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ITERATES OF PIECEWISE MONOTONIC 
CONTINUOUS FUNCTIONS 

JAROSLAV SMfTAL 

Let /be a continuous piecewise monotonic function from a compact real interval 
I into itself. Denote by P(k) the number of monotonic pieces in the graph of the 
k-th iterate fk of /. A. Sklar [1] recently has set the problem to give the best 
possible lower estimate of P(k) in the case when / contains a 3-cycle (and hence 
when" it contains cycles of all orders, c.f. [2]). The corresponding best upper 
estimate is given by P(k)^P(l)k (cf. [1]). 

In this note we give a complete solution of the above quoted problem. We begin 
with the following two easily verified lemmas which must be known in literature, 
but we are not able to give any references. 

Lemma 1. Let / , g be continuous functions from a real interval I into itself, 
which are piecewise monotonic and nonconstant on every subinterval of I. Iff has 
a local extremum at a point x0, so has f0g. 

Proof. Let / have a local maximum at x0. If g is decreasing on a left 
neighbourhood of f(x0), then fog (first apply /, then g) has at x0 a local minimum, 
and if g is increasing on a left neighbourhood of f(x0), then f0g has at x0 a local 
maximum. Similarly in other cases. 

Lemma 2. Under the same assumptions as in Lemma 1 g0f has a local 
extremum at t0el if f has a local extremum at x0, and if g(t0) = x0. 

Proof is similar to that in the preceding lemma. 
Now we are able to prove the following 

Proposition 1. Let f be a continuous function from the set R of reals into itself, 
which is non-constant on each interval and which contains a 3-cycle h »-> t2 »-> t3 
i-» ti, where h<t2< t3. Assume that f is piecewise monotonic and that f has p + 1 
monotonic pieces in the interval (ti, t3) and q + 1 monotonic pieces in the interval 
(h, h). Then f has at least 

q • Fn-x+p • Fn +Fn+1^P(n) 

monotonic pieces in the interval (ti, t3) where F0, Fl9 F2, ... is the Fibonacci 
sequence defined 6y Fo = 0, Fi = l, and Fn+2 = Fn + Fn+U 
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Proof. We say that an interval J is of the first type with respect to f if f(J) ZD 
(h, h) and that J is of the second type with respect to f if f(I) => (h, f3). Clearly, if 
J is of the first type with respect to f, then J is of the second type with respect to 
r+l since r\I) = /(/-(!)) => f((t2, t3)) ̂  (f(h), f(t2)) = (h, h). 

Choose some t0e(ti, h) such that/(f0) = max/(f) for te(tx, h); such r0 exists, 
since/(rO, f(h)<f(h). 

We say that f has the property P(k, s) provided there is a sequence 

(1) h = a0< ai < . . . < ak+s = h 

such that /„ has a local extremity at each a, with / = 1, ..», k + s — 1, and if the 
corresponding intervals (a«-i, a,), where / = 1, ..., k + s, can be rearranged as 

(2) J i , . . . , J„ / i , . . . , /5 

where the J's are of the first type and / 's of the second type with respect to f. 
Now we show that if f has the property P(k, s), then /n + 1 has the property 

P(s, k + s). Since for each interval /, from (2) we have /"(/.) -z> (U, h), there is an 
interior point c, of /. such that f(d) = t0. Now divide / into two intervals J), J2, 
with d as a common end-point such that (h, t0) cz /"(/*) and (f0, h) cz f(JV). In 
this case, however, f + 1 ( / l ) ^ /((ti, t0)) => (f2, f3) and f+1(J2) => /((r0, 6)) => 
(ti, h), hence / / is of the first type and J] of the second type with respect to /n+1. 
Moreover, f+1 has a local extremum at each c, for / = 1, ..., s (see Lemma 2), as 
well as at each a, for / = 1, ..., & + s — 1 (Lemma 1). Hence by the above quoted 
construction we obtain from (1), (2) a new system 

(a0, ..., ak+s} u {ci, ..., cs} 

of dividing points, and a new system 

ri T1 T2 I2 T T 
J l, . . . , J - , ^ 1 , . . . , J si - * 1 , . « . , lAc 

of corresponding intervals where each of the intervals J) is of the first type and each 
of the intervals J], It of the second type with respect to /n+1. Thus f+l has the 
property P(s, k + s). 

Clearly /has the property P(l, 1) = P(FU F2) with t0 as the dividing point, thus 
by induction we involve that f has the property P(Fn, Fn+i). 

Now let 

(3) Ji, . . . , J F „ , / I , . . . , /F„ + 1 

be intervals of the first and second type, respectively, corresponding to f. It is easy 
to see that /"+1 takes on at least q local extremities in the interior of each J, (i.e. f*x 

has at least p +1 monotonic pieces on J,), and at least p local extremities in the 
interior of each J*. Moreover, /n+1 takes on, by Lemma 2, a local extremity at each 
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of the (F„ + F„+i + 1 ) end-points of the intervals (3), with the possible exceptions of 
U and h, hence at (F„+ F „ + i - l ) points. Thus f+1 has at least 

q • Fn +p • Fn +i + (F„ + F n + 1 - 1) 

local extremities on the interval (ti, h), ' nd so 

P(n + l)^q • Fn +p • F„+1 + F„+2 

and the proposition is proved. 

Proposition 2. Proposition 1 holds also for any function f:R-*R with a cycle 
h »-> t2 H-> ts »-> tu where h < h < h if the intervals (tu h) and (t2, h) in 
Proposition 1 are replaced by (h, h) and (h, t2), respectively. 

Proof. Put f*(t) = —f(—t) for all t. Then clearly /* is piecewise mono tonic and 
has a 3-cycle ft H-> ft .-> ft »-» ft, where ft = -f, for / = 1, 2, 3 and ft < ft < ft. 
Moreover, (/*)*(') = - ( / * ) ( - * ) = (T)*(0» h e n c e /*)* has the same number of 
mono tonic pieces as /*. 

R e m a r k 1. The cases h < t2 < h and h < h < tu where h H-> r2 »-> r3 •-> rt, 
are, under suitable notation, clearly all possible cases of the 3-cycles. 

Now we are able to prove the main result. 

Theorem. Let f be a continuous piecewise monotonic function from a compact 
interval IczR to I, which is nonconstant on every subinterval of I, and which 
contains a 3-cycle. Then 

P(n)^P(l)-2 + Fn+2. 

Proof. Choose a 3-cycle of / and let / be the smallest interval containing it. 
Assume that / has p +1 monotonic pieces on J, and denote F ( l ) = m. Then by the 
above propositions and Remark 1, f" has at least (p • Fn + F„+i — 1) local extrema 
in the interior of J, and by Lemma 1, at least (m—p — 1) local extrema outside the 
interior of J, hence 

P ( n ) g ( p F n + F n + i - l ) + ( m - p - l ) + l 
g P ( l ) - 2 + F n + 2 , 

q.e.d. 
R e m a r k 2. The estimation given in the theorem is the best possible in the sense 

that there is a function / with F ( l ) = 2 such that P(k) = Fk+2y for each k; such 
a function can be defined, e.g., as follows: / : [0, 2] -> [0, 2], /(0) = 1, /(1) = 2, 
/(2) = 0 and / is linear in the intervals [0, 1] and [1, 2]. 

Moreover, one can easily construct a function / with arbitrarily large P ( l ) such 
that P(k) = P ( l ) - 2 + F*+2 for each k. 
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ИТЕРАЦИИ КУСОЧНО МОНОТОННЫХ НЕПРЕРЫВНЫХ ФУНКЦИИ 

Ярослав С мит а л 

Резюме 

Пусть /: I—> I — непрерывная кусочно монотонная функция и / — компактной интервал. 
Пусть Р(к) — число монотонных частей &-той итерации /* функции /. В статье предлагается 
нижняя оценка Р(к) в том случае, если функция / содержит 3-цикл. 
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