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Math. Slovaca 31,1981, No. 1,71—78 

THE ORIENTABILITY OF THE DIRECT PRODUCT 
OF GRAPHS 

EVA GEDEONOVA 

The covering graph C(P) of a partially ordered set P is the graph whose vertices 
are the elements of P and whose edges are those pairs {a, b}, a, b e P, for which a 
covers b or b covers a. The covering graph C(P) of a partially ordered set P with 
some properties determines certain further properties of P. In some cases if C(P) is 
a direct product of graphs Gu G2, then the partially ordered set P is a direct 
product of partially ordered sets Pu P2 and C(Pf) = G,, 1 = 1,2. The following 
example shows a case in which this assertion does not hold. The covering graph of 
the partially ordered set P of Fig. 1 is the direct product of two twoelemented 
graphs but the partially ordered set is not a direct product of two twoelemented 
partially ordered sets. 

Fig. 1 

The direct product GxxG2 of the graphs GX = (VUHX), G2=(V2, H2) is the 
graph whose vertices are the elements of Vi x V2 and whose edges are those pairs 
{(au bi), (a2, b2)} a< e Vu bt e V2, i = 1, 2 satisfying either ax = a2 and {bu b2} e H2 

or {au a2} e Hi and bx = b2. By a graph isomorphism of graphs G = (V, H) and 
G' = ( V , H') we mean a bijection /: V-> V of vertex sets such that {a, b} e H iff 
{f(a)y f(b)} e H' for all a,beV. For vertices a and b of a graph G a path from a 
to b of length n is a sequence a = c0, cu ..., c„ = 6 of vertices of G such that 
succesive pairs in this sequence are joined by an edge of G. Let d(a, b) denote the 
distance from a to b, i.e. the length of a shortest path from a to b. A graph is 
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connected if for all its vertices a, b there holds that a, b are connected by a path. 
Note that every graph isomorphism / of connected graphs is a distance isomorph­
ism (i.e. d(a, b) = d(f(a), f(b))). A partially ordered set P is locally finite if for 
every a, b eP, a<b there is a finite maximal chain between a and b. If a locally 
finite partially ordered set P has the least element and all maximal chains in P 
between fixed endpoints have the same order, then we say that P is graded. In this 
case we define the height h(a) of an element of P as the order of a maximal chain 
from the least element of P to a, minus one. For elements a and b, a>b, of 
a partially ordered set P we write at> b or b <3a (a covers b or b is covered by a) if 
a^c>b implies a = c for every element ceP. 

In the whole paper Gx, G2 are graphs, P is a partially ordered set and if 
/ : Gi x G2—>C(P) is a graph isomorphism, then we denote elements of P by 
f(a, b), where a e Gu b e G2. This is correct since / is a bijection. Note that if 
d(x,y)<™, x,yeGxxG2, then d(x,y) = d(f(x),f(y)). 

Theorem 1. Let f: Gx x G2-+C(P) be a graph isomorphism. The there exist 
partially ordered sets Pu P2 such that G, is graph isomorphic to C(P,), i = 1, 2. 

Proof. Let a0eGx, b0eG2, If 

Pi = {f(a, b0), a e Gx}, P2 = {f(a0, b), beG2}, 

then Pi cz P, i = 1, 2, hence P, are partially ordered and it is easy to see that G, and 
C(Pi) are graph isomorphic. 

Lemma 1. (Kotzig [2]). Let a graph G be a direct product of the graphs Gu G2, 
let a, be Gu c, de G2. Then 

d((a, c), (b, d)) = d(a, b) + d(c, d). 

Definition 1. Let f: Gx x G2—> C(P) be a graph isomorphism. We say that f has 
the property D if for every a,, a2 e Gx, bx, b2 e G2, d(ai, a2) = d(bi, b2) = 1, 

f(ax, bx)<f(a2, bx) implies f(au b2)<f(a2, b2) 
and 

f(ax, bx)<\f(ax, b2) implies f(a2, bx)<f(a2, b2). 

Lemma 2. Every graph isomorphism f: Gx x G2^>C(L), where L is a lattice, 
has the property D. 

Proof. d(ax, a2) = d(bx, b2)= 1 and f(ax, bx) <l f(a2, bx). Since by Lemma 1 
d(f(a2, bx), f(a2, b2))=\, d(f(a2, b2), f(au b2))=\, d(f(au b2), f(au bx))=l and 
L is a lattice, there must be f(ax, b2) <3 f(a2, b2). 

In the same way the second implication of Definition 1 can be proved. 

Lemma 3. Every graph isomorphism f: Gx x G2^>C(P), where P is a graded 
partially ordered set, has the property D. 
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Proof Let d(au a2) = d(bu b2)=\, ax a2eGu bu b2eG2 and let 

f(aubx)<f(a2,bx). (1) 

Since d(f(ax, b2), f(a , b2))= 1 there is either 

f(au b2)<f(a2, b2) or f(a2, b2)<f(au b2). (2) 

Let us suppose that 

f(a2,b2)<f(aub2). (3) 

Since d(f(au bx),f(au b2)) = d(f(a2, bx),f(a2, b2))=\ and P is a partially ordered 
set, it is easy to check that 

f(au bx)<f(au b2) and f(a2, b2)<f(a2bx). (4) 

From (3) and (4) it follows that 

h(f(ax, bx)) = h(f(a2, b2)) and h(f(a2, bx)) = h(f(au b2)) (5) 

Let the least element of the partially ordered set P be f(a0, b0). Since h(f(a, b)) 
= d(f(a, b),f(a0, b0)) = d((a, b), (a0, b0)), by Lemma 1 and by (5) we have 

d(ax, a0) + d(bu b0) = d(a2, a0) + d(b2, b0), 
d(a2, a0) + d(bx, b0) = d(au a0) + d(b2, b0). 

From these equalities it follows that 

d(au a0) - d(a2, a0) = d(a2, a0) - d(au a0). 

Hence we have 

d(ax, a0) = d(a2, a0). (6) 

Moreover, on the basis of d(au a2) = 1 we have either f(au b0) < f(a2, b0) or 
f(a2, b0) < f(ax, b0). If f(au b0) < f(a2, b0), then by Lemma 1 d(a2, a0) 
= h(f(a2,b0)) = h(f(ax,b0))-\-l = d(au a0)+ 1, which contradicts (6). Analog­
ously f(a2, b0) < f(au b0) leads to contradiction, too. 

Since supposition (3) does not hold, from (2) there follows the assertion. The 
second implication of Definition 1 can be proved in the same way. 

Lemma 4. Let a graph isomorphism / : Gx X G2-^C(P) have the property • . 
Then for any aua2eGu bx, b2e G2, d(au a2)<°°, d(bu b2)<oo 

f(ax, bx)<f(a2, bx) implies f(ax, b2)<f(a2, b2) 
and 

f(au bx)<f(au b2) implies f(a2, bx)<f(a2, b2). 

Proof. We prove the first implication. If d(bx, b2)=l, then the assertion 
follows by Definition 1, because f(ax, bx) < f(a2, bx) implies d(au a2)= 1. For the 
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second part of the induction we assume that the assertion is true for d(bu b2) = k. 
If d(bx, b2) = k+ 1, then there exists a path 

bx = cQ, cx, ..., ck+x = b2,deG2,0^i^k+ 1. 

Since d(bx, ck) = k, by the induction hypothesis f(ax,ck) < f(a2,ck). But 
d(ck, ck+x) = d(ax, a2) = 1 and the graph isomorphism / has the property • , which 
yields f(ax, b2) < f(a2, b2). 

The second statement of Lemma 4 can be proved analogosly. 

Lemma 5. Let a graph isomorphism f: Gx x G2-^>C(P) have the property • 
Let 

f(au bx)<f(a2, b2)<...<f(ak-x, bk-x)<f(ak.x, bk), (1) 

k ^ 3 be a chain in the partially ordered set P. Then in P there exists a chain 

f(au bx) = cx<c2<...<ck=f(ak-h bk) 

such that c2 = f(ax, d) for some deG2. 
Proof. Let k = 3. In the case ax = a2 there is nothing to prove. If ax + a2, then 

f(ax, bx) < f(a2, b2) implies bx = b2. Applying now the preceding Lemma we infer 
that 

f(au bx)<f(a2, bx) implies f(au b3)<f(a2, b3) 
' nd 

f(a2,b3)<f(a2,b3) implies f(aub2)<f(aub3), 

which means 

f(au bx) = f(au b2)<f(ax, b3)<f(a2, b3). 

Assume, as usual, for the second part of the induction that the statement of the 
Lemma is true for k = n - 1. If k = n, then the last three elements of the chain (7) 
are 

f(an-2, bn-2)<f(an-Xy bn.x)<f(an-x, bn). 

If fl„-2 = 0„-i, then by the induction hypothesis there exists a chain with the 
required property. If an-2^an-Xy then bn-2 = bn-x and analogously as in the first 
part of this proof it is easy to show that 

f(an-2, bn-2)=f(an-2, bn-x)<f(an-2, bn)<f(an-x, bn). 

The chain f(au b x) < ... < f(an-2y bn-2) < f(an-2, bn) is of the length n -2. Using 
the induction hypothesis, we can find a chain 

f(au bl) = cx<cz<...<cn-x=f(an-2, bn)<f(an-x, bn) 

such that c2 = f(ax, d) and the induction is completed. 
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Lemma 6. Let a graph isomorphism / : Gx x G2-> C(P) have the property • . If 

/(iii, bi)<3(a2, b2)<...<3/(a„-i, bn-x)<f(an, bn) = f(a\, bn), (8) 

n > l , then a{ = ax for all /, 1^ /^n . 
Proof. We observe that a,=£ a,+1 for all /, 1 ^ / ^ n - 1 implies bt = bi+l for all /. 

This means that bx = bn, which is impossible. We conclude that there exists /, 
1 s-S/ ̂  n — 1 such that 

ai = ai+l. (9) 

Clearly, the statement of the Lemma is true for n = 3. Assume for the second part 
of the induction that the assertion is true for k<n. If j = n — \ (see(9)), then 
an-\ = an = ax. The chain 

f(ax, b\)<f(a2, b2)<...<f(an-\, bn-x) = f(au bn-\) 

has n — 1 elements and by the induction hypothesis ak = ax for all /, 1 ^ / ̂  n — 1. 
Let us suppose that 

aj = ai+\, j<n-\. 

We divide the chain (8) into two parts. 

f(ax, b\)<...<f(ah bi)<f(ai+x, bi+l) = f(ai, bi+x), (10) 

f(ai+2, bi+2)<...<f(an, bn) = f(a\, bn). (11) 

Applying now the preceding Lemma on the chain (10) we obtain the chain (12) 
with y + 1 members 

f(au bx)<f(ax, d)<...<f(ah bi+x). (12) 

The chain 

f(au d)<...<f(ah bi+\)<f(ai+2, bi+2)<...<f(an, bn) = f(au bn), (13) 

which we obtain from (12) by omitting the least element and from (11), has n - 1 
elements. Using the induction hypothesis we have a\=zai = ai+2 = ... = an-u The 
chain (10) has I + l elements ( / + K n ) and at = au hence by the inductin 
hypothesis ax = a2 = a3... = a,-u 

Lemma 7. Let a graph isomorphism / : G\ X G2-» C(P) have the property • , let 
P have a locally finite length, let f(a, b)<f(c, d). Then there exist elements 

z0, Z\,..., Z}eG2, zi+\,..., zneG\ 

such that 

f(a, b) = f(a, z0)<f(a, Z\)<...<f(a, zy)</(z/+1, rf)<l...<l/(z„, d) = f(c, d). 
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Pr of We pro ed by induction through n - d(f(a, b) f(c, d)). If n = 1, the 
on is obvious For the second part of the induction a sume th 11 e statem nt 

of L emma holds for d(f(a, b), f(c, d)) = n - 1. If d(f(a, b), f(c, d)) n, then 
th re exists a chain 

f(a,b)-f(xo,yo)<f(xx,yx)<...f(xn,yn) = f(c,d) (14) 

1. If a=xx, then using the induction hypothesis we infer that there exist 
elements z0, •-, z,eG2, zi+x, ..., zn i e Gx such that 

f(a,yx) = f(a,Zo)<...<f(a,zf)<f(z)+x,d)<...<f(zn Xjd) = f(c,d). 

If we denote the elements of this chain by Co, ..., cn ,, then {f(a, b), c(, ...,cn ,} is 
a chain with the required property. 

2. If a + xx, and xt±xl+x for all /, 0 ^ / ^ 
<n - 1, then yt = yl+x for all /, O^i^n - 1, hence b=y0 = yx = ... — d. If we 
denote 6 as z0 and x.as z, for all /, 1 ^ i^n, then the chain (14) has the required 
property. 

If a±xx and there exists /, l^i^n — 1 such that x, = xl + x, then we divide the 
chain (14) into the chains 

f(a,b) = f(xo,yo)<...<f(xi,yi)<f(xl,yi+x) (15) 

f(xi+2,yl+2)<...<f(xn,yn)=f(c,d) (16) 

By Lemma 5 there exists a chain 

f(a,b)<f(a,t)<...<f(Xi,yi+x), (17) 

which has the length i + 1. The elements of the chain (16) and (17) build a chain of 
the length n between f(a, b) and f(c, d) and as in the part 1 of this proof we can 
find a chain between f(a, b), f(c, d) with the required property. 

Theorem 2. ([11). Let (M, ^ ) be a quasiordered set. IfOx, 02 are equivalences 
on the set M such that 

(i) 0xr\02 = co, where co is the least equivalence on M, 
(ii) 0 i U 0 2 = t, where i is the greatest equivalence on M, 
(Hi) 0 , 0 0 2 = 0 2 0 0 , . 
(iv) cxG4\, c20td2, dx0}d2, i+j, cx^c2 implies dx^d2, 

then (M, ^ ) is isomorphic to the direct product of the quasiordered sets MI0x and 
MI02. ([ax]0, ^ [a2]0, iff bx ^ b2 for some b, e M, bfd^, / = 1, 2) 

Corollary 1. If (M, ^ ) is a partially ordered set or a lattice and 0X, 02 are 
equivalences on the set M with the properties (i), (ii), (iii), (iv) of Theorem 2, then 
MI0x, MI02 are partially ordered sets, respectively lattices. 

Theorem 3. Let a graph isomorphism / : Gx X G2-» C(P) have the property • , 
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let the partially ordered set P have a locally finite length. Then P is isomorphic to 
the direct product of the partially ordered sets Px, P2 such that C(Pt) is graph 
isomorphic to Gt, i = 1, 2. 

Proof. Clearly, the relations 

0 i = {(/(a, b), /(a, d)), a e d , b, d E G2), 
Q2={(f(a,b),f(c, b)), a, c e d , beG2) 

are equivalence relations on P. It is easy to see that 0X, 02 have the properties (i), 
00, (i-i). 

Let Ci, c2, di, d2eP, cx = f(a. b), c2 = f(c, d) and/(a, b) ^ / ( c , d). We suppose 
also Ci@idi, c20xd2 and dx02d2. Then dx = f(a, x), d2 = f(c, x) for some x G2. 

In the case a = c we have dx = d2. If a±c, then /(a, b)</(c , d) and by Lemma 7 
there exist elements Zo, ...„ z, 6 G2, zJ+l, ..., z„ e Gi such that 

f(a, b) = f(a, Zo)<f(a, Zi)<J...<!/(a, z,)<f{z,+ x, d)<l...<l/(z„, d) = f(c, d). 

If z,+1-£a, then z, = d and /(a, d)<f(c, d) 
If z.+i = a, then also f(a, d)<f(c, d). 

Since P has a locally finite length, there exists a finite maximal chain connecting 
f(a, d) and f(c, d). By Lemma 6 the chain has the following form 

f(a, d) = f(x0, d)<f(xx, d)<...<f(xn, d) = f(c, d) 

Since the graph isomorphism has the property • , we have 

f(a,x) = f(xo, x)<f(x,x)<...<f(xn,x) = f(c,x) 

(see Lemma 4), hence dx^d2. 
Analogously the second condition of (iv) of Theorem 2 can be proved. 
If we denote PI 0l as Pt, then from Theorem 2 and Corollary 1 it follows that P is 

isomorphic to PiXP2, Pi, P2 are partially ordered sets. 
Let a,e Gx, b0e G2 be some fixed elements. We show that the mapping 

g:C(Px)-^C({f(a,bo\aeGx}) 

defined by g(\f(a, b)]0x) = f(a, b0) is a graph isomorphism. If [/(a, c)]G>i<a 
<[f(b, d)]&i, then there exist elements x, yeG2 such that f(a, x)<f(b, y) (see 

Theorem 2) But ai=b, hence x = y and d(a, b)= 1. From f(a, x)<f(b, x) and 
from the property • of the graph isomorphism / it follows that f(a, b0)<f(b, b0) 
(see Lemma 4). 

If f(a,b0)<f(b,b0), then [f(a, bo)]0<[f(b, bo)]0x. It is easy to see that 
C({f(a, bo), a e Gi}) is graph isomorphic to Gx. Hence C(P/@0 is graph isomor­
phic to d . 

Analogously C(P/02) and G2 are graph isomorphic. 
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Note that the mapping g is also an isomorphism of partially ordered sets Pi and 
{/(fl,60), fled}. 

Corollary 2. 7/ the supposition of the preceding Theorem are fulfilled and 
floed, b0e G2, then 

Ai = {/(fl, bo), a e d } , A2 = (f(a», b), b e G2} 

are partially ordered sets and A,- are isomorphic to Pi. 

Theorem 4. // / : d x G2-^C(P) is a graph isomorphism and P is a graded 
partially ordered set (Pis a lattice of a locally finite length), then there exist graded 
partially ordered sets Pu P2 (lattices Pu P2 of a locally finite length) such that P is 
isomorphic to Pi x P2 and G, is graph isomorphic to C(P,), / = 1, 2. 

Proof. The statement of the Theorem is an easy consequence of Theorem 3, 
Corollary 1, Lemma 3, respectively Lemma 2. 

Theorem 5. Let a lattice H be a direct product of lattices Al9 A2 and let there 
exist a graph isomorphism f: C(H)-*C(L), where L is a lattice of a locally finite 
length. Then L is a direct product of lattices Bu B2 such C(At) is graph isomorphic 
to C(Bt), i = l ,2 . 

Proof. Note that C(H) = C(Ai)x C(A2) and apply the preceding Theorem. 
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OB OPMEHTHPOBAHHH nPflMOrO nPOH3BEflEHH5T rPAd>OB 

EBa reaeoHOBa 

Pe3K)Me 

TpacJ), BepUIHHbl KOTOpOrO HBJI5HOTCH 3JIeMeHTaMH HaCTHMHO ynOpHflOHeHHOrO MHOHCeCTBa P H 

peopa cyTb Te napbi {a, b}, a,beP, rfle a noKpbmaeT b HJIH b noKpbmaeT a, Ha3biBaeTca 

noKpbiBaKDHHiM rpa(})OM C(P) HacraHHo ynopaflOHeHHoro MHO>KeCTBa P. nycTb P aBJiaeTca peuieTKOH 
JIOKaJlbHO KOHeHHOH flJIHHbl, HJIH P HBJIHeTCH HaCTHMHO ynOpflflOHeHKblM MHOXCeCTBOM VflOBJIeT-

BopjHoirjHM ycjiOBHio JJeaeKHHfla, Torfla BepHO cjieflyiouTHe ypTBepiKAeHHe : EcjiH Gu G2 rpac})bi 

if: Gi x G2—> C(P) H30MOp(J)H3M rpa(J)OB, TO P = Px x P2 P., P2 HBJUHOTCH nacTHHHo ynopsmoneHHbiMH 

MHO)KeCTBaMH H rpa4)bl G, H C(P) CyTb H30MOp(l)HbI, 1 = 1 , 2 . 
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