).

Analogous arguments yield the results for \(\mathcal{R} \) and \(\hat{\mu} \). The rest of the theorem is evident.
Let \(\mu : \mathcal{R} \to [0, +\infty) \) be a subadditive or a uniform submeasure. Then it is easy to see that \(\mu^*: \mathcal{R}^* \to [0, +\infty] \) is subadditive, or is uniformly subadditively continuous, respectively. Hence, as a corollary, we immediately have the extension theorem for such submeasures, see also Theorem 18 in [1].

Corollary. An additive, subadditive or uniform submeasure \(\mu : \mathcal{R} \to [0, +\infty) \) has a unique extension \(\mu : \sigma(\mathcal{R}) \to [0, +\infty) \) of the same type if and only if it is exhaustive.

The uniqueness of the extension follows immediately from Corollary 3 of Theorem 15 in [1]. If \(\mu : \mathcal{R} \to [0, +\infty) \) is additive, then the additivity of \(\mu^*: \sigma(\mathcal{R}) \to [0, +\infty) \) may be proved in the following way: Let \(A, B \in \sigma(\mathcal{R}) \), and let \(A \cap B = \emptyset \). Take \(A_n, B_n \in \mathcal{R} \), \(n = 1, 2, \ldots \) so that \(\mu(A_n \Delta A) \to 0 \) and \(\mu(B_n \Delta B) \to 0 \). Then \(\mu(A_n) \to \mu(A) \) and \(\mu(B_n) \to \mu(B) \), hence by additivity of \(\mu \) on \(\mathcal{R} \) we have:

\[
\mu(A \cup B) = \lim_{n \to \infty} \mu(A_n \cup B_n) = \lim_{n \to \infty} \mu(A_n - B_n) + \lim_{n \to \infty} \mu(B_n - A_n) = 2\mu(A \cup B) - \mu(A) - \mu(B),
\]

hence \(\mu(A \cup B) = \mu(A) + \mu(B) \).

Concerning subadditively continuous extensions we have

Theorem 3. The following conditions are equivalent:

a) \(\hat{\mu} : \mathcal{R} \to [0, +\infty) \) is subadditively continuous,

b) If \(A_n \in \mathcal{R} \), \(n = 1, 2, \ldots \) and \(\mu(A_n \Delta A_m) \to 0 \) as \(n, m \to \infty \), then for each \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that \(B \in \mathcal{R} \) and \(\mu(B) < \delta \) implies \(\mu(A_n) - \varepsilon \leq \mu(A_n - B) \leq \mu(A_n) \leq \mu(A_n \cup B) \leq \mu(A_n) + \varepsilon \) for each \(n = 1, 2, \ldots \) and

c) If \(A_n \in \mathcal{R} \), \(n = 1, 2, \ldots \) and \(\mu(A_n \Delta A_m) \to 0 \) as \(n, m \to \infty \), then \(\mu(A_n) - \mu(A_m) \to 0 \) as \(n, m \to \infty \).

Proof. a) \(\Rightarrow \) b). Let \(A_n \in \mathcal{R} \), \(n = 1, 2, \ldots \) be such that \(\mu(A_n \Delta A_m) \to 0 \) as \(n, m \to \infty \). By Corollary 2 of Theorem 1 there is an \(A \in \mathcal{R} \) such that \(\hat{\mu}(A_n \Delta A) \to 0 \). Let \(\varepsilon > 0 \). By the subadditivity of \(\hat{\mu} \) on \(\mathcal{R} \) there is a \(\delta_0 > 0 \) such that \(B \in \mathcal{R} \) and \(\hat{\mu}(B) < \delta_0 \) implies \(\hat{\mu}(A) - 2^{-1} \cdot \varepsilon \leq \hat{\mu}(A - B) \leq \hat{\mu}(A) \leq \hat{\mu}(A \cup B) \leq \hat{\mu}(A) + 2^{-1} \cdot \varepsilon \). Further, by the (p.g.p.) of \(\hat{\mu} \) there is a \(\delta_0 < \delta_0 \) such that \(B, B_1 \in \mathcal{R} \) and \(\hat{\mu}(B), \hat{\mu}(B_1) < \delta_0 \) implies \(\hat{\mu}(B \cup B_1) < \delta_0 \). Take \(n_0 \) so that \(\hat{\mu}(A \Delta A_n) < \delta_0 \) for \(n \geq n_0 \). Then for \(n \geq n_0 \) and for \(B \in \mathcal{R} \) with \(\hat{\mu}(B) < \delta_0 \) we have the inequalities \(\hat{\mu}(A) - 2^{-1} \cdot \varepsilon \leq \hat{\mu}(A - (B \cup (A - A_n))) \leq \hat{\mu}(A_n - B) \leq \hat{\mu}(A_n) \leq \hat{\mu}(A_n \cup B) \leq \hat{\mu}(A \cup (A_n - A) \cup B) \leq \hat{\mu}(A) + 2^{-1} \cdot \varepsilon \). Hence for such \(n \) and \(B \) we have the inequalities \(\hat{\mu}(A_n) - \varepsilon \leq \hat{\mu}(A_n - B) \leq \hat{\mu}(A_n) \leq \hat{\mu}(A_n \cup B) \leq \hat{\mu}(A_n) + \varepsilon \). Finally, by the subadditivity of \(\hat{\mu} \) we take \(\delta_1, \ldots, \delta_{n_0} \) corresponding to \(\varepsilon \) and \(A_1, \ldots, A_{n_0} \) respectively, and we put \(\delta = \min \{ \delta_0, \delta_1, \ldots, \delta_{n_0} \} \).

Clearly b) \(\Rightarrow \) c).
c) \Rightarrow a). For $A \in \mathcal{R}$ put $\mu(A) = \lim_{n \to \infty} \mu(A_n)$, where $A_n \in \mathcal{R}$, $n = 1, 2, ...$ and $\mu(A_n \Delta A) \to 0$. By c) μ is clearly unambiguously defined. First we show that $\mu: \mathcal{R} \to [0, +\infty)$ is subadditively continuous, and then that $\mu(A) = \hat{\mu}(A)$ for each $A \in \mathcal{R}$.

Suppose $\hat{\mu}: \mathcal{R} \to [0, +\infty)$ is not subadditively continuous. Then there is an $\varepsilon > 0$ and $A, A_n \in \mathcal{R}$, $n = 1, 2, ...$ such that $\mu(A_n \Delta A) \to 0$ and $|\mu(A_n) - \mu(A)| > \varepsilon$ for each $n = 1, 2, ...$. Take $A_{0,k}, A_{n,k} \in \mathcal{R}$, $k = 1, 2, ...$ so that $\hat{\mu}(A_{0,k} \Delta A_n) \to 0$ as $k \to \infty$, for each $n = 1, 2, ...$. Then $\mu(A) = \lim_{k \to \infty} \mu(A_{0,k}),$

$$\mu(A_n) = \lim_{k \to \infty} \mu(A_{n,k}) \text{ for each } n = 1, 2, ... \text{ and } \lim_{n \to \infty} \mu(A \Delta A_n) = \lim_{k \to \infty} \lim_{n \to \infty} \mu(A_{0,k} \Delta A_{n,k}) = 0.$$

Take a sequence $\{\delta_i\}_{i=1}^\infty$ according to the property c) of μ^*. By the last equality for each $i = 1, 2, ...$ there is an n_i such that $\lim_{k \to \infty} \mu(A_{0,k} \Delta A_{n_i,k}) < \delta_i$. But then for each i there is a k_i such that $\mu(A_{0,k_i} \Delta A_{n_i,k_i}) < \delta_i$ and $|\mu(A_{n_i,k_i}) - \mu(A_{n_i})| < i^{-1}$.

By the properties of the sequence $\{\delta_i\}_{i=1}^\infty$ the first inequality implies that the sequence $\{A_{0,k_i}, A_{n_i,k_i}, ..., A_{0,k_i}, A_{n_i,k_i} \}$ is δ-Cauchy, where $\delta(E, F) = \mu(E \Delta F)$, hence by c) and the second inequality we have the contradiction

$$\mu(A) = \lim_{i \to \infty} \mu(A_{n_i,k_i}) = \lim_{i \to \infty} \mu(A_{n_i}).$$

There remains to be shown that $\mu(E) = \hat{\mu}(E)$ for each $E \in \mathcal{R}$. Let $E \in \mathcal{R}$. Take a sequence $E_n \in \mathcal{R}$, $n = 1, 2, ...$ so that $\mu(E \Delta E_n) \to 0$, and let have the notations of Theorem 1. Then $\hat{\mu}(E) = \inf \{\mu(B): E \subset B, B \in \mathcal{R}_o\} \leq \inf \mu(F_k) = \lim_{k \to \infty} \mu(F_k) = \lim_{k \to \infty} \mu(E_{n_k}) = \mu(E)$, since $\mu(F_k \Delta E_{n_k}) \to 0$ as $k \to \infty$.

On the other hand, for each $\varepsilon > 0$ there is a $B \in \mathcal{R}_o$ such that $B \supset F$ and $\hat{\mu}(F) + \varepsilon \geq \mu(B) \geq \mu(B \cap F_k) \geq \mu(F)$ for each k, hence $\hat{\mu}(F) \geq \mu(F) = \mu(E)$. There remains to be shown that $\hat{\mu}(F) = \hat{\mu}(E)$. Since $\mu: \mathcal{R} \to [0, +\infty)$ is subadditively continuous, and since $\hat{\mu} = \mu$ on \mathcal{R}_o, by the definition of $\hat{\mu}$, $\hat{\mu}: \mathcal{R} \to [0, +\infty)$ is subadditively continuous from the right, i.e., for each $A \in \mathcal{R}$ and $\varepsilon > 0$ there is a $\delta > 0$ such that $B \in \mathcal{R}$, $\hat{\mu}(B) < \delta$ implies $\hat{\mu}(A \cup B) \leq \hat{\mu}(B) + \varepsilon$. From this, since $\hat{\mu}(E \Delta F) = 0$ we immediately have the required equality $\hat{\mu}(F) = \hat{\mu}(E)$. The theorem is proved.

From Theorems 2 and 3, and Theorem 3-b) in [1] we immediately have (the uniqueness follows easily from Corollary 3 of Theorem 15 in [1]) our extension theorem for submeasures, compare with Theorem 18 in [1].

270
Theorem 4. (Extension Theorem for Submeasures.) A submeasure \(\mu : \mathcal{R} \to [0, +\infty) \) has a unique extension to \(\sigma(\mathcal{R}) \)- the \(\sigma \)-ring generated by \(\mathcal{R} \), if and only if it is exhaustive on \(\mathcal{R} \), \(A_n \in \mathcal{R}, n = 1, 2, \ldots \) and \(\mu(A_n \Delta A_m) \to 0 \) as \(n, m \to \infty \) implies \(\mu(A_n) - \mu(A_m) \to 0 \) as \(n, m \to \infty \), and for each \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that \(A, B \in \mathcal{R} \) and \(\mu(A), \mu(B) < \delta \) implies \(\mu(A \cup B) < \varepsilon \).

REFERENCES

Received September 1, 1981

О РАСШИРЕНИИ СУБМЕР

Ivan Dobrakov

Резюме

Пусть \(\mathcal{R} \) кольцо подмножеств непустого множества \(T \). Согласно с [1] функция множеств \(\mu : \mathcal{R} \to (0, +\infty) \) называется субмерой, если она монотонна, непрерывна \((A_n \setminus \emptyset \Rightarrow \mu(A_n) \to 0) \), и полуаддитивно непрерывна \((\forall A \in \mathcal{R} \text{ и } \forall \varepsilon > 0 \exists \delta > 0, \ B \in \mathcal{R}, \ \mu(B) < \delta \Rightarrow \mu(A) - \varepsilon \leq \mu(A - B) \leq \mu(A) \leq \mu(A \cup B) \leq \mu(A) + \varepsilon) \). Последнее условие можно заменить следующим: \(A, A_n \in \mathcal{R}, n = 1, 2, \ldots \) и \(\mu(A_n \Delta A) \to 0 \Rightarrow \mu(A_n) \to \mu(A) \). Необходимые и достаточные условия для расширения субмеры из кольца \(\mathcal{R} \) на порожденное им сигма кольцо были установлены Теоремой 18 в [1]. Условия II и III этой теоремы слишком громоздкие. В настоящей работе показывается, что их можно заменить более простыми условиями. А, именно, справедлива следующая

Теорема о расширении субмеры. Субмера \(\mu : \mathcal{R} \to (0, +\infty) \) однозначно расширяется до субмеры на сигма кольцо, порожденном \(\mathcal{R} \) тогда и только тогда, когда она не имеет ускользающей нагрузки на \(\mathcal{R} \), \(A_n \in \mathcal{R}, n = 1, 2, \ldots \) и \(\mu(A_n \Delta A_m) \to 0 \) для \(n, m \to \infty \) \(\Rightarrow \mu(A_n) - \mu(A_m) \to 0 \) для \(n, m \to \infty \), и для каждого \(\varepsilon > 0 \) существует \(\delta > 0 \) так, что \(A, B \in \mathcal{R} \) и \(\mu(A), \mu(B) < \delta \Rightarrow \mu(A \cup B) < \varepsilon \).