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THE ORIENTABILITY OF THE DIRECT PRODUCT
' OF GRAPHS

EVA GEDEONOVA

The covering graph C(P) of a partially ordered set P is the graph whose vertices
are the elements of P and whose edges are those pairs {a, b}, a, b € P, for which a
covers b or b covers a. The covering graph C(P) of a partially ordered set P with
some properties determines certain further properties of P. In some cases if C(P) is
a direct product of graphs G,, G,, then the partially ordered set P is a direct
product of partially ordered sets P,, P, and C(P,)=G;, i=1, 2. The following
example shows a case in which this assertion does not hold. The covering graph of
the partially ordered set P of Fig. 1 is the direct product of two twoelemented

graphs but the partially ordered set is not a direct product of two twoelemented
partially ordered sets.

Fig. 1

The direct product G, X G, of the graphs G,=(V,, H,), G.=(V>, H,) is the
graph whose vertices are the elements of V; X V, and whose edges are those pairs
{(ai, b)), (az, b,)} aie V4, bie V,, i =1, 2 satisfying either a, =a; and {b,, b,} € H,
or {ai, a;} € H, and b,=b,. By a graph isomorphism of graphs G =(V, H) and
G'=(V’, H') we mean a bijection f: V— V" of vertex sets such that {a, b} € H iff
{f(a), f(b)} e H' for all a, b € V. For vertices a and b of a graph G a path from a
to b of length n is a sequence a=c,, ¢y, ..., c.=b of vertices of G such that
succesive pairs in this sequence are joined by an edge of G. Let d(a, b) denote the
distance from a to b, i.e. the length of a shortest path from a to b. A graph is
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connected if for all its vertices a, b there holds that a, b are connected by a path.
Note that every graph isomorphism f of connected graphs is a distance isomorph-
ism (i.e. d(a, b) = d(f(a), f(b))). A partially ordered set P is locally finite if for
every a, b € P, a<b there is a finite maximal chain between a and b. If a locally
finite partially ordered set P has the least element and all maximal chains in P
between fixed endpoints have the same order, then we say that P is graded. In this
case we define the height A#(a) of an element of P as the order of a maximal chain
from the least element of P to a, minus one. For elements a and b, a>b, of
a partially ordered set P we write at>b or b <a (a covers b or b is covered by a) if
a=c>b implies a = ¢ for every element c e P.

In the whole paper G,, G, are graphs, P is a partially ordered set and if
f: G, X G,— C(P) is a graph isomorphism, then we denote elements of P by
f(a, b), where a e G,, b e G,. This is correct since f is a bijection. Note that if
d(x,y)<®, x,y€GiXG,, then d(x, y) = d(f(x), f(y)).

Theorem 1. Let f: G, X G,— C(P) be a graph isomorphism. The there exist
partially ordered sets P,, P, such that G; is graph isomorphic to C(P,), i=1, 2.
Proof. Let a,e G, boe G,, If

P.={f(a, bo),ae G\}, P.={f(ao, b), beG.},

then P.c P, i=1, 2, hence P, are partially ordered and it is easy to see that G; and
C(P;) are graph isomorphic.

Lemma 1. (Kotzig [2]). Let a graph G be a direct product of the graphs G,, G,
let a, be Gy, c,de G.. Then

d((a, c), (b,d))=d(a, b)+d(c, d).

Definition 1. Let f: G, X G,— C(P) be a graph isomorphism. We say that f has
the property O if for every a,, a,€ G,, by, b,e G;, d(a;, a;) = d(b,, by)=1,

f(a,, b))<f(az, b,\) implies f(a,, b.)<f(a, b.)
and
f(ai, b)) <f(a, b;) implies f(a., b)) <f(as, b,).

Lemma 2. Every graph isomorphism f: G, X G,— C(L), where L is a lattice,
has the property .
Proof. d(a\, a;) = d(b,, b:)=1 and f(a,, b,) < f(a:, b,). Since by Lemma 1

d(f(aZ, bl)’ f(aZ, bZ)) = 1, d(f(aZ, b2)7 f(al, bZ))= 1a d(f(al, bZ), f(al’ bl))= 1 and
L is a lattice, there must be f(a,, b,) < f(a,, b>).
In the same way the second implication of Definition 1 can be proved.

Lemma 3. Every graph isomorphism f: G, x G.— C(P), where P is a graded
partially ordered set, has the property OJ.
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Proof Let d(ai, a;)=d(b,, b:)=1, a1 a,e Gy, b,, b,€ G, and let

f(a, b)) <f(a, by). (1)
Since d(f(ai, b.), f(a , b,))=1 there is either
f(a,, b;)<f(as, b)) or f(az, b)<f(a, b). 2)
Let us suppose that
f(az, b2)<f(ay, b2). (3)

Since d(f(ai, by), f(ai, b:)) = d(f(as, b1), f(az, b2)) =1 and P is a partially ordered
set, it is easy to check that

f(ai, b)) <f(ay, b,) and f(as, by)<f(azb,). 4)
From (3) and (4) it follows that
h(f(a, b)) = h(f(az, b2)) and h(f(az, bi))=h(f(ai, b,)) )

Let the least element of the partially ordered set P be f(ao, bo). Since h(f(a, b))
= d(f(a, b), f(ao, bo)) = d((a, b), (ao, by)), by Lemma 1 and by (5) we have

d(al, a())+ d(b], b0)= d(az, a0)+ d(bz, bo),
d(az, a0)+ d(b], b0)= d(al, ao)+ d(bz, bo)

From these equalities it follows that
d(a,, ao) - d(a:, a0) = d(az, a0) — d(a;, ao).
Hence we have
d(ay, ag)=d(a,, ao). (6)

Moreover, on the basis of d(a., a;)=1 we have either f(a,, bo) < f(a., bo) or
f(az, bo) < f(ai, bo). If f(ai, be) < f(as, bo), then by Lemma 1 d(a,, ao)
= h(f(ay bo)) = h(f(a\, bo))+ 1 = d(a, ao)+ 1, which contradicts (6). Analog-
ously f(az, by) < f(ai, bo) leads to contradiction, too.
Since supposition (3) does not hold, from (2) there follows the assertion. The
second implication of Definition 1 can be proved in the same way.

Lemma 4. Let a graph isomorphism f: G, X G,— C(P) have the property .
Then for any a,, a,€ Gy, b, b,€ G,, d(a,, a;) <, d(b,, b;) <

f(a,, b))<4f(as, b)) implies f(a., b:)<f(a,, b,)
and
f(a,, b)<4f(ai, b,) implies f(az, b1)<f(a,, b,).

Proof. We prove the first implication. If d(bi, b2)=1, then the assertion
follows by Definition 1, because f(ai, b,) < f(a., b,) implies d(a,, a,) = 1. For the
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second part of the induction we assume that the assertion is true for d(b:, b2) = k.
If d(b,, b,)=k+ 1, then there exists a path

b1=C(), Cily ovey Ck+1=b2, C,'EGz, O<i<k+1.

Since d(b,, c.)=k, by the induction hypothesis f(a;, &) < f(az, cx). But
d(cx, ck+1) = d(ai, a;)=1 and the graph isomorphism f has the property OJ, which
yields f(a,, b,) < f(az, b,).

The second statement of Lemma 4 can be proved analogosly.

Lemma 5. Let a graph isomorphism f: G, X G,— C(P) have the property [
Let

f(al, bl) Qf(az, b2)<l...<]f(ak_1, bk—l) <1f(ak_1, bk), (7)
k=3 be a chain in the partially ordered set P. Then in P there exists a chain
'f(a;, b]) =<¢,4...<4]¢ =f(ak_1, bk)

such that ¢, = f(a,, d) for some d € G,. ,

Proof. Let k=3. In the case a, = a, there is nothing to prove. If a, # a,, then
f(a,, b)) < f(a,, b,) implies b, = b,. Applying now the preceding Lemma we infer
that

f(ai, b))<f(a,, b,) implies f(a,, bs) <f(a-, bs)
“nd

f(az, b;)qf(az, b3) implies f(al, bz)Qf(al, bg),

which means

f(ay, b)) =f(ay, b:)<Af(ai, bs)<Af(a, bs).

Assume, as usual, for the second part of the induction that the statement of the
Lemma is true for k =n — 1. If k = n, then the last three elements of the chain (7)
are '

fan-, bn—Z) qf(an—l, bn-l) <f(an—l, bn).

If a,.,=a,_,, then by the induction hypothesis there exists a chain with the
required property. If a,-,# a,_;, then b,_,=b,_, and analogously as in the first
part of this proof it is easy to show that

f(an— 2, bn-z)zf(ﬂn—z, bn—l) 4f(an—z, bn)qf(an—l, bn)-

The chain f(a,, b1) < ... <D f(@a-2, ba-2) < f(a.-2, b.) is of the length n — 2. Using
the induction hypothesis, we can find a chain

f(an, b)=c1<de¢,<4...<cq- =f(anA2, bn)qf(an——l, b,)
such that ¢, = f(a,, d) and the induction is completed.
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Lemma 6. Let a graph isomorphism f: G, X G,— C(P) have the property O. If
f(ai, by)<(az, b2)A...<QAf(an-1, ba-1) Af(a., b)) =f(ai, b,), ¥

n>1, then a;=a, for all i, 1<i<n.

Proof. We observe that a;# a;,, for all i, 1 <i<n — 1 implies b; = b;., for all i.
This means that b,=b,, which is impossible. We conclude that there exists j,
1<j<n—1 such that

a;=Qajs1. (9)

Clearly, the statement of the Lemma is true for n = 3. Assume for the second part
of the induction that the assertion is true for k<n. If j=n—1 (see(9)), then
a,-=a,=a,. The chain

f(a, b)) <f(az, b2)<...<f(@n-1, bazr)=f(ai, ba-y)

has n —1 elements and by the induction hypothesis a;=a, for all i, I<i<n-—1.
Let us suppose that

a=a;., j<n-—1.
We divide the chain (8) into two parts.
f(ai, b)) Q... Qf(a;, b)) Af (@41, bj1) =f(a;, bjsi), (10)
f(@j42, bjs2)Q...<f(an, ba)=f(as, b.). (11)

Applying now the preceding Lemma on the chain (10) we obtain the chain (12)
with j+ 1 members

f(ai, b)) <Af(a, d)Q...<f(a;, bj+1).- (12)
The chain . .
f(ai, d)<...<4f(a;, bj1))Af(aj42, bji2)...<f(a., b.)=f(a, b,), (13)

which we obtain from (12) by omitting the least element and from (11), has n — 1
elements. Using the induction hypothesis we have g,=a;=a;,.=...=a,_,. The
chain (10) has j+1 elements (j+1<n) and g;=a:, hence by the inductin
hypothesis a,=a,=as...=a;_..

Lemma 7. Let a graph isomorphism f G, X G,— C(P) have the property 0O, let
P have a locally finite length, let f(a, b)<f(c, d). Then there exist elements

20y 215 --+5 L € Gz, Zj+1y <3 Zn € G,
such that
f(a, b)=f(a, z0)<]f(a, 2:)Q...<f(a, z) Af(zj+1, d)<-..<f(z., d)=f(c, d).
75



Pr of We pro ed by induction through n —d(f(a, b) f(c, d)). If n=1, the

on s obvious For the second part of the induction a sume th tt e statem nt

of L emma holds for d(f(a, b), f(c,d))=n—1.1f d(f(a, b), f(c, d)) n, then
th re exists a chain

f(a, b) = f(xo, yo) Uf(x1, y1) ... (Xa, ya) = f(c, d) (14)

1. If a=x,, then using the induction hypothesis we infer that there exist
elements 2z, ..., 3, € Gz, Zj+1, ..., Zo 1€ G, such that

fla,y)=f(a, 20)<Q...<f(a, ) <f(z,+1, d)<D...<df(z. 1, d)=f(c, d).

If we denote the elements of this chain by c, ..., ¢. 1, then {f(a, b), ¢, ..., c. 1} is
a chain with the required property.

2. 1f a¥x, and X, F Xos1 for all i, 0=si<
<n-—1, then y,=y,,, forall i,0<i<n—1, hence b=y,=y, = ...—d. If we
denote b as z, and x;'as z, for all i, 1 <i<n, then the chain (14) has the required
property.

If a# x, and there exists i, 1 <i<n —1 such that x, = x,,,, then we divide the
chain (14) into the chains

f(a, b)=f(x0, yo) Q... Af(x:, y:) <f(x., yis1) (15)
f(xivz, yie2) Q. Qf(xa, ya) =flc, d) (16)

By Lemma 5 there exists a chain
f(a, b)<f(a, )<]...<f(xi, yi+1), (17)

which has the length i + 1. The elements of the chain (16) and (17) build a chain of
the length n between f(a, b) and f(c, d) and as in the part 1 of this proof we can
find a chain between f(a, b), f(c, d) with the required property.

Theorem 2. ([1]). Let (M, <) be a quasiordered set. If ©,, @, are equivalences
on the set M such that

(i) ©.nO,=w, where w is the least equivalence on M,

(ii) ©,u0O,=1, where 1 is the greatest equivalence on M,

(iii) ©,00,=0,,0,.

(iv) ¢,0d,, c:04d,, d,Od,, i#], ci<c, implies di<d,,
then (M, <) is isomorphic to the direct product of the quasiordered sets M/ ©, and
M/0O,. ([a\]O,<[a,]0O, iff by<b, for some b;e M, bBa;, i=1,2)

Corollary 1. If (M, <) is a partially ordered set or a lattice and ©,, @, are
equivalences on the set M with the properties (i), (ii), (iii), (iv) of Theorem 2, then
M/®,, M/®, are partially ordered sets, respectively Iattices.

Theorem 3. Let a graph isomorphism f: G, X G,— C(P) have the property O,
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let the partially ordered set P have a locally finite length. Then P is isomorphic to
the direct product of the partially ordered sets P,, P, such that C(P,) is graph
isomorphic to G;, i=1, 2.

Proof. Clearly, the relations

0,={(f(a, b), f(a, d)), ae G\, b, de G2},
0.={(f(a, b), f(c, b)), a, ce G,, be G}
are equivalence relations on P. It is easy to see that ©,, @, have the properties (i),
(i), (ii).
Let ¢y, ¢;, dy, d.€ P, cy=f(a. b), c.=f(c, d) and f(a, b) < f(c, d). We suppose
also ¢,0,d,, ¢,0,d, and d,0,d,. Then d,=f(a, x), d.=f(c, x) for some x G..
In the case a = ¢ we have d, =d,. If a# ¢, then f(a, b)<f(c, d) and by Lemma 7

there exist elements zo, ...,, 7, € G2, Z,+1, ..., Z» € G; such that
f(a, b)=f(a, 20)<f(a, 2.)Q...<f(a, ) Af(z;+1, d) Q... <f(z., d) =f(c, d).

If z,.1¥a, then z,=d and f(a, d)<f(c, d)

If z,..=a, then also f(a, d)<f(c, d).
Since P has a locally finite length, there exists a finite maximal chain connecting
f(a, d) and f(c, d). By Lemma 6 the chain has the following form

f(a? d)=f(x0’ d)qf(xl’ d)q-"qf(xn’ d)=f(C, d)
Since the graph isomorphism has the property O, we have

fla, x)=f(x0, x)f(x, x)Q...<]f(x., x)=f(c, x)

(see Lemma 4), hence d, <d.,.
Analogously the second condition of (iv) of Theorem 2 can be proved.

1f we denote P/ @, as P;, then from Theorem 2 and Corollary 1 it follows that P is

isomorphic to P, X P,, P,, P, are partially ordered sets.
Let a,e G,, boe G, be some fixed elements. We show that the mapping

g: C(P,)— C({f(a, bo), ae G,})

defined by g([f(a, b)]®,) = f(a, bo) is a graph isomorphism. If [f(a, ¢)]©,<
Q[f(b, d)]@,, then there exist elements x, y € G, such that f(a, x)<f(b, y) (see
Theorem 2) But a# b, hence x=y and d(a, b)=1. From f(a, x)<f(b, x) and
from the property [J of the graph isomorphism f it follows that f(a, bo) <f(b, bo)
(see Lemma 4).

If f(a, bo)<af(b, bo), then [f(a, bo)]O<[f(b, bo)]O,. It is easy to see that
C({f(a, bo), a € G,}) is graph isomorphic to G,. Hence C(P/®,) is graph isomor-
phic to G..

Analogously C(P/©®,) and G, are graph isomorphic.
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Note that the mapping g is also an isomdrphism of partially ordered sets P, and
{f(a, b()), ae Gl} .

Corollary 2. If the supposition of the preceding Theorem are fulfilled and
aoe Gy, boe G,, then

Ai={f(a, bo),ae G}, A.={f(a,b),beGs)
are partially ordered sets and A, are isomorphic to P;.

Theorem 4. If f: G, X G,— C(P) is a graph isomorphism and P is a graded
partially ordered set (P is a lattice of a locally finite length), then there exist graded
partially ordered sets P., P, (lattices P,, P, of a locally finite length) such that P is
isomorphic to P, X P, and G, is graph isomorphic to C(P,), i=1, 2.

Proof. The statement of the Theorem is an easy consequence of Theorem 3,
Corollary 1, Lemma 3, respectively Lemma 2.

Theorem 5. Let a lattice H be a direct product of lattices A, A, and let there
exist a graph isomorphism f: C(H)— C(L), where L is a lattice of a locally finite
length. Then L is a direct product of lattices B,, B, such C(A,) is graph isomorphic
to C(B), i=1,2.

Proof. Note that C(H)= C(A,) X C(A,) and apply the preceding Theorem.
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Ob OPUEHTUPOBAHUWMU TMPAMOIO MPOU3BENEHUSA I'PAPOB
EBa 'egeonoBa

Pe3ome

pad, BepUIMHbI KOTOPOTO SIBJSIOTCA 3JIEMEHTAMHM YaCTHYHO YMNOPSAJOYEHHOTO MHOXeCTBa P M
pebpa cytb Te mapbl {a,b}, a,beP, rae a nokpbiBaeT b unu b NOKPLIBAET 4, Ha3bIBAETCHA
nokpbiBarouM rpadom C(P) 4acTHYHO YNOPSiOYEHHQro MHOXecTBa P. ITycthb P siBnseTcs pelueTKoH
JIOKaNbHO KOHEYHOH [JIUHBbI, WiK P sBiseTCAd YaCTHYHO YMOPSHOYEHHbIM MHOXECTBOM YHOBJIET-
BOPSIIOLIMM ycioBuIO JIENeKWHNa, TOrAa BEpHO ciepyioie ypreepxpaenue: Ecim G,, G, rpadbl
if: G, X G,— C(P) usoMopcusm rpacos, To P = P, X P, P,, P, 4BNsIOTCS YaCTHYHO YNOPSAOYEHHBIMH
MHOXecTBaMu ¥ rpadsl G; u C(P) cyts u3oMopdHsl, i =1, 2.
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