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Math. Slovaca 31,1981, No. 1,13—22 

CONCRETE REPRESENTATION 
OF SOME EQUIVALENCE LATTICES 

IVAN KOREC 

1. Notation and introduction 

The present paper generalizes some results of [5] and [4] which are given below 
in a slightly modified form (see 1.5—1.8). Two representation theorems are given 
for some distributive equivalence lattices with permutable elements. 

The cardinality of a set X is denoted by card (X). Every ordinal number a is 
considered as the set of all ordinal numbers less than a, hence we can speak about 
card (a). The signs n , u , H> U a r e usea* f ° r set-theoretical operations, and the 
sings A , v , /\, V f° r lattice (or complete lattice) operations; A , v are also used as 
logical connectives. Throughout the whole paper A is a nonempty set. The ordered 
n-tuple (ai, ...,an)eAn is denoted by an, and analogously for xn, yn, ... An n-ary 
(partial) function on the set A is a mapping of (a subset of) the set A" into A ; we 
always consider only the partial functions of finite arity. Dom (g) and Rng (g) 
denote the domain and the range of the partial function g, respectively. If/, g are 
partial functions on A and f^g,gis said to be an extension of / (and / a restriction 
of g). If, moreover, g is a function, g is called a completion off. 

The set of all equivalence relations on A is denoted by Eq (A ) ; it is considered 
as a complete lattice with respect to cz. Elements of Eq (A) are denoted by the 
Greek letters #, r\, §, ..., and we write a^b instead of (a, b) e £. Further we denote 
?(*) = {y €A \y&) for all £ e E q (A), j t e A . For JC„, yn eAn and £ e E q (A) we 
write xn%yn instead of jc^yi A ... A xn^yn. 

Let mSKo. An m-complete sublattice of Eq (A) is a (nonempty) subset L of 
Eq (A) such that /\XeL, \/XeL for all XczL, card (X)<m. Since 0czL, we 
have idA = { ( j t , j t ) ; j ceA}eL and Ax A eL for every m -complete sublattice of 
E q ( A ) . 

1.1. Definition. Let f be an n-ary partial function on A, L c z E q ( A ) and 
# e E q ( A ) . 

1. We shall say that f is compatible with the equivalence # (or briefly: 
^-compatible) if for all xn, % eDom (f) such that xn&yn there holds f(xn)ftf(yn). 
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2. We shall say that f is compatible with the set L (or briefly: L-compatible) iff 
is ^-compatible for all $ eL. 

The congruence lattice Con (sd) of an algebra s$ = (A; (f;iel)) can be 
described as the greatest set L czEq (A) such that all f,iel are L compatible. In 
what follows we study mainly the case when LczEq (A) is an m-arithmetical 
sublattice of Eq (A) (see 1.3) or an equivalence lattice of type 0 (see 1.4). 

1.2. Definition. 1. For every ft eEq (A) we denote by Part (ft) the partition 
belonging to ft, i.e. Part (ft) = {ft(x);x eA}, where ft(x) = {y eA ; yftx}. 

2. For every LczEq (A) we denote Part (L) = \J{?ax\(ft); fteL}. 

1.3. Definition. Let m be an infinite cardinal. A sublattice L of Eq (A) will be 
called m-arithmetical if 

1. L is distributive and all its elements are pairwise permutable; 
2. eveiy chain B czPart (L), card (B)<m, has a nonempty intersection. 
For m = K0 the second condition is trivial, because the chains considered in it are 

finite, hence they have the least element. The same holds if Part (L) fulfils the 
descending chain condition, e.g. when L is finite. 

1.4. Definition. A sublattice L of Eq (A) is said to be of type Oif^v^ = £urj 
for all £, r/ G L . 

This definition is to a certain extent analogous to the definition of a representa­
tion by equivalence relations of type n in f 1]. (The exact analogy would be <!; vrj = £ 
instead of ^v^ = t;v^ ; it is useless, because it implies card (L) = 1.) The lattices 
L cz Eq (A) of type 0 will be considered in the fourth section of the present paper. 

Using Definition 1.3 we can formulate Lemma 3.1 and Theorem 3.2 of [5] as 
follows. 

1.5. Lemma. Let Lbe a finite ^-arithmetical sublattice of Eq (A). Then there 
is a ternary L-compatible function f satisfying 

(1.5.1) f(x,x,z)=f(z,x,x)=f(z,x,z) = z 

for all x,zeA. 

1.6. Theorem. Let L be a finite complete sublattice of E q ( A ) . Then the 
following conditions are equivalent: 

(i) L is tto-artithmetical; 
(ii) there is a ternary L-compatible function f satisfying (1.5.1) for all x, zeA. 
In the proof of (ii)-->(i) the finiteness of L was not used; it was used only in the 

proof of (i)—>(ii), i.e. essentially in the proof of Lemma 1.5. A. F. Pixley stated the 
problem whether the finiteness of L in Lemma 1.5 can be omitted. We shall not 
omit this condition, but we shall replace it by a weaker one, namely the 
card (A)-arithmeticity. In [4] this condition was replaced as follows. 
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1.7. Theorem. Let A be a countable set and L be an tt0-arithmetical sublattice 
of Eq (A). Then there is a ternary L-compatible function f which satisfies (1.5.1) 
for all x, zeA. 

1.8. Theorem. Lef A be a countable set and let L be a complete sublattice of 
Eq (A). Then the following conditions are equivalent: 

(i) L is ^-arithmetical; 
(ii) there is a ternary L-compatible function f which satisfies (1.5.1) for all 

x, z eA ; 
(iii) L is the congruence lattice of an algebra, among the fundamental operations 

of which there is a ternary function f satisfying (1.5.1) for all x, zeA. 
We shall not repeat the proof of the above theorems. They will follow from the 

results below. 

2. Infinite Chinese remainder theorem 

In this section we shall generalize the following Chinese remainder theorem [5, 
Lemma 2 .1 ; 2, Exercise 68, page 211]. 

2.1. Theorem For every sublattice L of Eq (A) such that idA, A xAeL the 
following conditions are equivalent: 

1. Lis ^-arithmetical; 
2. forevery finite sequence ft u ..., ftn of elements of Land every finite sequence 

xu ...,xn of elements of A satisfying 

(2.1.1) jt<(#,vi/,,)jt, foralli,je{\,...,n} 

there is an x eA which satisfies 

(2.1.2) xfttXi foralli = \,...,n. 

To generalize Theorem 2.1 we shall need the following lemma. 

2.2. Lemma. Let L be an m-arithmetical sublattice of Eq (A) and let r be an 
ordinal number, card T<m, Let (#a ; O ^ a < r ) be such a transfinite sequence of 
elements of L, that 

(2.2.1) ri{#0 ;P<y}eL forally^T 

and let (aa ; 0 ^ a < r ) be a transfinite sequence of elements of A. Then the 
following conditions are equivalent: 

(2.2.2) a«#«iV.3 foralla,p,0^a,p<T 

(2.2.3) there is anxeA such thatxftaaa for all a, 0 ^ a < r . 
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Proof. Since (2.2.3) —> (2.2.2) is obvious, we shall prove only the direct 
implication; let (2.2.2) hold. For every p<T denote B^ = &fi(aii). 

Then (2.2.2), (2.2.3) can be formulated as 

(2.2.4) BunB^0 for all a , 0 , O ^ a , p<T 

(2.2.5) n{B/» ;0 ^ I r ­

respectively; in (2.2.3) x can be an arbitrary element of the left-hand side of 

(2.2.5). Assume now that (2.2.5) does not hold. Consider the set Y of all ordinal 

numbers a ^ r with the following property: 
there is a finite set M= {a,, . . . ,a„} of ordinal numbers less than T such that 

(2.2.6) r\{B?',P<avPeM}=0. 

The set Y is nonempty because it contains the ordinal T. Let a be the least element 
of the set Y. The ordinal number a must be zero or a limit ordinal. For a = 0 we 
have r\{Bp ; P e M } =.0, which contradicts Theorem 2.1 (used for n =card (M), 
xt =aUi, 17, = &at). Now let a be a limit number. For every Y = & denote 

Av = n { B * ; / 3 < y v / ? e M } . 

Then (2.2.6) obviously implies n { ^ v ; y < « } = 0. However, every set Ay , y < a is 
nonempty, hence it is a class of the equivalence relation 

n { ^ ; P <Y v|8 eM} = D{^ \P <y}nn{0*; 0 6 M} , 

which belongs to L by the assumption of Lemma 2.2. The set { A y ; y < a } c z 
Part (L) is obviously a chain of cardinality less than m, hence n ^ v \Y<a}^$<> 
which is a contradiction. 

2.3. Theorem. (Infinite Chinese remainder theorem.) For every m-complete 
sublattice L of Eq (A) the following conditions are equivalent: 

1) L is m-arithmetical; 
2) for every set I, card (I)<m and every two systems (JC, ; i eI), (i/\ ; i el) of 

elements of A, resp. L, satisfying 

(2.3.1) JC-Wvfl/)** for alii J el 

there is an xeA such that 

(2.3.2) jn/Vt, for alii el. 

Proof. The implication 1)—>2) follows from Lemma 2.2. Let now 2) hold; then 
Theorem 2.1 implies that L is No-arithmetical. It remains to show that every chain 
BczPart (L), card (B)<m has a nonempty intersection. Let B = {#,(*,); iel} 
for some 7, card (7) = card (B)<m. The systems (xt; / eI), (#.; iel) fulfil the 
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condition (2.3.1) and hence also (2.3.2). The element x from (2.3.2) belongs to 
f]B, hence f]B^0, q. e. d. 

3. Representation of m -arithmetical lattices 

In this section we shall generalize Theorems 1.7 and 1.8 in such a way that the 
cardinal K0 will be replaced by an infinite cardinal m. 

3.1. Definition. 1) For every subset L of Eq (A) and arbitrary B, Ccz A n we 
denote 

L(B,C) = {&eL;(3xneB)(3yneC)(xn&xn)}. 

2) We shall write L(xn, C) instead of L({xn}, C) and L(B,yn) instead of 
L(B,{yn}). 

3.2. Definition. 1) Let mbe a cardinal andL cz Eq (A). A set B cz A n is said to 
be (m,L )-determining if for every xn e A n there is a set C cz £ , card (C) < m such 
thatL(xn,B) = L(xn,C). 

2) Instead of "(K0, L)-determining" we shall write simply L-determining. 
If B cz An is L-determining, it is obviously (m, L)-determining for every infinite 

cardinal m. The set B* = {ft(xn); eL(xn, B)} cz Part (L) determines in some 
sense (not necessarily uniquely) the n-tuple xn. If B is L-determining, then there is 
a finite subset CczE such that the set C* = {#(*„); # eL(xn, C)} is equal to B*, 
hence it determines the n -tuple xn "as well as" the set J3* does. There are similar 
reasons for the term "(m, L)-determining set". 

3.3. Lemma. Let L cz Eq (A) and m be an infinite cardinal. Then 
1) every set B<=An, card (B)<m is (m, L)-determining; 
2) if By, B2^An are (m, L)-determining, then the set B , u B 2 is also 

(m, L )-determining. 
The proof is obvious; notice that the second statement can be generalized to the 

union of systems of cardinality less than m. 

3.4. Lemma. Let L czEq (A) and n, k be natural numbers. Then the set 

An,k = {(*,, ...,xn) e An ;card ({*,, ...,xn})<k} 

is an L-determining subset of An. 

Proof. Let xn e An. The set B = An,fcn{jc,, ..., xn}
n is finite. We shall show that 

L(xn, An,k) = L(xn, B); it suffices to show cz. Let zn eA„ , t , fteL and.rn#z„. For 
every i e {1,...,«} let r(/) be the least integer satisfying zr(J) = z,. For all i = 1, ..., 
n we have *r( l)#zrr i) = Zi&xt, hence (jcr0), ..., xr(n)9xn. Further, card ({r(l), ..., 
r(rz)}<k and thus (xr(l), ..., xr(n))eB. Therefore# eL(xn, B), q. e. d. " 
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In fact we have proved that the set An k is (nn + 1, L)-determining; Lemma 3.4 
also holds for k >n (then An,k = An) and k = 1 (then An k 0). 

3.5. Extension lemma. Let L be an m-arithmetical complete sublattice of 
Eq (A), g be an n-ary L-compatible partial function and Dom (g) be an 
(m, L)-determining set. Then to every xn eAn there is such ay eA that the partial 
function gv{(xn, y)} is L-compatible. 

Proof. If x e Dom (g), it suffices to take y = g (xn), assume xn & Dom (g). Let B 
= {tt;iel} cz Dom (g), card (I)<m andL(Dom (g),xn) = L(B, xn). For every 
U e B denote by \% the least element of L satisfying tftxn. Then we have U#,#/, for all 
/, j el and since g is L-compatible we also have g(t^ftfyg(t,) for all /, / e I . Hence 
by the Infinite Chinese remainder theorem 2.3 there is a y e A such that y^,g(tt) 
for all iel. We shall prove that gu{(xn, y)} is L-compatible. It suffices to show 
g(zn)ftv for all i7 eL, z n e D o m ( g ) , znftxn. If zn^xn, then # eL(Dom (g), xn) 
= L(B,xn). Therefore there is an / eI such that tt{rxn; then #, ^=17. By the choice 
of y we have y$ig(U) and hence y^g(U). On the other hand z^x^t,, hence 
g(zn)ftg(ti). Together we have g(zn)$y, q. e. d. 

3.6. Completion theorem. Let card (A)^m, let L be an m-arithmetical com­
plete sublattice of Eq (A), let g be an n-ary L-compatible partial function and let 
its domain Dom (g) be an (m,L)-determining set. Then there is an n-ary 
L-compatible function f which is a completion ogg. 

Proof. Let T be the least ordinal of the cardinality m and let An - D o m (g) 
= {ta ; a<r}. By the transfinite induction we shall construct an ascending chain 
{ga;a^r} of L-compatible extensions of g such that Dom(ga) 
= Dom (g)u{ta ; (3<a} for all a; then it is sufficient to take f = gT. 

1) For a = 0 we define g0 = g. 
2) If a is a limit ordinal (especially, if a = T), let ga ={J{g& ; fi<a}. 
3) Let an L-compatible extension ga of g be constructed, and we have to 

construct 

ga+u Dom (fla + 1) = Dom (ga)u{ta}. 

Since card (Dom ( # a ) - D o m (g))<m, the set Dom (ga) is (m, L)-determining; 
the other assumptions of Lemma 3.5 are also fulfilled. Hence there is an aa e A 
such that ga + l = gau{(ta, aa)} is L-compatible, q. e. d. 

3.7. Lemma. The ternary partial function g with the domain Dom (g) = A ^ 

= {(x,y,z) e A3; card ({x, y, z})<3} such that 

(3.7.1) g(x,x,z) = g(z,x,x) = g(z,x, z) = z 

for all x, zeA, is Eq (A)-compatible. 
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The proof of Lemma 3.7 is obvious. Now we can prove the following generaliza­
tion of Theorem 1.7. 

3.8. Theorem. Let c a r d ( A ) S m and let L be an m-arithmetical complete 
sublattice of E q ( A ) . Then there is a ternary L-compatible function f which 
satisfies (1.5.1) for all JC, zeA. 

Proof. Every completion / of the partial function g of Lemma 3.7 fulfils (1.5.1). 
Hence it suffices to show that g has an L-compatible completion. Since g is 
Eq (A)-compatible, it is L-compatible. The set Dom (g) = A33 is L-determining, 
and thus (m, L)-determining. Therefore by the Completion theorem 3.6 there is an 
L-compatible completion of g, q. e. d. 

3.9. Lemma. Let card ( A ) ^ m , L be an m-arithmetical complete sublattice of 
Eq (A) and r]eEq(A) — L. Then there is a unary L-compatible function g which 
is not r\-compatible. 

Proof. By [4] there are a, b, c, deA such that the unary partial function 
g = {(a, c), (b, d)} is L-compatible and not r\-compatible. Then no completion of 
g is ^-compatible. On the other hand, g is L-compatible and Dom (gf) is 
(m, L)-determining, hence by Theorem 3.6 g has an L-compatible completion, 
q. e. d. 

Lemma 3.9 and Theorem 3.8 imply the following representation theorem. 

3.10.Theorem. Let c a r d ( A ) ^ m and let L be an m-arithmetical complete 
sublattice of Eq (A). Then there is an algebra with the congruence lattice L, among 
the fundamental operations of which there is a ternary function f satisfying (1.5.1) 
for all x, zeA. 

Lemma 1.5 and the direct implication in Theorem 1.6 can be obtained from 3.10 
by putting m = K0 + card (A). Then the lattice L is m-arithmetical because it is 
No-arithmetical and finite. The implications (i)—>(ii) and (i)-*(iii) in Theorem 1.8 
can be obtained from 3.8 and 3.10 by putting m = K„. 

4. Representation of equivalence lattices of type 0. 

We shall begin the section with a characterization of equivalence lattices of 
type 0. All the conditions will be formulated not only for sublattices of Eq (A) but 
even for directed subsets of Eq ( A ) ; a partial ordered set L is said to be directed if 
every two its elements have an upper bound and a lower bound in L. The proof of 
Lemma 4.1 is straightforward and will be omitted. 

4.1. Lemma. For every directed subset L of Eq (A) the following conditions are 
equivalent: 
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(i) every interval of Part (L) is a chain; 
(ii) for every B9 CePart(L) there holds BnC = 0 v £ c C v C c B 

(iii) §vr/ = §urj for a11 £, rj eL ; 
(iv) £rj = §urj /or all £, r/ e L ; 
(v) for a11 §, rj eL and a11 x, y e A, jcgrjy—>.x§y vxr/y. 

4.2. Lemma. Let Lbe a sublattice of Eq (A) and let every interval of Part (L) 
be a chain. Let g be an n-ary L-compatible partial function satisfying 

(4.2,1) g(xl9 ...9xn)e{xl9 ...9xn} 

for all xn eDom(g). Then for every dn = (al9 ...9an) e An there isab e{ai9 ...9an} 
such that the partial function gu{(dn9 b)} is L-compatible. 

Proof. We may obviously assume an<£Dom(g). Consider the set M 
= {$(g(xn));xn e Dom(^) A £ e Lxn^dn}. For every %9r\eL9 xn9 yn eDom (g)9 

xn%dn9 ynr]dn we have i„?rjyn, %r\eL9 hence g(xn)^rjg(yn)9 

%(g(*n)nri(g(yn))±0. Then by (ii) of Lemma 4.1 the sets %(g(xn))9 r\(g(yn)) 
are comparable. Therefore the set M is a chain. Now consider the sets M = {£(*,); 
xn eDorri (g)t\g(xn) = X(A^ e L/\xn%dn}. Since obviously M = M,u...uMn and 
Af is a chain, we can choose a number i e {1, ..., n} such that (~}M = H-H- Take 
b~at. We have to prove that gu{(an9 b)} is L-compatible. It suffices to prove 

jM (xn)%ai for every xn e Dom (g) and £ e L satisfying xn^an. For every such xn and § 
there are y„ eDom (g) and rj eL such that ynr\dn9 g(yn) = y, and r/Cy.) c £(#(*,.)). 
Wen a, er/(y,) c §(0(xn)), i.e. 0(x„)§a., q. e. d. 

4.3* Theorem. Let Lbe a sublattice of Eq (A) of type 0 and let g be an n-ary 
L^cqmpatible partial function satisfying (4.2.1) for all xn e Dom (g). Then there is 
an %-compatible completion f of g such that 

Ѓ 4.Ş.1) f(xl9 ...,дrя)є{д:i, ..., дrn} 

2 forallxneAn. 

Proof. Consider the set M of all L-compatible extensions / of the partial 
function g which satisfy (4.3.1) for all xn e Dom (/). Zorn's lemma implies that the 
set M has a maximal element. By Lemma 4.2 it must be a function, q. e. d. 

4.4. Theorem. For every sublattice L of Eq (A) the following conditions are 
equivalent: 

(i) L is of type 0; 
(ii) there is an L-compa tible function f which sa tisfies (1.5.1) for allx9 zeAand 

(4.4.1) f(x9y9z)e{x9y9z} 
for all x9 y, zeA. 
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Proof. Do not let (i) hold and let (ii) hold. There are a, b,c eA and £, r\ €L 
satisfying a%b, ~lb% c, br\c, ~lar]b. Denote d=f(a, b, c). Since (a, a, c )§ (a, bxc) 
r\ (a,c,c), we have c£>dr\a. However, no element de{a,b,c} satisfies this 
condition, which is a contradiction. 

Conversely, let (i) hold and let g be the partial function of Lemma 3.7. Every 
completion / of g fulfils the condition (1.5.1), g is L-compatible and fulfils (4.2.1), 
Hence by Theorem 4.3 g has an L-compatible completion/, which satisfies (1.5.1) 
and (4.4.1) q. e. d. 

4.5. Lemma. Let L be a complete sublattice of Eq (A) of type 0 and let 
r\ eEq (A) —L. Then there is a ternary L-compatible function f which is not 
r\-compatible and satisfies (4.4.1) for all x, y, zeA. 

Proof. Let a, b, c, d be chosen similarly as in the proof of Lemma 3.9, i.e. in 
such a way that the partial function g' = {(a, c), (b, d)} is L-compatible and not 
r\-compatible. Let g = {(a, c, d, c), (b, c, d, d)} (i.e. g(a,c,d)—<:, 
g(b, c, d) = d). Then g is L-compatible and not rj-compatible. Moreover, g fulfils 
(4.2.1) and hence it has an L-compatible completion / satisfying (4.4.1) which is 
not rj-compatible, q.e.d. 

4.6. Theorem. For every complete sublattice of Eq (A) the following conditions 
are equivalent: 

(i) L is of type 0; 
(ii) L is the congruence lattice of an algebra, among the fundamental operation 

of which there is a ternary function f satisfying (1.5.1) and (4.4.1) for all 
x,y, zeA ; 

(iii) L is the congruence lattice of such an algebra si = (A\(fi',ie I)) that every 
(nonempty) subset of A forms a subalgebra of si and among the fundamental 
operations of si there is a ternary function f satisfying (1.5.1) and (4.4.1) for all 
x,y, zeA. 

Proof. (i)-» (iii) follows from Theorem 4.4 and Lemma 4.5, (iii)—> (ii) is obvious 
and (ii)—>(i) follows from Theorem 4.4. 

Clearly, Theorem 3.10 does not follow from Theorem 4.6. The example below 
shows that the Representation theorem 4.6 is not a corollary of Theorem 3.10. 

4.7. Example. Let Z be the set of integers and let A be the set of irrational reals. 
For every integer k let us denote by &k the equivalence relation on A satisfying 

x&ky±+[x2k] = [y2k] 

for all x, ye A. Further, denote % = \/{&k; keZ}. Then L = {#*; keZ} u 
{£, idA, Ax A} is a complete sublattice of Eq (A); since L is a chain, it is of 
type 0. Hence by Theorem 4.6 there is an L-compatible ternary function / 
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satisfying (1.5.1) for all x,zeA. Theorem 3.10 could not be applied because 
card(A) = c and the lattice L is not c-arithmetical. Indeed, the set Part (L) 
contains the countable chain 

{{xeA;[2*-x] = 0 } ; k e Z } , 

the intersection of which is empty. 
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КОНКРЕТНОЕ ПРЕДСТАВЛЕНИЕ НЕКОТОРЫХ РЕШЕТОК ОТНОЧЕНИЙ 

ЭКВИВАЛЕНТНОСТИ 

Иван К о р е ц 

Р е у ю м е 

Пусть ^-подрешетка решетки Е ^ ( А ) всех отношений эквивалентности на множестве А. 
Обозначим Раг! (Ь) множество всех классов всех отношений эквивалентности из ^ . Решетка I, 
называется арифметической, если она дистрибутивна и все ее элементы попарно перестановоч­
ны. Решетка ^ называется т -арифметической (т — бесконечная мощность), если ^ является 
арифметической и если всякая цепь из Раг! (Ь) с мощностью меньше т имеет непустое 
пересечение. Решетка ^ называется решеткой типа 0, если теоретико-множественное об­
ъединение любых двух ее элементов принадлежит ^ . Доказывается следующее обобщение 
некоторых результатов из [4] и [5]: Если А есть множество с мощностью не больше т и ^ 

полная т-арифметическая подрешетка решетки Е^ (А), то существует трехместная функция/ 
на множестве А, совместимая с ̂ , для которой выполняется (1.5.1). Дальше доказывается: Если 
Ь — полная подрешетка решетки Е^ (А), то ^ является решеткой типа 0 тогда и только тогда, 
когда существует трехместная функция / на множестве А, для которой выполняются условия 
(1.5.1) и (4.4.1). 
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