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CONCRETE REPRESENTATION
OF SOME EQUIVALENCE LATTICES

IVAN KOREC

1. Notation and introduction

The present paper generalizes some results of [5] and [4] which are given below
in a slightly modified form (see 1.5—1.8). Two representation theorems are given
for some distributive equivalence lattices with permutable elements.

The cardinality of a set X is denoted by card (X). Every ordinal number «a is
considered as the set of all ordinal numbers less than a, hence we can speak about
card (). The signs N, U, [, U are used for set-theoretical operations, and the
sings A, v, /\, V for lattice (or complete lattice) operations; A, v are also used as
logical connectives. Throughout the whole paper A is a nonempty set. The ordered
n-tuple (ay, ..., a,)€ A" is denoted by a,, and analogously for x., y., ... An n-ary
(partial) function on the set A is a mapping of (a subset of) the set A" into A ; we
always consider only the partial functions of finite arity. Dom (g) and Rng (g)
denote the domain and the range of the partial function g, respectively. If f, g are
partial functions on A and f = ¢, g is said to be an extension of f (and f a restriction
of g). If, moreover, g is a function, g is called a completion of f.

The set of all equivalence relations on A is denoted by Eq (A); it is considered
as a complete lattice with respect to =. Elements of Eq (A) are denoted by the
Greek letters ¥, 1, &, ..., and we write a&b instead of (a, b) € §. Further we denote
E(x) = {yeA;ytx}forallEeEq(A),xeA.Forx,, y.€ A" and E€Eq (A) we
write x,5y, instead of x;8y; A ... A x.Ey..

Let m ZR,. An m-complete sublattice of Eq (A) is a (nonempty) subset L of
Eq (A) such that AXeL, \/XeL for all XcL, card (X)<m. Since @<L, we
haveida = {(x,x);x€eA}eL and A X A €L for every m-complete sublattice of
Eq (A).

1.1. Definition. Let f be an n-ary partial function on A, LcEq (A) and
?€Eq(A). ' '

1. We shall say that f is compatible with the equivalence & (or briefly:
#-compatible) if for all X, y.» € Dom (f) such that x,3y. there holds f(x,)3f(y,).

13



2. We shall say that f is compatible with the set L (or briefly: L-compatible) if f
is U-compatible for all # € L.

The congruence lattice Con () of an algebra «f=(A; (f,;iel)) can be
described as the greatest set L cEq (A) such that all f;, i e I are L compatible. In
what follows we study mainly the case when L cEq (A) is an m-arithmetical
sublattice of Eq (A) (see 1.3) or an equivalence lattice of type 0 (see 1.4).

1.2. Definition. 1. For every ¢ € Eq (A) we denote by Part (1) the partition
belonging to 4, i.e. Part () = {#(x);x€ A}, where #(x) = {yeA; ydx}.
2. For every L cEq (A) we denote Part (L) = |J{Part (¢#); $eL}.

1.3. Definition. Let m be an infinite cardinal. A sublattice L of Eq (A) will be
called m-arithmetical if

1. L is distributive and all its elements are pairwise permutable ;

2. every chain B cPart (L), card (B)<m, has a nonempty intersection.

For m =R, the second condition is trivial, because the chains considered in it are
finite, hence they have the least element. The same holds if Part (L) fulfils the
descending chain condition, e.g. when L is finite.

1.4. Definition. A sublattice L of Eq (A) is said to be of type 0 if Evn = §un
for all E,nelL.

This definition is to a certain extent analogous to the definition of a representa-
tion by equivalence relations of type n in [1]. (The exact analogy would be Evn =&
instead of Evn = Eun; itis useless, because it implies card (L) = 1.) The lattices
L cEq (A) of type 0 will be considered in the fourth section of the present paper.

Using Definition 1.3 we can formulate Lemma 3.1 and Theorem 3.2 of [5] as
follows.

1.5. Lemma. Let L be a finite R,-arithmetical sublattice of Eq (A). Then there
is a ternary L-compatible function f satisfying

(1.5.1) fx,x,2)=f(z,x,x)=f(z,x,2)=z2

forall x,zeA.

1.6. Theorem. Let L be a finite complete sublattice of Eq(A). Then the
following conditions are equivalent:

(i) L is Wo-artithmetical;

(ii) there is a ternary L-compatible function f satisfying (1.5.1) forallx, z € A.

In the proof of (ii) — (i) the finiteness of L was not used ; it was used only in the
proof of (i)— (ii), i.e. essentially in the proof of Lemma 1.5. A. F. Pixley stated the
problem whether the finiteness of L in Lemma 1.5 can be omitted. We shall not
omit this condition, but we shall replace it by a weaker one, namely the
card (A )-arithmeticity. In [4] this condition was replaced as follows.
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1.7. Theorem. Let A be a countable set and L be an R,-arithmetical sublattice
of Eq (A). Then there is a ternary L-compatible function f which satisfies (1.5.1)
for all x,zeA.

1.8. Theorem. Let A be a countable set and let L be a complete sublattice of
Eq (A). Then the following conditions are equivalent :

(i) L is 8,-arithmetical ;

(ii) there is a ternary L-compatible function f which satisfies (1.5.1) for all
X,Z€A;

(iii) L is the congruence lattice of an algebra, among the fundamental operations
of which there is a ternary function f satisfying (1.5.1) for all x,z€ A.

We shall not repeat the proof of the above theorems. They will follow from the

results below.

2. Infinite Chinese remainder theorem

In this section we shall generalize the following Chinese remainder theorem [5,
Lemma 2.1; 2, Exercise 68, page 211].

2.1. Theorem For every sublattice L of Eq (A) such that ida, A XA €L the
following conditions are equivalent:

1. L is Ny-arithmetical ;

2. for every finite sequence 4, ..., 8, of elements of L and every finite sequence

Xy, ..., X, of elements of A satisfying

(2.1.1) xi(%:vd)x; foralli,je{l,..., n}
there is an x € A which satisfies

(2.1.2) xOx; foralli=1,...,n.

To generalize Theorem 2.1 we shall need the following lemma.

2.2. Lemma. Let L be an m-arithmetical sublattice of Eq (A) and let T be an
ordinal number, card T<m, Let (3, ; 0=a <t) be such a transfinite sequence of
elements of L, that

(2.2.1) (Ws:;8<y}eL forally=t

and let (a,; 0=a<Tt) be a transfinite sequence of elements of A. Then the
following conditions are equivalent :

(2.2.2) a, 000 foralla,B,0=a,B<t

(2.2.3) there is an x € A such that x0.a, foralla, 0=a<t.
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Proof. Since (2.2.3) — (2.2.2) is obvious, we shall prove only the direct
implication; let (2.2.2) hold. For every <t denote B; =Us(as).
Then (2.2.2), (2.2.3) can be formulated as

(2.2.4) B.nB;#@ foralla,f,0=a,f<7t
(2.2.5) MUBs:B<t)+0,

respectively; in (2.2.3) x can be an arbitrary element of the left-hand side of
(2.2.5). Assume now that (2.2.5) does not hold. Consider the set Y of all ordinal
numbers a =t with the following property:

there is a finite set M ={a,, ..., &, } of ordinal numbers less than t such that

(2.2.6) (WBs;B<avBeM}=40.

The set Y is nonempty because it contains the ordinal 7. Let a be the least element
of the set Y. The ordinal number a must be zero or a limit crdinal. For a =0 we
have (){B;s; B € M} =, which contradicts Theorem 2.1 (used for n = card (M),
X, =a,, % =17,). Now let a be a limit number. For every y=a denote

A, =({Bs;B<yvBeM}.

Then (2.2.6) obviously implies [ ){A, ; y <a} =0. However, every setA,, y<ais
nonempty, hence it is a class of the equivalence relation

(s B<yvBeM}=(UTs:B<y}n[ {Ds;BeM},

which belongs to L by the assumption of Lemma 2.2. The set {A,;y<a}c
Part (L) is obviously a chain of cardinality less than m, hence [ {A,; y<a} #0,
which is a contradiction.

2.3. Theorem. (Infinite Chinese remainder theorem.) For every m-complete
sublattice L of Eq (A) the following conditions are equivalent :

1) L is m-arithmetical ;
2) for every set I, card (I'<m and every two systems (x;;iel), (#;;iel) of
elements of A, resp. L, satisfying

(2.3.1) xi(hvi)x foralli,jel
there is an x € A such that
(2.3.2) x¥x; foralliel.

Proof. The implication 1)—2) follows from Lemma 2.2. Let now 2) hold ; then
Theorem 2.1 implies that L is 8,-arithmetical. It remains to show that every chain
B cPart (L), card (B)<m has a nonempty intersection. Let B = {$,(x;);iel}
for some I, card (I) = card (B)<m. The systems (x;; i€I), (¢ ;i eI) fulfil the
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condition (2.3.1) and hence also (2.3.2). The element x from (2.3.2) belongs to
(B, hence [(\B##, q. e. d.

3. Representation of m-arithmetical lattices

In this section we shall generalize Theorems 1.7 and 1.8 in such a way that the
cardinal R, will be replaced by an infinite cardinal m.

3.1. Definition. 1) For every subset L of Eq (A) and arbitrary B, Cc A" we
denote

L(B,C)={8¢€eL; (3%, €B)(3y. € C)(x.0%,)} .

2) We shall write L(x,, C) instead of L({x,}, C) and L(B, y.) instead of
L(B, {y.}).

3.2. Definition. 1) Let m be a cardinal and L cEq (A). A set B< A" is said to
be (m, L)-determining if for every x, € A" there is a set C c B, card (C)<m such
that L(x,, B) = L(x,, C).

2) Instead of “‘(R, L)-determining” we shall write simply L-determining.

If Bc A" is L-determining, it is obviously (m, L)-determining for every infinite
cardinal m. The set B* = {{#(x,); €L(X., B)} < Part (L) determines in some
sense (not necessarily uniquely) the n-tuple x,. If B is L-determining, then there is
a finite subset C < B such that the set C* = {#(x,); & €e L(%., C)} is equal to B*,
hence it determines the n-tuple x, “as well as’ the set B* does. There are similar
reasons for the term ‘““(m, L)-determining set”.

3.3. Lemma. Let L cEq (A) and m be an infinite cardinal. Then

1) every set Bc A", card (B)<m is (m, L)-determining;

2) if B,, B,cA" are (m, L)-determining, then the set B,UB, is also
(m, L)-determining.

The proof is obvious ; notice that the second statement can be generalized to the
union of systems of cardinality less than m.

3.4.Lemma. Let L cEq (A) and n, k be natural numbers. Then the set
Anw ={(x1,..,x,)€EA"” ;dard {x1,..0n X)) <k}
is an L-determining subset of A".

Proof. Let X, e A". The set B=A, .n{x, ..., x,}" is finite. We shall show that
L(x., A..«) = L(x,, B); it suffices to show <. Let z,€ A, ,, # € L and x,9Z.. For

every i € {1, ..., n} let r(i) be the least integer satisfying z,;,=z;. Foralli = 1,
n we have x,(,,l‘}zrm = zx,;, hence (x.a), ..., X m¥%,. Further, card ({r(l), ey
r(n)} <k and thus (x.q), ..., X.w) € B. Therefore # e L(%,, B), q.e.d."
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In fact we have proved that the set A, «is (n" + 1, L)-determining; Lemma 3.4
also holds for k>n (then A, , = A")and k=1 (then A, . ).

3.5. Extension lemma. Let L be an m-arithmetical complete sublattice of
Eq(A), g be an n-ary L-compatible partial function and Dom (¢9) be an
(m, L)-determining set. Then to every x, € A" there is such a y € A that the partial

function g u{(x,., y)} is L-compatible.

Proof. If x e Dom (g), it suffices to take y = g(%.), assume X, ¢ Dom (g). Let B
= {t,;iel} < Dom(g),card (I)<m and L(Dom (g), Xx.) = L(B, x,). For every
t, € B denote by @ the least element of L satisfying #,0x,,. Then we have 3.4, for all
i, j eI and since g is L-compatible we also have g (z.)3.:3,g(t,) for all i, j e I. Hence
by the Infinite Chinese remainder theorem 2.3 there is a y € A such that yd.g(t,)
for all i e I. We shall prove that gu{(x., y)} is L-compatible. It suffices to show
g(Z.)9, for all #eL, z,eDom(g), Z,9%,. If z,0%., then & € L(Dom (g), x.)
= L(B, x,). Therefore there is an i € I such that £9x, ; then ¥; =¢. By the choice
of y we have ydg(#) and hence yidg(t;)). On the other hand Z,9x,9t, hence
9(z.)%g(t). Together we have g(Z,)dy, q.e. d.

3.6. Completion theorem. Let card (A)=m, let L be an m-arithmetical com-
plete sublattice of Eq (A), let g be an n-ary L-compatible partial function and let
its domain Dom (g) be an (m, L)-determining set. Then there is an n-ary
L-compatible function f which is a completion og g.

Proof. Let 7 be the least ordinal of the cardinality m and let A" —Dom (g)
= {t,; a<t}. By the transfinite induction we shall construct an ascending chain
{ge;a=7t} of L-compatible extensions of g such that Dom (g,)
= Dom (g)u{t,; f<a} for all a; then it is sufficient to take f=g,.

1) For a =0 we define go=g. _

2) If a is a limit ordinal (especially, if a =1), let g. =|J{gs: B <a}.

3) Let an L-compatible extension g, of g be constructed, and we have to
construct

Gari, Dom (gari) =Dom (ga)U{ta}.

Since card (Dom (g,) —Dom (g)) <m, the set Dom (g, ) is (m, L)-determining;
the other assumptions of Lemma 3.5 are also fulfilled. Hence there is an a. € A

such that g.., = gaY{(ta, a.)} is L-compatible, q. e. d.

3.7. Lemma. The ternary partial function g with the domain Dom (g) = A
= {(x,y,2) € A*; card ({x, y, z}) <3} such that

(3.7.1) g(x,x,2)=9(z,x,x)=g(z,x,2)=2
for all x, z€ A, is Eq (A)-compatible.
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The proof of Lemma 3.7 is obvious. Now we can prove the following generaliza-
tion of Theorem 1.7.

3.8. Theorem. Let card (A)=m and let L be an m-arithmetical compléte
sublattice of Eq(A). Then there is a ternary L-compatible function f which
satisfies (1.5.1) for all x,z€A.

Proof. Every completion f of the partial function g of Lemma 3.7 fulfils (1.5.1).
Hence it suffices to show that g has an L-compatible completion. Since g is
Eq (A )-compatible, it is L-compatible. The set Dom (g)= A, is L-determining,
and thus (m, L)-determining. Therefore by the Completion theorem 3.6 there is an
L -compatible completion of g, q. e. d.

3.9. Lemma. Let card (A)=m, L be an m-arithmetical complete sublattice of
Eq (A) and n€Eq (A)— L. Then there is a unary L-compatible function g which
is not n-compatible.

Proof. By [4] there are a, b, ¢, d€ A such that the unary partial function
g ={(a, c¢), (b, d)} is L-compatible and not n-compatible. Then no completion of
g is n-compatible. On the other hand, g is L-compatible and Dom (g) is
(m, L)-determining, hence by Theorem 3.6 g has an L-compatible completion,
q.e.d. .

Lemma 3.9 and Theorem 3.8 imply the following representation theorem.

3.10. Theorem. Let card (A)=m and let L be an m-arithmetical complete
sublattice of Eq (A). Then there is an algebra with the congruence lattice L, among
the fundamental operations of which there is a ternary function f satisfying (1.5.1)
for all x,zeA.

Lemma 1.5 and the direct implication in Theorem 1.6 can be obtained from 3.10
by putting m =8,+card (A). Then the lattice L is m-arithmetical because it is
Ro-arithmetical and finite. The implications (i) — (ii) and (i)— (iii) in Theorem 1.8
can be obtained from 3.8 and 3.10 by putting m = R,,

4. Representation of equivalence lattices of type 0.

We shall begin the section with a characterization of equivalence lattices of
type 0. All the conditions will be formulated not only for sublattices of Eq (A) but
even for directed subsets of Eq (A); a partial ordered set L is said to be directed if
every two its elements have an upper bound and a lower bound in L. The proof of
Lemma 4.1 is straightforward and will be omitted.

4.1. Lemma. For every directed subset L of Eq (A) the following conditions are
equivalent : :
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1

a;g'«-

(i) every interval of Part (L) is a chain;
(ii) for every B, CePart (L) there holds BnC = §vB ¢ CvCcB
(iii) Evn=Eun forall E, neL;
(iv) En=Eun for all E, nelL;
(v) for all E, neL and all x, y €A, xEny —xEy vxny.

4.2. Lemma. Let L be a sublattice of Eq (A) and let every interval of Part ( L)
be a chain. Let g be an n-ary L-compatible partial function satisfying

(4:2.1) g(x1, oo X)) €{X1, .oy X0}

for all x, e Dom (g). Then foreverya, = (a,, ...,a,) € A" thereisab € {a,, ..., a,}
such that the partial function gu{(a., b)} is L-compatible.

Proof. We may obviously assume a,éDom (g). Consider the set M
= {E(g(%,)); %, € Dom(g) A & € Lx,&a,). For every E, n €L, %., y. € Dom (g),
x.£a., ' y.na. we have X.Eny., E&nelL, hence g(x.)Eng(y.),
E(g(x.)n1(g(y.)) # 9. Then by (ii) of Lemma 4.1 the sets &(g(%.)), n(g(5.))
are comparable. Therefore the set M is a chain. Now consider the sets M; = {£(x,);
x, €Dom (g)Ag(x,) = x;AE € L A%.Ea,}. Since obviously M = M,u...UM, and
M is a chain, we can choose a number i € {1, ..., n} such that (M =("\M.. Take
b=a;,. We have to prove that gu{(a., b)} is L-compatible. It suffices to prove
g (%.)Ea; for every %, e Dom (g) and & € L satisfying %.£a,. For every such %, and &
there are y, e Dom (g) and i € L such that y.na., g(y3.)=y: and n(y;) < E(g(%.)).
Then a;en(y.) = £(g(%.)), ie. g(X.)&a;, q. ¢. d.

4.3‘ Theorem. Let L be a sublattice of Eq (A) of type 0 and let g be an n-ary
L-oompatzble partial function satisfying (4.2.1) for all X, e Dom (g). Then there is
an L-compat1ble completion f of g such that
g«t‘:;&.l)_ B flxu, ... x,.)e{x., ey Xa)
for all x,e A".

?P'roof.'Consider the set M of all L-compatible extensions f of the partial
function g which satisfy (4.3.1) for all X, € Dom (f). Zorn’s lemma implies that the
sef M has a maximal element. By Lemma 4.2 it must be a function, q. e. d.

4.4. Theorem. For every sublattice L of Eq (A) the following conditions are

equivalent:
Y

" (i) L is of type 0;
(ii) there is an L-compatible function f which satisfies (1.5.1) for all x, z € A and

(4.4.1) f(x,y,2)e{x, y,2)
forall x, y, zeA.

o,
2,
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Proof. Do not let (i) hold and let (ii) hold. There are a, b,c€A and §,neL
satisfying akb, 71b& c, bnc, Janb. Denote d =f(a, b, c). Since (a, a, c) & (a, b, ¢)
n (a,c,c), we have cEdna. However, no element d e {a, b, c} satisfies this
condition, which is a contradiction.

Conversely, let (i) hold and let g be the partial function of Lemma 3.7. Every
completion f of g fulfils the condition (1.5.1), g is L-compatible and fulfils (4.2.1).
Hence by Theorem 4.3 g has an L-compatible completion f, which satisfies (1.5.1)
and (4.4.1) g.e. d.

4.5.Lemma. Let L be a complete sublattice of Eq (A) of type 0 and Iet
neEq(A)—L. Then there is a ternary L-compatible function f which is not
n-compatible and satisfies (4.4.1) for all x,y,z€A.

Proof. Let a, b, ¢, d be chosen similarly as in the proof of Lemma 3.9, i.e. in
such a way that the partial function g’ = {(a, c), (b, d)} is L-compatible and not
n-compatible. Let g = {(a, c,.d, c), (b, ¢, d, d)} (ie. g(a,c,d)=c,
g(b, c,d)=d). Then g is L-compatible and not n-compatible. Moreover, g fulfils
(4.2.1) and hence it has an L-compatible completion f satisfying (4.4.1) which is
not n-compatible, q.e.d.

4.6. Theorem. For every complete sublattice of Eq (A) the following conditions
are equivalent:

(i) L is of type 0; .

(ii) L is the congruence lattice of an algebra, among the fundamental operation
of which there is a ternary function f satisfying (1.5.1) and (4.4.1) for all
X,y,Z€EA;

(iii) L is the congruence lattice of such an algebra of = (A ; (fi ; i € I)) that every
(nonempty) subset of A forms a subalgebra of s{ and among the fundamental
operations of & there is a ternary function f satisfying (1.5.1) and (4.4.1) for all
X,y,Z€A.

Proof. (i)— (iii) follows from Theorem 4.4 and Lemma 4.5, (iii) — (ii) is obvious
and (ii)— (i) follows from Theorem 4.4.

Clearly, Theorem 3.10 does not follow from Theorem 4.6. The example below
shows that the Representation theorem 4.6 is not a corollary of Theorem 3.10.

4.7. Example. Let Z be the set of integers and let A be the set of irrational reals.
For every integer k let us denote by ¢« the equivalence relation on A satisfying

xthy o[x - 2"]=[y - 2°]

for all x, ye A. Further, denote E=\/{t; keZ}. Then L = {%; keZ} U
{E,ids, A X A} is a complete sublattice of Eq (A); since L is a chain, it is of
type 0. Hence by Theorem 4.6 there is an L-compatible ternary function f
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satisfying (1.5.1) for all x,z€ A. Theorem 3.10 could not be applied because
card (A)=c and the lattice L is not c-arithmetical. Indeed, the set Part (L)
contains the countable chain

{{xeA;[2“-x]=0};keZ},

the intersection of which is empty.
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Katedra algebra a tedrie Cisel
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KOHKPETHOE TPENCTABJIEHUE HEKOTOPLIX PEUIETOK OTHOYEHWUI
3KBUBAJIEHTHOCTHU

HBan Kopen

Peyiome

IMycrs L-noppewterka pewetkd Eq (A) Bcex OTHOLIEHMA 3KBMBAJIEHTHOCTH Ha MHOXeECTBE A.
O60o3naunM Part (L) MHOXeCTBO BCeX KJIACCOB BCEX OTHOLIEHMI 3KBMBAJICHTHOCTH M3 L. Pewetka L
Ha3bIBaeTCc apUMETHYECKOM, €CITH OHa AUCTPUOYTHBHA M BCE €€ AJIEMEHTbI NONapHO NMepecTaHOBOY-
Hbl. Pewletka L Ha3biBaeTcss m-apudMETHYECKOH (m — GecKOHEeYHast MOUIHOCTD), eciu L saBasgetcs
apudmMeTndeckoir M ecnn Beskas uenb M3 Part (L) ¢ MOLIHOCTHIO MEHbLUE M HMEET HemycToe
nepeceyenne. Pewetka L Ha3biBaeTcs pewieTkoit tMna 0, €CliM TEOPETHKO-MHOXECTBEHHOE O0-
‘beMHEHUE JIIOObIX JBYX €e 31eMeHTOB npuHamnexut L. JlokasbiBaeTcsi cienyrouiee o60o6LIeHne
HEKOTOpbIX pe3ynbTatoB u3 [4] u [5]: Ecim A ecTb MHOXECTBO ¢ MOUIHOCTbIO He Gonbiie m u L
__nonHas m-apupmeTrdeckas noapewierka pewetku Eq (A ), To cywecTByeT TpexmecTHas pyHKUMS f
Ha MHOXecTBe A, coBMecTuMast ¢ L, i koTopoit BbinonHseTcs (1.5.1). Janbure goka3swsiaercs : Eciaun
L — nonxas nogpeweTka peweTku Eq (A), To L siBnsieTcst peweTkoit tuna 0 Toraa v TonbLKO TOTAa,
KOrja CyLECTBYET TpeXMecTHast (PyHKUMS f Ha MHOXeCTBE A, JUI KOTOPOiH BbIMOJIHAIOTCS YCIIOBHS
(1.5.1) n (4.4.1).
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