Mathematica Slovaca

Marek Balcerzak
Classification of stgma-ideals

Mathematica Slovaca, Vol. 37 (1987), No. 1, 63--70

Persistent URL: http://dml.cz/dmlcz/129290

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/129290
http://project.dml.cz

Math. Slovaca 37, 1987, No. 1, 63—70

CLASSIFICATION OF o~ideals
MAREK BALCERZAK

In the paper, o-ideals of complete separable perfect metric spaces are con-
sidered. For any o-ideal .#, let S (4, #) denote the o-field generated by Borel sets
and sets from £. Ordinal numbers RT(¥), RZ(F), characteristic of .#, which
describe some special properties of S (4, .#)-measurable sets and functions, are
investigated. Examples concerning meager sets and sets of measure zero are
discussed. Connections with Mauldin’s results on generalized Baire systems are
observed.

Throughout the paper, we shall assume that X is a complete separable perfect
metric space. Let # denote the family of all Borel subsets of X. We shall also
consider Borel classes F,, G,, a¢ < @,, (comp. [2], pp. 251—252). Here o,
denotes the first uncountable ordinal number; @ will denote the first infinite
ordinal number. The closure of a set 4 < X will be written as 4.

A family # of subsets of X will be called a o-ideal if and only if it fulfils the
conditions:

(1) if Ae # and B < A, then Be .4,

(i) if A,e# forall n < w, then | ) 4,€4;
n<w
(iii) if A e #, then the interior of A4 is empty;
(iv) if xe X, then {x}e f.
Assume that . is a o-ideal. let S(4, #) denote the o-field generated by all
sets from # U S. It is easily checked that

S(#,F)={BAA:BeSJ, Ae S}

where B A A denotes the symmetric difference of the sets B, A.
Define RT(F) as the first of ordinal numbers a < w, such that

S4AB, $)={BAA:BeF,, Ac S}

(here F,, = %). Observe that it will not matter if we replace above F, by G,. We
may interpret RT(F) as follows. Let #/.# denote the Boolean algebra of Borel

63



sets modulo .#, i.e. the set of all equivalence classes of the relation
A~ B ifandonlyif A BesS

defined for all Borel sets. Then RT(#) means the first of numbers a such that
equivalence classes generated by sets from F, give the whole %#/S.

In the sequel, &7, ¥ will denote, respectively, the o-ideal of all meager subsets
of X and the o-ideal of all subsets of R (the real line) of the Lebesgue measure
zero. It is an easy exercise to show that RT(#") = 0, RT(¥) = 1 (comp. [4], [8]).
in [7] Miller constructed, for each a < ®,, a o-1deal .# of subsets of the Cantor
set 2%, such that RT(#) = a (for related results, see [8]).

Proposition 1. If #, ¢ are o-ideals such that ¥ < ¢, then RT(¥) < RT(S).

Proof. Let RT(¥) = a and E€S(#, #). Then E= BA A where Be 4%,
Ae_¢. Obviously, Be S(4, #), and so B= C A D where CeF,, De#. Thus
E=CAAAD)and CeF,, (AAD)e . Hence RT(¥) < a.

We shall say that the functions f, g: X — R are £-equivalent if and only if

{x:f(x) #g(x)}e s
Let y, denote the characteristic function of a set 4 and let f|A4 be the

restriction of a function f'to A.

Theorem 1. Let f: X — R. The following conditions are equivalent:

(1) fis S(B, F)-measurable;

(2) there is a B-measurable function g: X — R such that f, g are S-equivalent,

(3) there is a set Ae.J such that the function f| X\ A is B-measurable.

Proof. (1)=(2). Assume first that f= y,, AeS(#, #). Let A=BAC
where Be 4, Ce #. Put g = y,. Then g is #-measurable and we have

xifx)#g(x)})=AAB=CeS.

Thus f, g are #-equivalent.
Next, assume that fis a simple function

f=2 ax.; a€R, A4,eS(A,5), i<n

i=1

Let g; be #-measurable functions such that

{xix.(x) #g(x)}ed, i=n

Put g = ) a,g,. Then g is #-measurable and we have
i=1

{x:f(x) # g0} = U {XilA_(x) # g(x)jeSf.

i=1

Hence f, g are .#-equivalent.
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Now, let f be an arbitrary S(4, #)-measurable function. Then there exists a
sequence {f,}, <, of S(4, #)-measurable simple functions which converges point-
wise to f. For any n < w, let g, be a #-measurable function such that f,, g, are
f-equivalent.

Let

lim sup g,(x) if lim supg,(x) < + ©
*») gx)= 0" n—o

otherwise.

Then g is #-measurable and we have

{x:f(x) # g} = U {x:£,(x) # g (x)}e S
Thus f, g are #-equivalent.
(2) = (3). Let 4 = {x:f(x) # g(x)}. By the assumption we have 4€.# and
since g is #-measurable, f| X'\ A is #-measurable.
(3) = (1). Denote h = f] X\ A. Let G be an arbitrary open subset of R. Since
h is #-measurable, there is a set Be # such that A~'(G) = B\ A. So we have

£Y(G) = (B\A)UC where C = (f]4)"'(G).

Let D =(C\B)u(4An B\C). Since Ae.# and D < A, therefore De.#. It is
easily checked that f~'(G) = B A D. Thus fis S(#, .#)-measurable.

The proof is completed.

Let M(¥) denote the family of all S(#, .#)-measurable functions f: X — R.

For a < w,, let M (#) denote the family of all functions f: X — R such that
there is a function g: X' —» R, #-measurable of class a (see [2], p. 280) and f, g
are f-equivalent. Furthermore, put M, (f) M(F).

Next, define RZ(S) as the first of ordinal numbers a £ w, such that
M (F) = M(F) (note that a similar classification for topological measure
spaces was proposed by Zink in [10], [11]). We may interpret RZ(#) as
follows. Consider the lattice of all equivalence classes of the relation

f~ g if and only if f, g are F-equivalent

defined for all #-measurable functions. Then RZ(#) signifies the first of num-
bers @ such that the above lattice consists of equivalence classes generated by all
%-measurable functions of the class a.

Proposition 2. RZ(#) > 0.

Proof (comp. [11], th. 6). Suppose that RZ(#) = 0. This implies that the
closure of every open set is again open, i.e. X is extremally disconnected. Indeed,
let U be an open set. By the supposition, there exists a continuous function
S X - Rsuch that y,, fare #-equivalent. Then the set {x: f(x) ¢ {0, 1}} is open
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and belongs to .#, thus, in virtue of (iii), it is empty. Consequently, f is the
characteristic function of some set V' which must be open since fis continuous.
Moreover, U A Ve@. Since V\U is open and belongs to .#, therefore it is
empty. Similarly, U\ V is empty since it is an open subset of U\ V'€.#. Hence
we conclude that U < ¥ < U and, consequently, U = V. We have obtained a
contradiction since a metric space X cannot simultaneously be perfect and
extremally disconnected. Indeed, suppose that X has these two properties.
Consider any point x,e X. Choose a sequence {x,},,, of distinct points converg-
ing to x, and sequence {U,},., of open pairwise disjoint sets such that for each
n < w we have x,e U, and U, is contained in the ball with the centre x; and the

radius 1/n. Then the set ( ) U,, is open and easily seen to be equal to

n<wo

{xo} U U U,,. Thus, it must contain almost all points x,, which is impossible.

n<w

Proposition 3. If 4, ¢ are o-ideals such that ¥ = ¢, then RZ(¢) < RZ(4).
The proof is analogous to that of Proposition 1.

We shall now study the relationships between RT(#) and RZ(.#).

Theorem 2. RT(¥#) £ RZ(F) £ RT(¥) + 3.

Proof. Let RT(F) = a, RZ(F#) = [. First, we shall show that a < . It is
enough to consider the case f < w,. Assume, for example, that S is even. Let
feS(A, #). Then A = BA C where Be 4, Ce 4. Since RZ(S) = f, there is a
function ge M4(#) such that the set D = {x: y5(x) # f(x)}e S. Let E = g~ '({1}).
We have A = EA(EAA), EeFy, EAAe ¥ (because EAA=(EAB)AC,
EAB< Ded, Cef) Hence a < B. If ais odd, the proof is analogous. We
shall now show that 8 < a + 3. Consider the non-trivial case a < @, only. Let
feM(¥). If f=y, where AeS(#, #), then A = BAC, BeF,, CeJ by the
definition of a. Put g = y,; then g is #-measurable of class @ + 1 (comp. [2],
p. 281) and f, g are J-equivalent. Thus, fe M, ,(#). The same happens when
fis a simple function. In the general case, choose a sequence {f,},., of S(&,
#)-measurable functions converging to f. For any n < o, let g, be a Z-measur-
able function of the class a + 1, such that f,, g, are #-equivalent. Let g be
defined by formula () given in the proof of Theorem 1. Define E = {x: lim sup
g.(x) = + oo}. It is easy to verify that E belongs to F,,, or G,,,. Moreover,
g| X\ E is Z-measurable of class a + 3 since it can be obtained by starting from
functions of the clas a + 1 and using twice the operation of pointwise conver-
gence (comp. [2], p. 284). This implies that g is of class a + 3, too. Since f, g are
J-equivalent, we conclude that fe M, , ;(#). Thus f = a+ 3.
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Corollary 0. The conditions RT(F) = o,, RZ(F) = w, are equivalent.

Below, we shall prove that, for some o-ideals, we can obtain more precise
estimations of RZ(#) than the second inequality in Theorem 2. We shall need
the following proposition which generalizes the well-known characterization of
functions possessing the Baire property (see[2], p. 306). This result was already
published in the cases @ = 0 ([3], p. 408) and a = 1([4], 8 (ii)). In the general case,
the proof is analogous and will be omitted.

Proposition 4. Let a < @, and assume that
S4B, F)={BAA: BeEF,, Ae #}.

A function /:X — R is S(4, #)-measurable if and only if there is a set 4 € .# such
that the restriction f| X'\ 4 is #-measurable of class a.

Theorem 3. Let a < w,. Assume that each set A€ # is included in a Borel set
Be S of the additive class a. Then RZ(#) < max (a, RT(¥)).

Proof. Let fB=max(e, RT(#)). It is enought to show that
M(F) s My(F). Let feM(F). Since RT(F)< P, therefore S(#, J)=
={BA A:BeF;, Ae#}. In virtue of Theorem 1, there is a set 4€.# such
that the function f| X'\ 4 is #-measurable of class f. It follows from the assump-
tion that there is a Borel set Be .# of the additive class S, such that 4 = B. The
function f| X'\ B is #-measurable of class fand the set X\ B is of the multiplica-
tive classs f; thus (see [2], p. 341), there exists an extension of f| X\ B to a
function g: X —> R which is %-measurable of class S Since {x:
Sf(x) # g(x)} = Be 4, therefore f, g are f-equivalent. Hence fe My(#).

Example 1. It follows from Theorem 3 that RZ(X') < 1. Thus, by
Proposition 2, we have RZ(X") = 1.

Example 2. Theorem 3 easily implies that RZ(¥) < 2, which gives the
well-known property that each Lebesgue measurable function is equal almost
everywhere to a function of the Baire class 2. Consider a Borel set £ = R which
is of positive measure on every interval and whose complement has the same
property. Then y.e M(ZL)\ M,(&). Thus RZ(ZL) = 2.

Example 3. Consider the o-ideal " N % of all meager subsets o R of
measure zero. Observe that

(%) SB, ANL)=S(B, A)NS(B, L).

Indeed, the inclusion ‘= is obvious. In order to prove the converse inclusion,
assume that 4€S(B, #)n S(B, £). Then A has the Baire property, hence it
can be expressed in the form 4 = Bu C where B is of type Gsand Ce . We
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may assume that B, C are disjoint. Since S(%, ") N S(#, &) is a o-field and
A, B belong to it C = 4\ B also belongs to this field. Then C is Lebesgue
measurable, so it can be expressed in the form C = D U E where D is of type F,
and Fe¥. We may assume that D, E are disjoint. Thus we have
A=BUD)ANE,BuDe%B, Ec A n¥.1Inconsequence, the inclusion 2" in
(*x) holds. Moreover, BuD is of type F,;, thus it turns out that
RT(A n &Z) < 2. The inequality RT(A n &) = 2 will be proved when we find
a set Ee # such that D A\ E¢ A" n & for each set D of type F,. Let A, Be 2 be
disjoint sets such that AuB=(0, 1), AeX, Be¥% (see [9]). Put
E=(A+1)uBwhere 4+ 1={a+ 1: aeA}. Of course, Ec #. Let D be an
arbitrary set of type F,. If Dn(0, 2)e ¥, then (4 + 1)\D¢.%, and so,
DA E¢A nZ. Next, consider the case DN (0, 2)¢ L. If Dn (0, 1)¢ .Z, then
D\B¢ ¥, andso, DAE¢A N L. If DN (0,1)e &L, then D (0, 1), being a set
of type F, and of measure zero is meager. Thus B\ D¢ and, consequently,
D A E¢ "N % . Hence, we have proved that RT(A# n #) = 2. Observe now that
Theorems 2, 3 easily imply RZ(A N ¥) = 2.

Problem. Do there exist o-ideals .#, ¢ such that RZ(#) = RT(5) + 2,
RZ(#)= RT(¥) + 3?

We shall now show that Mauldin’s results concerning generalized Baire
systems have some connections with RZ(¥), RT(5).

Let C, denote the family of all functions f: X — R whose sets of points of
discontinuity belong to .#. Define the Baire system @,(¥), a < w,, as follows
(see [5]): let Dy(F) = C, and, for each 2, 0 < ¢ < w,, let @, (F) be the family

of all pointwise limits of sequences with terms from ( ) @(¥). The first of

v<a

ordinal numbers @ such that @, (#) = @,(#) will be called the Baire order of

#. Observe that the Baire order is always positive since if 4 denotes any
countable dense subset of X, then we have y,e€ @,(F)\ @y (F).

Let @,, a < m,, denote the usual Baire system (defined analogously as above
by taking @, equal to the family of all continuous functions).

Denote by £, the o-ideal of all sets from .# which have supersets from .#, of
type F,.

Theorem I ([5]). Let 0 < a < w,. Then fe ®(F) if and only if there exists
g€ @, such that f, g are F -equivalent.

Theorem II ([6]). The Baire order of &£ is w,.

Proposition 5. Let 0 < a < w,. Then

a

D(F) = {M,,(J]) if is finite or equal to w,
M, (F)) otherwise.

Proof. For a¢ < w,, the assertion follows from Theorem I and the known
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fact that g belongs to @, if and only if it is #-measurable of class a¢or @ + 1 when
a is finite or infinite, respectively (see [2], p. 299). Next, observe that

d)wl(j) = U d)v('ﬁ) = U Mv(jl) = Mm,(jl)9
v<al v<wl
hence the assertion holds for @ = o,, as well.
Remark. Since, for any function, its set of points of discontinuity is of
type F,, we always have C, = C, . Thus the Baire systems and orders of .4, .5,

are identical.

Corollary 1. If ¥ < &, then RZ(#) = RT(¥) = w,.

Proof. By Theorem II and Proposition 5, we have RZ(#,) = @,. Thus,
by Proposition 3, RZ(#) = w,, and Corollary 0 gives RT(S5) = w, .

Since RZ(A") = 1 (comp. Example 1) and 4" = 7|, therefore Proposition 5
implies the known result:

Corollary 2 ([1]). The Baire order of A is 1.

Remarks. (a) From Theorem 2 and Miller’s result ([7]) stating that there
is a o-ideal # of subsets of 2” with arbitrary RT(#), we conclude that there are
o-ideals .# with arbitrarily high RZ(#). The question may be posed whether, for
each a < w,, there exists a o-ideal .# such that we have exactly RZ(¥) = .
Theorems 2, 3 suggest a method for seeking such o-ideal. Miller’s construction
is expected to be useful as well.

(b) Mauldin in [6] asked whether, for each ¢ < ®,, there exists a o-ideal with
the Baire order a. One may associate this problem with that posed in (a) and try
to solve it in the affirmative by using Proposition 5.
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KIIACCU®PHUKALIUA o-UJEAJIOB

Marek Balcerzak

Pe3ome
Ilyctb # — o-MOean MHOXECTB B MOJIHOM, cenapabelbHOM, COBEPLUEHHOM METPHYECKOM
npoctpaHctBe. [lycts S(#, F) — o-none, NopoxaeHHOe OOpPEeNEeBCKUMH MHOXECTBAMH H

MHOXeCTBaMH u3 £. B cratbe uccneayrorcs opaunHanbl RT(F), RZ(S), onuceiBaroliye cre-
HMasbHbIe CBOCTBA S(4, S )-M3MepUMBIX MHOXECTB U GyHkuu#i. [TpuBeneHbI MpUMepHl U ykazama
cBA3 ¢ 0600meHHbIMM cucTemMaMu Bapa.
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