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ON THE PRODUCT OF DIVISORS 
OF A POSITIVE INTEGER 

TIBOR SALÁT — JANA TOMANOVÁ 

(Communicated by Stanislav Jakubec ) 

ABSTRACT. In this paper we will study properties of the arithmetic functions 
/ and /* , where f(n) = Yl d, f*(n) = -f(n) (n = 1,2,... ) and sets of their 
values. d\n 

Introduction and background 

The notion of perfect numbers is well known in number theory. A number 
n G N is called perfect if cr(n) = 2n, where a{n) = ^ d. Hence n is perfect if 

d\n 

it is equal to a(n) — n (the sum of its proper divisors — cf. [14; p. 171-175]). 

Only a finite number of perfect numbers is known up this time and no odd 
perfect number is known. 

There exists a multiplicative analogon to the concept of a perfect number. 
Let / be the arithmetic function, f{n) = \[d. A number n > 1, n G N, can 

d\n 

be called a multiplicatively perfect number provided that ------- = n (i.e. if it is 
equal to the product of its proper divisors). It is well known that such numbers 
are exactly the numbers of the form p3 {p G P) and all numbers px • p2, where 
px, p2 are distinct primes (cf. [14; p . 174, Exercise 2]). 

The concept of amicable numbers is also well known. Two numbers a, b G N 
are called amicable if a{a) — a = b and a{b) — b = a, i.e. if a{a) = a + b = a{b). 
This concept was familiar already to Pythagoras and his students. They have 
known the pair 220, 284 of such numbers. At this time more than 400 pairs 
of amicable numbers is known. It is not known whether the set of all pairs of 
amicable numbers is finite or not. P. E r d 6 s [1] has shown that the asymptotic 
density of the set of all amicable numbers is zero. 

2000 M a t h e m a t i c s Sub j ec t C la s s i f i c a t i on : Primary 11A25, 11B05. 
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In analogy with the concept of multiplicatively perfect numbers we can in­
troduce also the concept of multiplicatively amicable numbers. Two numbers 
a, b G N are called multiplicatively amicable if ^^l = {̂  ILl = a ? i.e. if 
f(a) = ab = f(b). 

It is easy to see that a, b are multiplicatively amicable exactly in the cases if 
a = 6 - - : l o r a - - 6 and a is a multiplicatively perfect number. Hence the answer 
to the question about the structure of the set of all pairs of multiplicatively 
amicable numbers is trivial, but our previous considerations lead to the deeper 
study of properties of functions / , / * , f(n) = fj d, f*(n) = ^f(n) (n = 

d\n 

1,2 , . . . ) . This study began already in [8] by W. E. B r i g g s and in [9] by 
I. N i v e n . Observe that / can be considered as a multiplicative analogue of 
the function a. 

In what follows we will use some concepts and notations that we introduce 
now. 

If A C N, then for n G N we put A(n) = card({l, 2 , . . . , n} D A). If there 
exists 

d{A) = lim -H-Ll, 
n—̂ oo n 

then d(A) G [0,1] and d(A) is called the asymptotic density of the set A 
(cf. [6; p. 71]). 

Recall the concept of the statistical convergence of sequences (cf. [2], [4], 
[11], [12], [13]). A sequence (xn)^° of real numbers is said to be statistically 
convergent to L G R provided that for every e > 0 we have d(A£) = 0, where 
A£ = [n : \xn — L\ > e} . We write briefly limstat xn = L and the number L is 
called the statistical limit of the sequence (x)?°. If lim xn = L in the usual 

n— ôo 

sense, then l ims ta tx n = L as well, so that the statistical convergence can be 
considered as a generalization of the usual convergence. 

There is a simple connection between the concepts of the normal order of an 
arithmetical function g and the statistical convergence of (g(n))1 (cf. [12]). 

If A C N, then we put R(A) = {^ : x,y G A}. The set R(A) is called the 
ratio set of A (cf. [10]). 

If g is an arithmetical function, then we put 5(g, m) = )+-^+^(m) (777, ̂  H). 
A function h is called the average order of g if S(g,m) ~ h(m) (cf. [3; p. 263]). 

This paper consists of two sections. In the first one we describe funda­
mental properties of the functions / , /* and sets F , F*, F = / (N) = 
{/(l) , / ( 2 ) , . . . , / ( n ) , ...},F* = f* (N) = {/* (1), /* (2), • • •, f*(n),.. •} . 

In the second section we deal with average order and normal order of some 
functions that are connected with the functions / , / * . The results concerning 
the normal order will be formulated by using the concept of statistical conver­
gence. 
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1. Fundamental properties 
of the functions / , /* and the sets F, F* 

It was proved in [9] by I. N i v e n that the function / is an injection of N 
into N. A similar result does not hold for /* since for any two distinct primes 
p, q we have f*(p) = f*(q) = 1. The following theorem asserts that the partial 
function / * | (N \ P) > where P is the set of all prime numbers, is injective. To 
prove it we shall need an auxiliary lemma, proved in [8] by W. E. B r i g g s and 
in [9] by I. N i v e n . 

LEMMA 1.1. For each m G N we have 

f(m) = m ^ , (0) 

where T(m) = ^ 1 ( = the number of divisors of m). 
d\m 

P r o o f . The definition of / yields 

d /2(m) = n d - I l T = ™ T ( m ) 

d\m d\m 

• 
THEOREM 1.1. The partial function / * | ( N \ P ) ^s injective (P is the set of 
all prime numbers). 

P r o o f . Obviously we have /*(1) ^ / * ( m ) , for m G N \ P . Hence it suf­
fices to show that for m G N \ P, n G N \ P, m ^ n , m , n > 1, we have 
r(m)^f*(n). 

We proceed indirectly. Let m, n > 1, m ^ n, m, n G N \ P and 

f*(m) = r(n). (1) 
Then m \ n, n\m and the standard forms of m and n contain the same set of 
primes. 

Put (m,n) = d. Then d > 1 and 

m = dk , n = dt, (k, t) = 1. 

By Lemma 1.1 we get from (1) 
mr(m)-2 = nr(n)-2 _ ^ 

Here we have T(m) — 2 > 0, T(n) — 2 > 0 since m, n are composite numbers. 
As m ^ n , it is easy to see from (2) that T(m) ^ T(n). Hence one of the 

following cases must occur: 

(a) T(m) > r ( n ) , 
(b) T(m) < T(n). 
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But we show that both these cases are impossible. 

In the case (a) we have r(ra) = r(n) -f s, s > 1, s G N. If we put it in (2) 

we get 
ds . kT(n)-2+s = tT(n)-2 _ 

But from this we get (k, t) > 1 — a contradiction. 

(b) This possibility can be eliminate in a similar way. • 

Lemma 1.1 enables us to realize an analyze of the structure of the set F ~ 

/(N) = {/(l), / ( 2 ) , . . . , / ( n ) , . . . } . In what follows we will deal with the question 

what form the numbers belonging to F have. 

Suppose that a = pf* • • -p^r (standard form) belongs to F. Hence there is 

an ra G N such that 

a = / ( r a ) . (3) 

Then ra > 1 and from (0) we see that the standard form of ra is 

ro = p ? l - " P ? r - (3') 

But then by Lemma 1.1 we obtain from (3), (3') 

2/3i 20 T(m)a, T(m)a 

Pi '"Pr =Pl '"Pr ' 
Comparing exponents we get 

20j = r(m)aj (j = 1, 2 , . . . , r). (4) 

Case r = 1. 

If r = 1, then (see (4)) 

Hence 

So we see that if a G F , a = p^1, then f31 = Q l ^ Q

2

1 + 1 ^. The converse is also true, 

o = /(p?1)-
Hence among the numbers p{x the set F contains exactly the numbers of 

Q i ( Q i + 1 ) 
the form pl

 2 , a x G N (i.e. F contains exactly the numbers of the form 
« i ( « i + - ) 

px

 2 where the exponents are triangular numbers). 

Case r>2. 
We get from (4) 

a . ( a 1 + L ) . . . ( a r + l) 
/3j = — ^ ( j = 1,2,...,?•)• 5 
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Since a;- + 1 > 2 (j = 1,2,..., r ) , from (5) the following estimate for /?. can be 
deduced: 

(3j>2(r-l) ( i = l , 2 , . . . , r ) . (6) 

Put h(m) = min a.. Then we see from (6) that in the case r > 2 we have 
1<j<r J " 

/ i ( ra )>2 . 
Denote by M the set of all n 's from N having the standard form 

n=p°1--pr
Xr, r > 2 , h(n)>2. (*) 

We show that the numbers from M satisfying (a 1 ? . . . , ar) = 1 do not belong 
to F. If namely n has the form 

n = p1
1-'Pr

r, r>2 and (a x , . . . , a r ) = 1, 

then n cannot belong to F. In the contrary case, there is an m G N, m = 
Pi '"Prr (standard form), such that f(m) = n. But then Lemma 1.1 yields 

P\«I...PI**=PT^...PI^. 

Comparing exponents we obtain the following system of equations 

Pi(P1 + l)-..(pr + l) = 2ai (i = l,2,...,r). (S) 

It seems that here two possibilities are: 

(a) There exists an i such that P{ is odd. 
(b) All Pi (i = 1,2,..., r ) are even. 

The case (b) is impossible since in this case we have (a-. , . . . ,a r) > 1. 

In the case (a) let e.g. /?. be odd, 1 < j < r. Then ^ - i is an integer and 
owing to r > 2 we see that the greatest common divisor of a x , . . . , ar is at least 
/3V + 1 > 2 , where v e {1,2,.. . , r } , v ^ j . 

So we have shown that the following theorem holds: 

THEOREM 1.2. For the set F the following inclusions hold: 

{ l ju jp 5 1 ^ : pGP, aGNJ C F C { 1 } U { ^ : PGP, aGN}uG (7) 

where G is the set of all n G N having the standard form n = p^1 • • -pr
r, r > 2, 

(<*!,. . . , a r ) > 1. 

Remark. The set P of all primes is included in {pa(a
2

+1) : p G P} and 
therefore it is a subset of F. 

The inclusions proved in the foregoing theorem enable us to show that F is 
a set of zero density. 
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T H E O R E M 1.3. We have d(F) = 0. 

P r o o f . The proof will be based on [5; p. 254, Theorem 11.7]. 
This theorem says: 

J / i C N , then for p prime we denote by A the set of all a G A such 
that p | a and p2 \a. If (qn)™ is a sequence of primes q1 < q2 < - — 

oo 

With ]T Qn1 = +°° and diAqn)
 = ° ( n = ^ 2 ' * * ' )> then d(A) = °-

n = l 

We will apply this theorem to the set on the right-hand side of (7). We denote 
this set by A. For (̂ n)f

D we choose the sequence of all primes. For fixed p G P 
the set Ap = {p} and so d(Ap) = 0 (for each p G P). Hence by [5; Theorem 11.7] 
we get d(A) = 0 and owing to (7) also d(F) = 0. • 

Theorem 1.3 can be strengthened. 

THEOREM 1.4. For x > 1 we have 

F(x) = n(x) + 0(xi), 

where TT(X) denotes, as usual, the number of primes not exceeding x. 

COROLLARY. We have 

x->oo 7r(X) 

P r o o f of T h e o r e m 1.4. If p is a prime number, p < x, then f(p) = 
p < x and for p > x, f(p) > x. Hence among the numbers / ( l ) , f(p) (p G P) 
of the set F exactly the numbers / ( l ) and f(p) (p < x) are counted in F(x) 
and their number is 1 + n(x). 

Now, if n is a composite number, then it has a proper divisor d > y/n, thus 

f(n) > nyfn = n* . 

Therefore if n > x* , then f(n) > n* > x. Hence if n is composite, then only 
f(n) with n < x* can be counted in F(x). From this our theorem follows 
immediately. • 

Similar result can be proved also for the set 

F * - / * ( N ) = {/*( l ) , /*(2) , . . . , /*(n) , . . .} . 

THEOREM 1.5. For every e G (0, | ) we have 

F*(x) =x^ +o(x) (x > 1). 
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COROLLARY. We have d(F*) = 0. 

P r o o f of T h e o r e m 1.5. Let x > 1, x G N, and 0 < e < \ . Put 

Ae = [n: / * ( n ) < n 1 + £ } . 

In the first place we investigate the structure of the set A£. If n G A£, then 
by definition of /* we get 

dld2---dr(n)<n2+£> ( 8 ) 

n n n 0JLir , . 
TT'"1 ^ n ' 8 

dl d2 dr(n) 
where 1 = dx < d2 • • • < d r / n \ = n are all divisors of n. Multiplying (8), (8') we 
obtain 

nr(n) < n 4 + 2 . < ^5 > 

Hence r(n) < 4. By definition of r(n) we see that the set A£ is contained in 
the union of the sets Mx, M2, M 3 , where 

Mx = { 1 } U P , 

M2 = {p.p' : p,p'eP, p^p'}, 

M3 = {p3: p G P } . 

But each of these sets has the asymptotic density 0 (cf. [3; p 368, Theo­
rem 437]). From this we see that the number of numbers f*(n) with f*(n) < x 
for n G A£ is o(x) (x -» oo). 

The rest values f*(n) < x (for n £ A£) satisfy the inequalities f*(n) > n 1 + £ 

and so 
* > / * ( n ) > n 1 + £ . 

From this n < x 1 ^ and so the number of these values is < [ x 1 ^ ] . The theorem 
follows. D 

In what follows we shall deal with the ratio sets of the sets F, F* . 

THEOREM 1.6. The ratio set R(F) of the set F is dense in (0 ,+oo) . 

P r o o f . By the definition of / we have R(F) D R(P). But R(P) is dense 
in (0, +oo) (cf. [14; p. 155]). The density of R(F) follows. D 

THEOREM 1.6*. The ratio set R(F*) of the set F* is dense in (0 ,+co) . 

P r o o f . Observe that for p,q G P we have 

f*(p2) = V 
f*(q2) q' 

The theorem follows similarly as before. D 

In connection with Theorem 1.6 and 1.6*, the natural question arises whether 
the set R(F) or R(F*) can coincide with the set Q+ of all positive rational 
numbers. We give a negative answrer to this question. 
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THEOREM 1.7. The set R(F) contains no number of the form p • q, where 

P , q £ P , P^q-

P r o o f . We proceed indirectly. Suppose that there exist p, q G P , p 7- q 
and m, n G N such that 

f(m)=pqf(n). (9) 

Obviously m^n and m , n are composite numbers. Further m\n. We will 
show that also n\m. 

Suppose in the contrary that n\m. Then m = nd, d > 1. By Lemma 1.1 
we get from (9) 

(nd)T(nd) =(pq)2-nT{n\ 

nr(nd)-r(n) . dr(nd) = ^ 2 # ^ 

Since T(nd) > r (n) and T(nd) > 2, at least one of the primes p, q occurs 
on the left-hand side of (10) with exponent greater than 2. But this is a contra­
diction to the fundamental theorem of arithmetic ([3; p. 3, Theorem 2]). 

Hence m\ n , n\ m. Put (m, n) = v. If a prime p divides n , then by (9) p 
divides also f(m) and so p \ m. Hence v > 1 and by definition of v we get 

m = vt, n = vk, (&,£) = 1. (11) 

By Lemma 1.1 we obtain from (9) 

(vt)T{m) = (pq)2(vk)T^ . (12) 

If T(m) = r ( n ) , then according to (12), (k, t) > 1 — contrary to (11). 
Hence T(m) > T(n) or T(n) > T(m). We show that both these cases lead to 

contradiction. 
Let T(m) > T(n). Then by (12) we get 

vr(m)-r(n)tr(m) = (M)2fcr(n)# ^ 

Since (fc, t) = 1, the number 
vr(m)-r(n)fc-r(n) 

is an integer > 0. Moreover, T(m) > 2 (as m is composite). Thus at least one 
of the primes p , q occurs on the left-hand side of (13) with exponent greater 
than 2 — a contradiction to the fundamental theorem of arithmetic. 

Let T(m) < T(n). Then from (12) we have 
j.r(m) _ v

T(n)-T(rn)kT(n)(r)q)2 

and this yields (k,t) > 1 — a contradiction to (11). This ends the proof. • 

The previous result can be easily generalized, and so we obtain the following 
theorem. 
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THEOREM 1.7'. No square-free number qiq2*",(-V w ^ r -̂  2 belongs to 
R(F). 

Similar results can be stated also for the set R(F*). Their proofs are similar 
and so they can be omitted. 

THEOREM 1.8. Let px, p2, pz be mutually distinct primes. Then the number 
px-p2- p3 does not belong to R(F*). 

Remark. If px ^ p2 are two primes, then px • p2 belongs to R(F*). It suffices 
to put m = px • p2. Then 

fjM=Pi.p2€R{F*y 

Theorem 1.8 can be generalized. 

THEOREM 1.8'. No square-free number qxq2' — qr with r > 3 belongs to 
R(F*). 

2. Average order of / and /* and 
statistical convergence of some related sequences 

We can obtain a good information about behaviour and properties of the 
functions / , /* also by investigating the average order and normal order of 
log / , log /* and log log / , log log /* , respectively and some sequences connected 
with these functions. The results concerning the normal order will be formulated 
using the concept of statistical convergence (cf. [2], [4], [11], [12], [13]). 

For the following use, we note that the concept of statistical convergence can 
be extended for such sequences that are not defined for all n G N but only for 
"almost" all n G N. This means that we have a sequence (xs)seS, where s runs 
over all positive integers s belonging to a set S C N, where d(S) = 1 . Hence 
if S = {sx < s2 < • • • } , then (xs)seS stands for the sequence (xSn)n=1 • Then 
l imstatx = L means that for each e > 0 we have d(A£) = 0, where 

Ae = {seS: \xs-L\ >e}. 

Similarly we say that the statement V(n) holds almost everywhere in N (or 
for almost all n G N) provided that the set S = {n G N : V(n) holds} has the 
density d(S) = 1. 

Tor the further use we introduce three auxiliary results. 
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L E M M A 2.1. Put 

n 

H(n) = Y,r(k) (n = l,2,.. .). 
k=i 

Then 

Hn = nlogn + (27 - l)n + 0{>/n ) , 

where 7 is the Euler constant. 

P r o o f . See [3; p. 264, Theorem 320]. D 

LEMMA 2.2. If e E (0,1), then for almost all n E N we have 

2(l-e)loglogn < Trn\ < 2(1+^) log log n 

P r o o f . See [3; p. 359, Theorem 432]. • 

Finally we recall the following result from the theory of statistical conver­
gence. 

LEMMA 2 .3 . A sequence (xn)^° converges statistically to L (lim stat x n = L) 
if and only if there is a set 

M = {mx < r a 2 < - - - < r a n < . . . } C N 

such that d(M) = 1 and lim a: = L. 

P r o o f . See [11; Lemma 1.1]. • 

Remark. It can be easily checked that Lemma 2.3 remains valid also for gen­
eralized statistical convergence we mentioned at the beginning of this section. If 
namely the sequence (xn) is defined only for n G N\H: d(H) -= 0, then the 
set M mentioned in Lemma 2.3 can be chosen in the form M = (N \ H) \ H0, 
where d(H0) = 0. But then again we have d(M) = 1. 

In the first place we shall deal with statistical convergence of some sequences 
connected wit the sequence (log log/(n)) . 

T H E O R E M 2 . 1 . We have 

loglogf(n) 
lim stat ° , ; = 1 + log 2 

log log n 

(log2 is the natural logarithm of 2). 
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COROLLARY. There exists a set 

M = {mx <m2<-- <mn< ...} CN 

such that d(M) = 1 and 

,.m loglog/K) = 2 

k->oo loglogm^ 

(see Lemma 2.3 and Remark after it). 

P r o o f of T h e o r e m 2.1. By Lemma 1.1 we have f(n) .= n2"^ . Taking 
logarithms we obtain 

r/ x r(n), , x 

log/(n) = — - l o g n ( n > e ) 

and again by the same way 

log log/(n) = log -̂  + log r(n) + log logn (n > ee). (14) 

Let e G (0,1). According to Lemma 2.2 the inequalities 

(1 -e) log 2 log logn < logr(n) < (1 + e) log 2 log logn 

hold for almost all n's. From this we infer 

log r(n) . , v hmstat , 6 . v ; = log2 . (15) 
log log n 7 

By a little arrangement of (14) we get 

log log/(n) = l | log r(n) | l og | ( n > e
e ) 

log logn log logn log logn 

It is well known that a sum of a finite number of statistically convergent 
sequences is again a statistically convergent sequence whose statistical limit is 
equal to the sum of statistical limits of those sequences (cf. [2], [11], [13]). Owing 
to this fact we get from (15), (16) 

l i m s t a t 1 0
1

S l ° 1
g / ( n )

= l + log2. 
log log n 

• 
A question arises whether an analogous result holds also for the function 

/*. Observe that /*(n) = 1 exactly if n = 1 or n = p is a prime. For these 
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values of n we have log/*(n) = 0 and therefore loglog/*(n) does not exist. 
But d ( { l } U F ) = 0 and so the sequence 

/ loglog A n ) \ 

V log log n ) n e s ' 

S — N \ ({1} U P) is defined almost everywhere in N and we can speak about 
its statistical convergence. 

By Lemma 1.1 we have 

/ *(n) =71 - * 

for n G S, n > e. Thus 

loglog/* (n) = log ( l £ - - 1 ) + loglogn (17) 

(for n G 5*, 5* = {n > ee : n G S } ) . Then d(S*) = 1 and (17) holds almost 
everywhere in N. 

T H E O R E M 2.2. We have 

loglog/*(n) 
limstat ° , v y = 1 + log2. 

log log n 

COROLLARY. There exists a set M = {m1 < m 2 < - - - < m n < . . . } C N 
5^c/i t/iat d(M) = 1 and 

log log/*(ra ,) 
lim - , ^ v u = 1 + log2 . 

A,->OO loglografc 

P r o o f of T h e o r e m 2.2 . Let e e (0, 7>). Then by Lemma 2.2 we have 
(for almost all n E N) 

2 ( l - e ) log logn- l _ 1 <
 T ( n ) _ 2 < 2(l + e)loglogn-l _ -̂  

Using some simple estimations we get from this for almost all n 's 

and 

Thus 

т(n) 
Ь g ( - ^ 1 - 1 ) < ( l + є)log21oglogn 

log( ^ у - - - ) > ( l - є ) l o g 2 1 o g l o g n . 

l o g ( ^ - - 1) , 
lim stát V l = log 2 . 

log log n 
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From (17), (18) the theorem follows immediately. D 

In connection with Theorem 2.1 and 2.2 the question arises whether these 
theorems could be strengthened in the following sense: 

In [4] a new type of convergence of sequences is introduced (so called 
3c-convergence) which is stronger than the statistical convergence. For its intro­
duction the following well-known fact is used (cf, [7]): 

If A CN and Y, a _ 1 < +co> then d(A) = °-
aeA 

A sequence (xn)^° is said to be 3c~convergent to L (briefly: 3c-\imxn = L) 
if for every e > 0 we have ^ n _ 1 < +co> where A£ = [n : \xn — L\ > e}. 

neA£ 

According to the mentioned result of [7] if 3c-lim:rn = L, then also 
limstatxn = L . 

The converse in general is not true. 
We now ask whether the Theorems 2.1, 2.2 can be strengthened in such a 

way that the statistical convergence in them is replaced by 3c-convergence. 
We give a negative answer to this question. 

THEOREM 2.3. The statements 

(Vi) V l imi2g^ )= l + log2; 

(V2) Vlimi2fi|^M = l + log2 

do not hold. 

P r o o f . Let px < p2 < • • • < pn < ... be the sequence of all prime numbers. 
We prove that (Va) does not hold. 
If n = pk, then 

log log/(P J = loglogPfe 
loglogp^ loglogpfc 

and so for 0 < e < log 2 the set 

contains by (19) all primes so that 

oo 

En"1^EI jfc1 = +°° 

(19) 

nЄAє 
k=l 

(cf. [3; p. 16, Theorem 19]). Hence (Vx) does not hold. 
We prove that (V2) does not hold. 
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Put n = PÍPJ , i^j. Then f*(PiPj) = p{Pj so that 

= 1 . 
ÌOgìOg ГІPjPj) 

loglogPiPj 

Then for 0 < e < log 2 the set 

K-{n: | ! t i ^ n i - ( l + log2)|>£} 

contains all numbers p{p-, i ?-= j . 
CO 

Therefore ]T) n~1 = + ° ° because already the series ]T ^- diverges. 
nEA* i=l 

Hence (V2) is not valid. • 

We now will deal with the average order of the functions l o g / and l og /* . 

By Lemma 1.1 we have 

S(log/.m) = - L . r m . (20) 

where 
771 

Tm = ^2r(n)logn ("1 = 1,2, . . . ) . (21) 
n=l 

T H E O R E M 2.4. We have 

S(log f,m) = \ log2 m + 0(log m ) . 

COROLLARY. 

(a) We have 

| i m 5 f l » ^ m ) 1 
777->oo Jog 777, 2 

(b) The "average value" of the function l o g / On the interval [ l ,m] is 
\ log2 m . 

P r o o f of T h e o r e m 2.4. We will use Abel's partial summation for 
estimate Tm (see (21)). 

By Lemma 2.1 we have 

Hn = J2 T(k) n l oSn + °(n) • 22 
A 1 
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Using Abel's summation we get 

Tm = T (1 ) logl + T(2) log2 + • • • + T(m) logm 

= ^ 1 l o g l + (H2- Jff1)log2 + . . . + (Hm-JffTO_1)logm 

= Hm logm + {Hx log2 + H2(log2 - log3) + . . . (23) 

••• + tfTO_1(log(m-l)-logm)} 
= Hmlogm + Vm, 

where 
Vm = -{ log2 + H2 log | + • • • + Hm_x log i } . (24) 

Using (22) we get 

Hm log m = m log2 m + 0(m log m). (25) 

Further 
u i k + 1 s u 1 

k 'l0g~k~- k'k> 
and so (see (22), (24)) 

m—1 m—1 

\VJ -- E \{klogk + 0(k)) = £ logA; + O(m). 
k=2 fc=2 

Observe that 

m—1 IIV X n 

]PlogA;< \ogt dt = mlogm - m. 
fc=2 

Hence 
ym = 0(mlogm). (26) 

But then according to (23), (24), (25), (26) we obtain 

Tm = m log2 m + 0(m log m). 

Putting it into (20) we get 

5(log f>m)= 2m ( m l 0 g 2 m + 0(m loS m ) ) 

= ^log2m + 0(logm). 

D 

The previous theorem enables us to determine the average order of log /* in 
an easy way. 
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THEOREM 2 . 5 . We háve 

S(log/*,m) = | l o g 2 m + O(logm). 

C O R O L L A R Y . We have 

lim 5 ( І 0 S l * ' m ) - X 

m^+oo l o g 2 771 2 

P r o o f of T h e o r e m 2.5. By the definition of /* we get 

m m -/ \ 

E1°g/» = E1°g ;ir 
n = l n = l 

m m 

= Elos/(n)~.Elosn-
n = l n = l 

(27) 

Further ]T) logn = logm! and so by Stirling's formula (cf. [6; p. 192]) 
n = l 

m! = V ^ • m m + ^ • e " m (l + o(l)). 

Thus using this formula we obtain from (27) 

m m 

^ l o g / * ( n ) = ^ l o g / ( n ) +mlogm + 0 ( m ) . 
n = l n = l 

Hence 
-S(log /*, m) = 5(log /, m) + 0(log m). 

From this the assertion follows immediately. • 
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