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ON THE SUM OF DIVISORS 
OF THE MERSENNE NUMBERS 

FLORIAN LUCA 

(Communicated by Stanislav Jakubec) 

ABSTRACT. For any positive integer n, let Mn = 2n — 1 be the n th Mersenne 
number. In this paper, we show that the set {o(M n) /M n} n is dense in [l,oo], 
where for a positive integer k we use cr(k) for the sum of divisors function of k. 

For a positive integer n > 1, write Mn := 2n — 1 for the nth Mersenne num­
ber. For a positive integer m, we write (/>(m), r/(m), T(m), fi(m), and u(m) 
for the Euler function of m, the sum of divisors function of m, the number of 
divisors function of m, and the number of prime factors of m, counted with or 
without multiplicities, respectively. Throughout this paper, for a large positive 
real number x and any positive integer k, we write log^x for the recursively 
defined function log .̂ x := maxlloglog^j x, l} , where logx is the natural log­
arithm of x. We omit the subscript k when k = 1 and simply write log x with 
the understanding that this number is larger than or equal to 1. We also use the 
Vinogradov symbols > and <C as well as the Landau symbols O and o with 
their usual meaning. 

There are several papers in the literature dealing with arithmetic functions 
of the Mersenne numbers. E r d o s (see [1]) showed that 

^ - - O O o g , - ) . (1) 
n 

Further results of the same type as estimate (1) above can be found in the papers 
[2] and [8]. S h p a r l i n s k i (see [11]) showed that there exists a constant T so 
that for large x the asymptotic formula 

i-£^г + o(^) 
П<X n Ч ' 
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holds. In fact, the asymptotic formula (2) holds also when the sequence of num­
bers (Mn)n>0 is replaced by any nondegenerate linearly recurrent sequence of 
positive integers, and when the function f(m) := (j)(m)/m is replaced by any 
arithmetic function f(m) having the property that there exists some other func­
tion g(m) with g(m) = 0(1) and so that 

d\m 

holds (see [3]). The function f(m) := (j)(m)/m satisfies the above condition 
with g(m) := fJ<(m), where fi is the Mobius function. Notice that the function 
f(m) := a(m)/m satisfies also this condition with g(m) := 1. In particular, 
a similar formula as (2) holds with (j> replaced by a. A more general result of 
this type can be found in [6], where it is shown that when f(m) is a function 
satisfying the above conditions, then for every positive integer k > 1 there exists 
a constant Tk so that for large x we have 

iE(«M»))' = r1 + C ^ ) . (4) 
n<x ^ ' 

In particular, all the moments of both <j)(Mn)/Mn and a(Mn)/Mn can be com­
puted. In [5], it is shown that if / is a multiplicative function that satisfies the 
above conditions, then f(Mn) has a distribution function. That is, for every 
value of the real number z, the asymptotic density of the set of positive in­
tegers n so that f(Mn) < z exists. In particular, both functions (t>(Mn)/Mn 

and a(Mn)/Mn have distribution functions. Finally, some results pertaining to 
u(Mn) and fl(Mn) can be found in [9] and [10]. 

The above results seem to indicate that most of the interesting questions that 
can be answered for the function a(n)/n can also be answered when n is allowed 
to run only in the thinner set of all Mersenne numbers. That is, estimate (1) 
deals with the maximal order of such function, estimates such as (2) and (4) 
show that the moments of such functions can be computed, while the result 
from [5] shows that this function has a limiting distribution, and the same is 
true when a is replaced by <j>. 

It is a well-known fact, and an easy exercise in elementary number theory, to 
prove that the set {a(n)/n} is dense in [l,co]. Similarly, the set {<j)(n)/n}n 

is dense in [0,1]. In this note, we show that the same is true when n is allowed 
to run only in the subset of Mersenne numbers. That is, we have the following 
theorem: 

T H E O R E M . 

i) The set {a(Mn)/Mn}n is dense in [l,oo]. 
ii) The set {(p(Mn)/Mn}n is dense in [0,1]. 
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We point out that the method of proof of our Theorem can be adapted to 
show that our Theorem is valid once one replaces the sequence of Mersenne 
numbers (Mn)n by some other Lucas sequence satisfying some technical condi­
tions, such as the sequence (Fn)n of all the Fibonacci numbers. Our method of 
proof can also be adapted to show that the conclusion of our Theorem remains 
valid when the functions a(n)/n and <j>(n)/n are replaced by any multiplica­
tive function f(n) such that there exist two constants c ^ 0 and A > 1 so 
that f(pa) = 1 + £ + 0 ( - T ) holds for all prime numbers p and all positive 
integers a. The two functions a(n)/n and (f)(n)/n satisfy the above conditions 
with (c, A) = (1,2) and (—1,2), respectively. For such functions, the method 
of proof of our Theorem yields that the set {/(Mn)} is dense in the interval 

liminf/(Mn), limsup/(Mn) . An example of such a function f(n) is the func-
- n n J 

tion a(n)/n studied in [4], where for a positive integer n the number a(n) is the 
average order of the elements in the cyclic group of order n (see [4; Lemma 1]). 
Thus, the set {a(Mn)/Mn} is dense in [0,1], which says that every number 
between zero and one can be approximated arbitrarily well by ratios of the av­
erage multiplicative order of elements in some finite field of characteristic two to 
the number of invertible elements in such field. We give no further details and 
proceed to the proof of our Theorem. 

The proof of Theorem 

Throughout this paper, we use cx,c2,... for absolute constants which are 
computable. For positive integers k < I with k and I coprime we write 7r(x, A:, I) 
for the number of prime numbers p < x with p = k (mod I). We start with a 
couple of lemmas. 

LEMMA 1. Let V be the set of all prime numbers p which fulfill the following 
conditions: 

1) p = 7 (mod 8) ; 
2) the smallest prime factor of (p — l)/2 is larger than log2p; 
3) p — 1 is squarefree. 

For any positive real number x let V(x) be the cardinality of the set ? f l ( l , a ; ) . 
Then, the estimate 

log^k^x 

holds for large values of the positive real number x. 
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P r o o f . We let x be large, set y := log2 x, and let R :=- 8 • Yl r > where the 
3<r<y 

index r above is allowed to run only through odd prime numbers. For every odd 
prime number r < y, we let ar be some integer in the interval [2, r — 1]. Then, 
a prime number p < x is counted in V(x) if p = 7 (mod 8), p — 1 is squarefree, 
and there exists a vector a := ( a r ) 3 < r < so that p = ar (mod r) holds for all 
odd prime r < y. Fix such a vector a := ( t t r ) 3 < r < . By the Chinese remainder 
lemma, if p is a prime so that p — 1 = 7 (mod 8) and p = ar (mod r) holds 
for each odd prime r < y, then there exists a number b depending on a so that 
p = b (mod i i ) . Thus, with the fixed vector a, the number of such primes is 
7r(x,b, R). The inequality 

R = 8 J J r = exp(( l + o(l))y) < exp(2y) = log2 x (6) 

3<r<2/ 

holds for large values of x, and now the Siegel-Walfitz theorem (see [12; p. 255]) 
tells us that there exists an absolute constant c1 so that 

*{x,b,R) = ^ + 0( X ) . (7) 
<t>[R) V e x p ^ V l o g x ) / 

Since there are X[(r — 2) choices for the vector a, it follows that up to x, 
3<r<y 

there are at least 

* ( * ) M M - , , , . . - , ( 8 ) 

3 < r < A r _ 1 ^ \ e x p ( c l X / I o ^ ) y 

prime numbers p = 7 (mod 8) so that the smallest prime factor of (p — l)/2 is 
at least as large as log2 x > log2 p. The main term in (8) is 

» * . TT ( i - l ) 
l°zx

 3 i i v r - i ; 

exp(-log 2 j / + 0 ( l ) ) 
logж 

log x log y log X log3 a; ' 
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while the erгoг teгm in (8) is 

Rx xlog 2x x 

exp(c lX/logx) exp(c lX/logx) exp(c lV

/logx - 21og2x) 

"fr-f—)• 
Vlogxlog3x/ 

From (8), (9), and (10), it follows that there are prime numbers p 
logxlog3x 

p < x with p = 7 (mod 8) so that the smallest prime factor of (p — l)/2 is at 
least y. Let us show now that most of these have the property that p — 1 is 
squarefree. Clearly, p — 1 is not a multiple of 4. If there exists a prime number 
q so that q2 \ p—1, it follows that q > y. Fix such a prime number q in the 
interval ( y ^ 1 / 2 ) . Since p = 1 (mod q2), it follows that there can be at most 
7r(x, 1, q2) such prime numbers p < x. When q < x1/4, we use the fact that 

2x 

^ • ^ ' ^ t f H o g W ) ( 1 2 ) 

(see [7]), while when x1/4 < q < x1/2 we use the trivial fact that 

TT(X, l,g2) < 
-2 + -<ï- (13) 

L9 J 9' 
From (12) and (13), we get that the number of prime numbers p < x so that 
p — 1 is divisible with the square of some prime number q > y is 

< V ., *, M>+ "C 4 = : 5 i + 52- (I4) 
^T^i/4 ^ 2 logC^/q2 r f / 4 ? 

Since when g < x1/4 we have x/g2 > x1/2 , it follows that 

~ _ ^ x x ^ 1 
1 ~ 2-< d>(r/2^ lnpfwr/2^ ^ T~~~~~ 2 ^ ~~~ 

tf<g<xi/^(92)1°g(x/92) l°&X^q2 

< y log y log x log x log2 x log3 x 

~~ Vlogxlog3xy' 
while 

q — S^ — X — x 3 ' 4 — ( x \ 
2 1/4 92 x1/4logx logx \ logxlog 3 x/ 

(15) 

(16) 
q>* 

Comparing (14)~(16) with (11), we get the assertion of Lemma 1. • 
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LEMMA 2. Let m be a squarefree number. Then, 

£Y«l0g>. (17) 
d\m 

P r o o f . Throughout this proof, we use the fact that both estimates a(n) <̂C 
n log2 n and u(n) <^L logn hold. Since m is squarefree, it follows that the formula 

logd = ]Tlogp (18) 
P\d 

holds for all divisors d of m. Thus, we may use (18) in (17) and change the 
order of summation to get that 

E logd = r ^ ү > -QgP = y> logP y> 1 = v ^ logp <r{m/p) 
d 2^2^ d 2^ p 2^ d ^ 

d\m d\m p\d p\m Jl~~ x~ ~'-~ 

< l o g 2 m ^ - - ^ . 

,, , - , p m/p 
d\m/p p\m 

P 
p\m 

To estimate the remaining sum in (19), let px < p2 < ... be the increasing 
sequence of all prime numbers. Then, since the function logx/x is decreasing 
for x > 3, it follows that 

£ ^ < " X f *fL « log(c(m) + 1) « log2 m, (20) 
p\m

 P i=l Pi 

and now the assertion of Lemma 2 follows from (19) and (20). • 

P r o o f of T h e o r e m . We shall prove only part i) of the theorem because 
the proof of part ii) is entirely similar. 

We let x be a large positive real number. We write z := expf (logx)1063* J. 

Let P be the set of all prime numbers in V H (x, z), and for a number t € (x, z) 
we write P(t) for the cardinality of the set V D (x,t). We first claim that the 
estimate 

S:=J2±>2\og4x (21) 
pep 

holds for large values of x. Indeed, by partial integration, we have 

z 

PЄP 
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Clearly, 

t ~ t log*' 

therefore the first term in (22) above is 0 ( 1 / logx). By Lemma 1, it follows that 
for large values of t, the inequality 

3t 
P{t) > logtlog2t 

holds. Thus, if x is large, then 

z 

s > 3 / rr^rr—: + °W = 3 los3 AlZ + °M J tlogt\og2t
 &3 '*-* 

(23) 
= 3(log3 z - log3 x) + o(l) = 3 log2 ((logx)10^ * j - 3 log3 x + o(l) 

= 3 log(log3 x log2 x) - 3 log3 x + o(l) = 3 log4 x + o(l) > 2 log4 x . 

For every odd positive integer m let t(m) be the order of apparition of m in 
the sequence (Mn)n. That is, t(m) is the multiplicative order of 2 modulo m. 
Write N:= f[ p , and T := t(1V). We notice that if p G P , then t(p) | (p-1)/2. 

PGP 

Indeed, by Fermat's little theorem, we certainly have that t(p) \ p — 1. Thus, 
p | 2P"1 - 1, therefore p \ (2^-^'2 - l) (2Sp-1^2 + l ) . It is now easy to see that 
p cannot divide the factor 2^p~1^2 + 1, for if this were so, then, since p + 1 is a 
multiple of 4, it would follow that ( 2 ( P + 1 ) / 4 ) 2 = - 2 (mod p), meaning that - 2 
is a quadratic residue modulo p, which is not possible because p = 7 (mod 8). 
Thus, t(p) | (p - l ) /2 , and therefore 

T | l cm[(p- l ) /2 , p G P ] . 

In particular, we learn that T is squarefree and that its smallest prime factor is 
> y := log2 x. Write T = qx . q2 . • • g., where / = o;(T), and qx < q2 < " ' < Qi 
are prime numbers with qx > y. 

We write (njj^j for the finite sequence given by ni = Yl Qj • Clearly, 
j<i 

ni - ^i» n;+i = ni^-fi h o l d s f o r a l i i = 1,2,..., / - l , and nt=T. Let 

Si''= M^ f ° r i = 1 ' " - - / - (2 4) 
n» 

Since n i | n i + 1 , it follows that s{ < si+1 holds for all i = 1 , . . . , Z- l . We first 
give a lower bound on st. Since nx = T, it follows that Mn. is divisible by the 
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number N. In particular, 

^П(' )-p(EЧҶ))-ЧSř+ 0(S?)) 
(25) 

5 t _ 
peP ' í" x peP ' x / \ p G P x x pGP 

> exp(2 log4 x + o(l)) > exp(log4 x) = log3 x , 

with the last inequalities above following from (21). 
We now show that there exists a constant c2 so that the inequality 

^ < l + c 2 . | ^ (26) 
5- l0g 2 X 

holds for all % = 0,1, . . . , /—1, where we set s0 := 1. Let us assume that we 
have proved (26) for the moment, and let us see how the combination of (25) 
with (26) proves part i) of the theorem. Choose any number a > 1, and let 
e > 0 be arbitrarily small. Choose x sufficiently large so that both inequalities 

1O£ X 
log3 x > a + 1 and c2 • r--^— < m i n { a - l , e/a} (27) 

log2 x 

hold. Inequalities (25), (26) and (27) show that sx < a and st > a. Thus, there 
must exist an index k < I so that sk < a, but sk+l > a. However, by (26) and 
(27), we know that 

(. lor2 

a < s эk+i 
< s * ( i + c * - ï t £ ) < a ( i + í ) = a + є ' 

Thus, the interval (a, a + e ) contains a number of the form a(Mn)/Mn for 

some n. Since a > 1 and e > 0 were arbitrary, part i) of Theorem follows. 

It remains to prove (26). For i = 0, ...,/-l, we write M[ = Mn. JMn. 

with the convention that nQ = 1 (and so, Mno = 1). Since the inequalities 

a(ab) < a(a)a(b) and cr(c)/c < c/(j)(c) hold for all positive integers a, b and c, 

it follows that 

_ <MmJ ^ <r(Mni)a(M[) _ a(M[) M[ 

therefore 

, = ni+i' < _ : "»' v Li = s . v l l < s  
i+1 M„ ~ M„Mí { Af/ ^ ( M / ) 

ni4-i ni ^ z * v i / 

To estimate (28), we argue as follows. Let p be a prime divisor of M[. It follows 
that p | 2U i 9 i + 1 — 1 but p\2ni — 1. It then follows that there exists a divisor d 
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of ni so that t(p) = qi+ld. Since p is a primitive divisor for Mt, x, it follows, 
from the well-known properties of the primitive divisors of Lucas sequences, 
that p = 1 (mod qi+1d). We now fix d, and let j(d) be the number of primes p 
having t(p) = dqi+1. Clearly, 

2dQi+1 > 2dQi+1 _ 1 > (2dqi+1 + iyW , 

therefore we certainly have j(d) < dqi+1. Thus, 

E ^ ^ E £«*-£---• <29> 
t(p)=dqi+1

P l < l 9 - + - f c = l * " - < + ! 
Hence, 

Iogdgť. + 1 
-—-' v — 1 — -—-* —-—' o — 1 --—' do 

p\M[ ľ d\щ t(p)=dqi+1

 ľ d\щ Hг+ľ 

_ ìoëЯi+1 -г-лl 1 у ^ l o g c l 

**+- dln, -•+! d|nť (30) 

loggj+i . g(n ź ) logj n,: 

? i + l Ui ? i + l 

^ ^ ( l 0 g qi+l + l 0 g 2 n i ) l Q g 2 Ui > 
* i + l 

where in the above estimates we used the fact that a(m)/m <C log2 m together 
with Lemma 2. However, from the way we arranged our numbers, we have that 
n

i — q\'"qi
 c a n t>e at most the product of all the prime numbers up to qi+1 

(in fact, it is smaller than this product because qx> y). Thus, for x large, we 
get that logr^ < ( l + o ( l ) ) g i + 1 < 2g i + 1 , therefore log 2n- < l o g g i + 1 . And so, 
we have shown that 

E^«^- <"> 
p\M! P * + ! 

The function log2 t/t is decreasing for large values of t, and since qi+1 > q1 > y 
holds for all i = 0 , . . . , I— 1, it follows that 

£ 1 <___to_z, (32) 
——* p — 1 y log9 x 

p\M! ^ i/ &2 

Thus, with (28) and (32), we have 

!i±i <exJ0(
1^-)) =i + o(^.), 

si \ \ l o g 2
x / / \logx J 

which proves (26) and completes the proof of Theorem. • 

465 



FLORIAN LUCA 

Acknowledgements 

I would like to thank both Stefan Porubsky and the anonymous referee for 
useful suggestions. 

REFERENCES 

[1] ERDOS, P . : On the sum £ d'1, Israel J. Math. 9 (1971), 43-48. 
d | 2 " - l 

[2] ERDOS, P.—KISS, P .—POMERANCE, C : On prime divisors of Mersenne numbers, 
Acta Arith. 57 (1991), 267-281. 

[3] EVEREST, G. R.—SHPARLINSKI, I . : Divisor sums of generalized exponential polyno­
mials, Canad. Math . Bull. 39 (1996), 35-46. 

[4] von zur GATHEN, J .—KNOPFMACHER, A.—LUCA, F .—LUCHT, L.—SHPAR­
LINSKI, I . : Average order in cyclic groups, J. Theor. Nombres Bordeaux (To appear) . 

[5] LUCA, F . : Some mean values related to average multiplicative orders of elements in finite 
fields, Ramanujan J. (To appear) . 

[6] LUCA, F.—SHPARLINSKI, I . : Arithmetical functions with linear recurrence sequences, 
Preprint, 2002. 

[7] M O N T G O M E R Y , H. L.—VAUGHAN, R. C : The large sieve, Mathemat ika 20 (1973) 
119-134. 

[8] P O M E R A N C E , C : On primitive divisors of Mersenne numbers, Acta Arith. 4 6 (1986) 
355-367. 

[9] SHPARLINSKI, I . : The number of prime divisors of recurrence sequences, Mat . Zametki 
38 (1985), 29-34. (Russian) 

[10] SHPARLINSKI, I . : The number of different prime divisors of recurrent sequences, Mat 
Zametki 4 2 (1987), 494-507. (Russian) 

[11] SHPARLINSKI, I . : Some arithmetic properties of recurrence sequences, Mat . Zametki 
4 7 (1990), 124-131 (Russian). [Translation: Math. Notes 47 (1990), 612-617]. 

[12] TENENBAUM, G. : Introduction to Analytic and Probabilistic Number Theory (Transl 
from the 2nd French ed. by C B. Thomas) . Cambridge Stud. Adv. Math. 46, Cambridge 
University Press, Cambridge, 1995. 

Received February 19, 2003 Mathematical Institute, UNAM 
Ap. Postál 61-3 (Xangari), CP 58 089 
Morelia, Michoacán 
MÉXICO 

E-mail: fluca@matmor.unam.mx 

466 


		webmaster@dml.cz
	2012-08-01T16:55:03+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




