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ON SOME APPROXIMATION PROPERTIES
OF THE METRIC DIMENSION

TIBOR ZACIK

ABSTRACT. In the paper some estimations of the lower and upper metric di-
mension of a compact subset A in R™ are obtained. These estimations are given
by properties of sets near to A with respect to the Hausdorff metric.

The notion of (lower) metric dimension was first given in [P-S] and then
studied (both, lower and upper cases) in [K-T]. The relationship between metric
dimensions dim and dim and the Hausdorff dimension hd is given in [V]. The
definition of metric dimension needs some of integer valued covering functions,
which are also called e-entropy and e-capacity ; this is the reason why the metric
dimension ([C-S], [H], [K-T}, [M-Z], [V], ) is also called an entropy dimension
([B], [P], [Y]) or a limit capacity ([M], [P-T]).

The metric dimension as well as the Hausdorff dimension can be defined in
metric spaces, but only for totally bounded subsets. In this case the main differ-
ence between hd and dim consists in the fact that hd X = 0 for a countable
set X , while dim X can be positive, so dim and dim can better control
the partition of points of these subsets. The aim of this paper is to derive some
estimations for metric dimensions of a compact subset A of a metric space X ,
by properties of subsets near to A in the Hausdorff metric. Simple examples
show that it is not possible to obtain the estimation directly from the metric
dimension of these sets, so another kind of properties must be taken into account.

Let (X,d) be a metric space and K C X nonempty compact subspace, let
N and R be the set of all natural and real numbers, respectively. Denote by
B(p,r) an open ball centered at p € X with radius » > 0. Then N(r, K') means
the least number of open balls with radius r > 0 covering K . This number is
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well defined by compactness of K . Furthermore, put

dim K = liminf M ’

r—o0+t - log T

dim K = limsup M—l .
L

The base for the following considerations is a lemma, which allows to compare
functions N(.,A) and N(.,B), where A, B are subsets of a metric space X,
near with respect to the Hausdorff metric. Recall that if (X, d) is a metric space
and K is the system of all its non empty compact subsets, then the Hausdorff
metric b on K is defined in the following way: for A,B € K

h(4, B) = sup{d(a, B),d(4,b);a € 4, b € BY. (1)

The space (K, h) is compact metric space provided (X,d) is compact.

LEMMA A. Let A,B be non empty compact subsets of the metric space (X,d)
and € > 0. Assuming h(A,B) <¢,

N(r+e¢,A) < N(r,B) (2)

for each r > 0.

Proof. Let {B(zi,r)}i-, be a covering of B by open balls with radius
r >0, and let a € A. Since h(A4,B) < €, we have by (1) that d(a,B) < ¢
and hence there is a y € B, y € B(zj,r) for some 1 < j < m, such that
d(a,y) <e. Then

d(a,z;) < d(a,y) + d(y, ;) <e +r,

and therefore a € B(zj,7+¢). This means that {B(z;,7 +¢)}.-, is the covering
of A, thus the inequality (2) is true. ]

Consider continuous functions p,q,r: Rt — R+ for which
lim p(e) = lim ¢(e) = lim r(e) =0.
lim p(e) = lim g(c) = lim, r(e)

The following general approximation lemma holds.
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LEMMA B. Let p,q,r be functions as above, A C X be a non empty compact
subset of a metric space (X,d) and {A.},, be a system of non empty compact
subsets of X for which h(A,A.) <p(e), € >0. Then

log N (q(e) + p(e), Aec)

1 . 1 1 < .
() L-liminf i Py < dim A
log N A) - log N (q(¢), A.
< min [ & limsup BN L A) £ ploeN(g(e) Ao )
e—o+  —logr(e) e—ot  —logr(e)

y o logN(g(e) +p(e),Ac) . log N(g(e) + ple), Ac)

(i1) max| - liminf , 1-limsup
e—0+ —logr(e) 0t —logr(e)

log N A,
< Tm A <F-limsup BN A)
e—ot+  —logr(e)
where | = liminf logr(e) , 1 = limsu logr(e) , Kk =liminf —log r(e) ’

e—o+ logq(e) eno+ logq(e) e—o+ log(g(e) + p(e))

and k = limsup ——=2——"— .
e—0+ IOg(q(e) + p(E))

Proof. Since h(A,A.) < p(e), (2) implies N(q(e)+p(e), A) < N(q(e), A,)
for any € > 0, and this yields

log N (q(¢) + p(e), A) < log N (q(e), A.) . log ()
—log(q(e) +p(e)) ~ —logr(e)  log(q(e) + p(e))

for sufficiently small ¢. Similarly, the inequality N (g(¢)+p(¢), Ac) < N(q(e), A)
gives
log N (q(¢), A) 5 log N(q(e) + p(e), Ae) logr(e)
—logg(e) —logr(e) log g(e)’
The weli-known properties of liminf and limsup then imply the required esti-
mations. (m]

In the case of X = R™ the situation is much more simple.

THEOREM C. Let A C R™ be a non empty compact set and {A.} be for all

sufficiently small € > 0 a system of non empty compact subsets of R™ such
that h(A,A.) <e. Then

(i) dim A = liminf lo_gJ_V(e,—Ae)

e—0+ —loge
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(i1) dim A = limsup l_____og N, Ae) .
e—o+  —loge

Proof. Put p(e) = q(¢) = r(¢) = ¢ in Lemma B. We obtain

1iminfw < dim A < 1iminf1£i5__]\_r_(_€_’;45_)_
e—0+ —loge e—0+ —loge

By [M-Z; Proposition 2] there exists a constant ¢ € Rt such that N(e, A) <
¢-N(2¢e,A) for all ¢ > 0. Then

-1,
liming ENCEA) o pplose™ N Ae) e log V(e Ae)
e—0+ —loge e—0+ —loge e—0+ —loge

and therefore (i) is valid. The proof of (ii) is similar. O

Frequently we can approximate the set A by a countable system of sets only.
In these cases we can apply the following theorem.

THEOREM D. Let A CR™ be a non empty compact set and let {A,}32, be
a system of non empty compact subsets of R™ such that h(A, A,) < e, , where
the sequence {en} monotonically converges to 0. Then the following estimations
hold.
() liminf PENEn-1An) 4 < fiing 08N EnaAn)
n—oo —logen n—oo —logen

log N(en, Ap) < log N(en, An)

(i) limsup dim A < limsup

n—o0 “logEn - n—oo “‘loggn—l
If, moreover, lim B2 =1 then
n—oo 108 €n—1

(i) Tm A = limsup &NEmAn)

n—oo .—lOgeEn

Proof. (i) Take ¢ > 0 and define A, = A, whenever € € (en,en-1)-
Then '
h(A,A) =h(A,A)<en <€, €>0.

Using Theorem C (i) we obtain

dim A = liminf 28NEA) _ e l08NE A o 108 NEn An)
e—0+ —loge e—0+ —loge n—oo0 —logen

The inequality dim A < liminfhg—_NlEfg’ﬁ—") follows from the fact that

n—oo

—logen n=1 —log e

The inequalities (ii) can be proved in the similar way using Theorem C (ii).

oo
{I—M} is the sequence chosen from the family {I—M} -
e<ey
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(iii) Observe, that

limsupl‘iw = limsup log N(en, 4n) logen
n—o00 - log En—-1 n—oo - logen log En—1
= lim sup log N(en, An) | lim _08En_ _ Jim sup log N(en, An)
n—oo - IOg €n n—oo IOg €n-1 n—oo - log En '

O
Example 1. Let A = {0} U {;1;}:10, where a € R, a > 1. If we take A, =
{1,1,..., L}, then h(4, A,) = k. Using (ii) of the previous theorem we obtain

— . log N(a™™, A,) ) log(n + 1)
dim 4 < h,I,n_,S;p —logal—n < '}Ln;o (n—1)-loga -

from which dim A= dim 4=0.

The following theorem presents estimations of metric dimensions in the case
when the set A can be approximated by finite sets. For a set K C X denote
w(K) =inf{d(z,y);z,y € K,z # y}, |K| means the cardinality of K.

THEOREM E. Let (X,d) be a compact metric space, let A be its infinite

[eo]

compact subspace and {A,},_, be a sequence of finite subets of X such that

h(An, A) 272, 0. Then the following holds:
(i) A, C A for all n > ng implies
5= , log |An|
dim A > limsup ————.
noo ~10g i(An)
(i) If h(An, A) < u(Ayn) for each n > ng, then
dim A < liminf —28/4nl
22 TTogu(4n)

and

— ) log |An,|
dim A > limsup ————.
n—~oop —log /‘(An)

Proof. (i) Denote p, = u(Arn). As A is infinite, u, 7%, 0. Hence

— . log N(e, A) _ .. log N(#n/2, A)
dim A =1 ——=21
A P T Tloge = niuel | —log K2

. log N(pn, An) ) log |Ax|
> — =] —_
- h,r,llso‘ip —logpun +1 e —log pn
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since A C B implies N(2r, A) < N(r,B).
(ii) It follows from (2) and the inequality h(An, A) < pn that N(2u,,4) <
N(ttn, An). Therefore

1 N(2u,, A
dim 4 = limjnf BT EA) ¢ jy g 108V 21in, A4)
e—0+ —loge n—co  —log2fin
log N(pn, An . loglA,
S lim inf —(M'Li—-——)- = liminf El_l ,
n—oo - lOg I‘n - 1 n—oo — log ,u'n
and
Tim A = limsup BNEA 5 i gup 08N (Hr/2, 4)
e—0t e 10g€ n—oo —_ log ;ln/z

, 1og N(pin, An) .. log |An|
>1 — =] — .
= ey = log pn +1 e = log ptn

0

Example 2. Let A = {0} U {k—l,,-};“;l, where a > 0, and let A, = {kL“};::l
for n € N. Then by Theorem E (i)
logn

ne(n-1)°
o ey

dim A > limsup
n—oo log

But, for a = 1 we have directly nlln;o Bg_l:(gn—nl_li = %, and, for a #1,

logn logn

lim ————— =1
Ao log 2n=D* neco alogn + alog(n — 1) — log(n® — (n — 1))

ne—(n—1)°

. 1
=n11m ( p— )
=00 log(n—1) log\n®—(n-—1)°
a_+ a 08lo:n - logn
Here lim l"%gL]) =1 and
n—oo gn
log(n® — (n —1)° 1 — (z=1)*!
| g(n ( ))=lima (")a,
n—oo logn n—oo ] (2=1)

by the L'Hospital rule, so the limit is the same as

l_xa-l
a lim _,
z—1 1 — z¢

a-—1
a

1 1
at+a-(a=1) a+1

=a — 1. From this

which is, repeating the L’'Hospital rule, a -

dim A >
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oo 1 n
Example 3. Let A = {0} U {logk}k and take A, = {logk}k=2 for n > 2.
Since A C R!, then dim A < 1. On the other hand, by Theorem E (i) we have
—_ -1
dim A > limsup log(n — 1)

. log n-log(n—1)
n—roeo lOglogn—log(n—l)

But
log(n — 1) ) 1
lim ———=———7 = lim .
n—oo IOg .loogg:—-logg((':l__ll)) n=0 o log n n log log(n—1) log (log n—log(n—l))

log(n—1) log(n—1) log(n—1)

log n log log(n—1) log(logn—log(n—l))
Moreover, d(jgl—) and Tlog(n=T)" tend to 0 and nILn;o Tog(n=T)

repeating the L’Hospital rule.
So <dim A<1,ie, dm A=1.

=-1,

0+0— ( 1)
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