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ON T H E CANCELLATION LAW 
FOR DISCONNECTED PARTIALLY O R D E R E D SETS 

JÁN JAKUBÍK* — JUDITA LIHOVÁ** 

(Communicated by Tibor Katriňák ) 

A B S T R A C T . In this paper there are given sufficient conditions for the validity of 
a type of cancellation rule concerning direct product decompositions of partially 
ordered sets. 

1. Introduction 

Basic results on direct product decompositions of connected partially ordered 
sets have been proved by H a s h i m o t o [3], [4]. In the present note we deal 
with direct product decompositions of partially ordered sets which need not be 
connected. 

We apply the standard notation (cf. B i r k h o f f [2]); the direct product of 
partially ordered sets P̂  (i G /) is denoted by n ^V ^ I ~ {1, 2,. . ., n}, 

iei 
then we write also PXP 2 • • - P n . For the further terminology concerning direct 
products, cf. Section 2 below. 

We will deal with the validity of the implication (cancellation law) 

AB ^ AC =t> B-^C; (1) 

further, we consider the implication 

(2) 

where A, B, C are partially ordered sets and k is a positive integer. 
Consider the following conditions for a partially ordered set P: 
(i) The number of connected components of P is finite. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 06A06. 
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(ii) Each connected component K of P containing more than one element 
is isomorphic to a direct product J\ Kx of indecomposable factors KA 

A(EA 

such that for each A0 G A the set {A G A : KA = KA } is finite. 

We will prove the following results: 

(*) The implication (1) holds for any A, IB, C satisfying the conditions 
(i), (")• 

(**) The implication (2) holds for any positive integer k and A, IB satisfying 

(i), (ii)-
By examples we will show that without the assumptions (i), (ii) the implica­

tions (1) and (2) fail to hold. 
The cancellation rule in the class of directed sets of finite length has been dealt 

with in [7]. Another type of the cancellation rule (dealing with internal direct 
product decompositions) has been investigated in [5] and [6]. For the case of 
finite algebras and finite relational structures, several results on the cancellation 
law have been proved in [8], [9] and [1]; for a survey concerning the implications 
(1) and (2), cf. [10; Section 5.7]. The particular case of unary algebras has been 
dealt with in [11] and [12]. 

2. Preliminaries 

Each partially ordered set under consideration is assumed to be nonempty. 
We recall that a partially ordered set P is called indecomposable if it has 

more than one element and if it cannot be written as a direct product AB with 
\A\ > 1 , \B\ > 1 . 

Let P be any partially ordered set and let a be a cardinal number, a ^ 0. 
The symbol P a will be used for J ] P. , where \I\ = a and P• = P for each i£ I. 

iei 
By P° a one-element partially ordered set will be meant. 

Assume that P^ — (Pt, <{) (i G / ) are partially ordered sets such that 
•^i(i) ^ Pi(2) ~ ^ whenever i(l) and i(2) are distinct elements of I. Put 
P = \J p.. For x,y G P we define x < y if there exists h G I such that 

iei 
x,y G Ph and x <h y. Then the partially ordered set P = (P, <) is called the 
sum of the system ( P j ^ j and it is denoted by Yl^i-

iei 
A partially ordered set § is said to be connected if it cannot be expressed as 

a sum of two its subsets. Connected summands of a partially ordered set P will 
be referred to as connected components of P. 

If P = (P, <) is a partially ordered set, a, b G P , by a zigzag connecting a 
with 6, a finite sequence x 0 = a , x l 5 . . . ^xn=b in P such that any two adjoining 
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elements are comparable, will be meant. The number n will be called the length 

of this zigzag. 

The following statement is evident. 

2 .1. LEMMA. A partially ordered set P = (P, <) is connected if and only if 

any two elements of P can be connected by a zigzag. 

Let us suppose that S = (5, <) is a connected partially ordered set. Let us 
define the distance of two elements of S as follows: 
if a, b G S\ d(a, b) will be the length of the shortest zigzag connecting a with b. 

It is easy to see that d is a metric in S. Now we can define 

( n if n = max |d(a , b) : a, b G S\ , 
d{§)=\ r / 

t co if the set |d(a,b) : a,b G S\ is not bounded. 
The following lemma can be proved easily. 

2.2. LEMMA. Let (F{ : i G I) be a nonempty system of partially ordered sets. 
If Yl P^ is connected, then all lPi are also connected, 

iei 

2.3. LEMMA. Let (Si : i G I) be a nonempty system of connected partially 
ordered sets. Then S = Y[S{ is connected if and only if for each a, b G S the 

iei 

set {d(a(i), b(i)) : i G /} is bounded. 

P r o o f . First assume that S is connected. Take any a, b G S and suppose 
that d(a, b) = n. Then there exists a zigzag x 0 = a , x 1 ? . . . , xn=b in S. Evidently 
xQ(i)=a(i),x1 ( i ) , . . . ,xn(i)=b(i) is a zigzag in S{, so that d(a(i),b(i)) <n for 
each i e i . 

Conversely, suppose that a,b e S, a ^ b, d(a(i),b(i)) < n for a positive 
integer n and for each i e i . We will show that there exists a zigzag in S 
connecting a and b. Without loss of generality we can suppose that n is odd (in 
the case of n even the method is analogous). The assumption d(a(i),b(i)) < n 
yields that there exists a zigzag xQ=a(i),x\,... , x n =b ( i ) in S{ such that either 
xQ < x\ > • • • < xl

n or xj > xj < • • • > xl

n holds. Let Ix be the set of all 
i e i such that the first possibility occurs. If Ix = 7, we have a = xQ < xx > 
• • • < xn = b for x- defined by x-(i) = xl, for all i G I. If I1 ^ / , define y, for 
j e {0,..., n-f 1} in such a way that 

x{. if i e Ix , j < n , 

xn if i e Ix , j = n + 1, 

4 _ ! if i e i - I - . , j > 0 , 

xj if i G J - I! , j = 0 . 

Then it is easy to see that a = yQ < yx > • • • < yn > yn+1 — b. • 

Looking at the previous proof we obtain: 
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2.3.1. COROLLARY. Let (Si: i £ I) be a nonempty system of partially ordered 
sets, S = n S^ and let S be connected. If a, b G 5 , then 

iei 

(i) d(a(i),b(i)) < d(a,b) for each i G I; 

(ii) if d(a(i), b(i)) < n for each i G I, then d(a, b) < n + 1. 

Using 2.3 we obtain: 

2.4. PROPOSITION. Let (S>i : i G I) be a nonempty system of connected 
partially ordered sets. Then Yl^i ^s connected if and only if the set Ix = {i G I : 

iei 
d(S{) = oo} is finite and the set {d(Si) : i G I — Ix} is bounded. 

P r o o f . First let us suppose that / . = {i G / : ^(SJ = oo} is finite and 
n' — max{d(S^) : i G I — Ix} . Take any a, b belonging to the Cartesian product 
of the sets Si (i G J ) ; put n — max({n'} U {d(a(i), b(i)) : i G Ix}). Evidently 

d(a(i),b(i)) < n holds for each i G I , so that the set {d(a(i), b(i)) : i G / } is 
bounded. We have proved that \[ S • is connected. To prove the converse, let 

ieI 
us suppose that either Ix is infinite or {d(SJ : i G I — I±} is unbounded. In 
both cases we can find an infinite sequence {in}n

<L1 of distinct elements of / 
and a sequence {(a- , b- )) , such that a- , b• G S- , d(a- , b• ) > n for each 

x K \ ^ n
7 ^ n ' ) n = l ln ' <-n ''n ' v ' n ' ln ' 

positive integer n. Now take any a,b £ Yl Si with a(in) = â  , b(in) = bi . 
iei 

Evidently the set {d(a(i), b(i)) : i G / } is not bounded. Hence J\ ^>i ls n ° t 
connected. The proof is finished. ieI D 

We can prove easily: 

2.5. LEMMA. Let (Ai : i G I), (IB- : j G J) be two nonempty systems of 
partially ordered sets. Then 

(E- . ) (E»()=EE- .V 
\ iei J \jeJ / iei jeJ 

We will use the following theorems (cf [4]): 
2.6. THEOREM. Any two direct product decompositions of a connected partially 
ordered set have a common refinement. 
2.7. THEOREM. The representation of a connected partially ordered set as a 
direct product of indecomposable factors, if it exists, is unique up to isomorphism 
of the factors. 

In what follows, the symbols N,N 0 ,Z will be used for the set of all positive 
integers, nonnegative integers and integers, respectively. 
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For dealing with direct products of partially ordered sets which may have an 
infinite number of direct factors we need a slight generalization of the notion of 
a polynomial over an integrity domain. 

2.8. DEFINITION. Let O be an integrity domain and let a be an infinite 
cardinal number. Suppose that J is a well-ordered set with \I\ = a. For each 
i G / let xi be a symbol not belonging to O such that x i ( 1 ) ^ xi{2) whenever i ( l ) 
and z(2) are distinct elements of I. The symbols xi will be called indeterminates 
over O. Let n G N; for k G { 1 , . . . , n} let aki G N0 . Consider the expressions 

p* = IR"> 
iei 

and assume that pk{1) ^ pk{2) if k(l),/c(2) G { l , . . . , n } , fc(l) ^ k(2). The 
symbol 

clPl + • • • + cnpn 

with c 1 5 . . . , cn G O — {0} will be called a generalized polynomial over 0 with 
the indeterminates a^ (z G I ) . 

The system consisting of all such generalized polynomials and of the zero 
polynomial will be denoted by 0[xi : i G I]. 

For- / , g G 0[xi : i £ I] we can define the relation f = g and the operations 
/ + 9 , / * g analogously as in the case of polynomials over O. 

By using the well-known fact that the ring of polynomials 0[x] is an integrity 
domain and by applying the transfinite induction (with respect to the elements 
i of the well-ordered set I) we obtain: 

2.9. PROPOSITION. Let O be an integrity domain. Then 0[xi : i G I] is an 
integrity domain as well. 

3. Cancellation law 

In this section we will deal with the validity of the implications 

AB £.. AC => B - ^ C , (1) 

A7" = B^ = > A = B (2) 

with A, B, C being partially ordered sets, k G N. 
First we will consider the implication (1). It is easy to see that this implication 

doesn't hold in general. If, e.g., 2 is a two-element chain and we take A = 2^°, 
B = 2, C = 2 2 , then AB ^ 2^° *. AC, but B £ C. 

Assume that V is a nonempty class of partially ordered sets such that for each 
P G V the conditions (i) and (ii) from Introduction are satisfied. Let us suppose 
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that A, B, C G V and that at least one of them has a connected component 
containing more than one element. Consider all connected components of A, B, C 
containing more than one element and their decompositions as direct products 
of indecomposable factors (by 2.7 these decompositions are determined uniquely 
up to isomorphisms). 

Let {Yi}ieI be a system of partially ordered sets such that: 

(a) if z(l),z(2) are distinct elements of / , then Y^-x g Y^2); 
(b) if X G {A, B, C } , IK is a connected component of X and Kx is an inde­

composable factor of K, then there exists i G / such that Kx = Y^; 
(c) if i G / , then there exist X G {A, B, C } , a connected component K of X 

and an indecomposable factor K-_ of K such that Kx = Yi. 

Since the direct product of all connected components of A, B, C, as the prod­
uct of finitely many connected partially ordered sets, is connected, so is the 
product n ^ i - Hence Ix = {i G I : d(Y{) = 00} is finite and the set 

iei 
{d(Y-) : i e I - I±} is bounded by 2.4. Now let ai G N0 for each i G / . 
Then Yl Y"* is connected, too. Namely, if we define § • • = Ŷ  for each i £ I 

iel ai 
with a • > 0 and j G { 1 , . . . , a j , then Yl YT - Yl Yl § ; j a n d t n e factors §. 

i£l iel j = l 
a,;>0 

also satisfy the conditions concerning d(Si;j) given in 2.4. 
Let Q be any partially ordered set and c G N. If c = 1, we put cQ = Q. If 

c > 1, we define cQ to be the sum of c copies of Q. 
In view of 2.7 we can state: 

3.1. LEMMA. / / o.^,/^ (i G I) are any nonnegative integers, then Yl ^ti Z5 

iei 
isomorphic to Yl ^i if and only if ai — /?• for each i G / (under an appropriate 

iei 
notation of the indices). 

So we have: 

3.2. LEMMA. Each connected component of any of A, B, C (including the one-
element ones) is isomorphic to Yl Y ^ for a unique system (cti)ieI of nonneg­
ative integers. ieI 

Now let / = f((Xi)ieI) be a generalized polynomial belonging to 0[xi : i G I] 
with O = Z (cf. Definition 2.8). Assume that all coefficients c 1 , . . . , cn standing 
in / belong to N. Then we will say that / is a generalized polynomial over N. 
If 

/((-ІУ = E^П Ï?M> 
í=l ІЄІ 
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then we put 

/((*.)«=/) = £*.![*.*" 
t=i iei 

The following lemma is evident. 

3.3. LEMMA. If f = f((xi)iei)> 9 ~ d((xi)iei) are generalized polynomials 
over N. then / ( (Y-)-G / ) is isomorphic to g((Y.)-G/) if and only iff — g. 

In view of 3.2 and 3.3 we have: 

3.4. LEMMA. Each of the partially ordered sets A, B, C is isomorphic to 

f(O^i)iei) for a un^Que generalized polynomial f((xi)iej) over N. 

Let A~fA ( ( Y i / i g / ) , 1 S fB ( ( Y . ) i 6 / ) , C - fc ((Y<),6 /) . 

Using 2.5 we obtain: 

3.5. LEMMA. The product AB (AC) is isomorphic to (fA • / j B ) ( (Y i ) i G / ) 

((fA'fc)((^hei))-

Let (*) be as in Introduction. 

P r o o f o f (*) . Let A, B, C be partially ordered sets satisfying (i) and (ii), 
AB = AC. First suppose that all connected components of A,B,C are one-
element sets, i.e., A, B,C are (finite) antichains. Then AB,AC are also anti-
chains and they are of the same cardinality. Then evidently B, C are of the same 
cardinality, too, so that they are isomorphic. 

Now let at least one of A, B, C have a connected component containing more 
than one element. In view of 3.5 and 3.3 we have fA((xi)iei) ' fs((xi)iei) = 

fA((xi)iei) ' fc((xi)iei)' S i n c e e v i d e n t l Y fA f a i l s t 0 b e a z e r o polynomial, 
using the cancellation law in the integrity domain Z [(a^)iG/] (cf. 2.9) we obtain 

fB((xi)iei) = fc((xi)iei) • T h e l a s t eQu a l i ty implies B = C. • 

Now we want to show that if some of the conditions (i), (ii) from (*) is 
omitted, then the implication (1) need not hold. 

3.6. EXAMPLE. Let 2 be as above and let A = 2° + 2° + 2° + . . . , B = 
2 + 22 + 23 + . . . , C = B + B. So A, B, C don't satisfy (i). Using 2.5 we obtain 

AB="B + B - r - . . . , AC = A(B - f B ) = A B - f A B = B - f B - { - . . . . 

Hence AB = AC, but evidently B ^ C. Let us notice that the partially ordered 
set A is indecomposable. 
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3.7. EXAMPLE. Let 2 be as above and let 3 be a three-element chain. Further, 
let us denote a = K0, /? = 2*° and take A = 2? + 3 ^ , B = 2 a 3 ^ + 2 ^ 3 a , 
C = 2 a 3 a + 2 ^ 3 ^ . Since a + a = a , /? + /? = / 3 \ a + /? = /3, we have AB =* 
2/?+«3/3 + 2 / 5 + / 3 3 a + 2 a 3 ^ + / 3 + 2 / 3 3 / 3 + a .= 2^3^ + 2 ^ 3 a + 2 a 3 ^ + 2f3S/s, AC .= 
2/3+a3a + 2/?+/33/3 4. 2<*3 / 3+a + 2 ^ 3 ^ .= 2 ^ 3 a + 2^3^ + 2 a 3 ^ + 2 ^ 3 ^ , so that 
AB = AC, but evidently B ^ C . We will show that A is indecomposable. Let 
us suppose that this is not true. Then A = UV for some partially ordered sets 
U,V with \U\ > 1, |V| > 1. As A has two connected components, just one 
of U, V has two connected components, the other is connected. Assume that 
U = U 1 + U 2 and Ux V = 2^, U2V = 30. As U-V,U2V are connected, 2.7 yields 
V = 2 7 , V = 3^ for some cardinal numbers 7, S < /?. Using again 2.7 we obtain 
7 = S = 0, so that V is a one-element set, a contradiction. 

Now let us deal with the statement (**) from Introduction; for proving it, 
we use the argument similar to that applied above. 

P r o o f of (**). Let A,B be partially ordered sets satisfying (i), (ii) and 
let Ak = Mk for some k G N, k > 1. If all connected components of A, B are 
one-element sets, then evidently A = B. Now let at least one of A, B have a 
connected component containing more than one element. Then fA = fB for 
fA and fB being generalized polynomials belonging to A and B, respectively 
a n t h e s e n s e o f 3 . 4 ) . W e h a v e / ^ - / ^ = ( / A - / B ) ( / ^ 1 + / ^ - 2 / B + .-- + / ^ 1 ) . 
The relation f\ - fk

B = 0 yields fA - fB = 0 or fk
A~l + fk

A~2fB + • • • + fk
B~l = 0. 

The latter case is impossible because fA and fB are generalized polynomials 
over N. So we have fA = fB and this implies A = B. • 

The following example shows that without the conditions (i) and (ii) the 
implication (2) does not hold in general. 

3.8. EXAMPLE. Let a be any infinite cardinal number. Take A = 2 a + 2° + 
2° + . . . , B = 2 a + A . Using 1.5 we obtain A2 = 2 a + 2 a + -•- + 20 + 2° + -• • = B2 . 
But evidently A £ B. 

The partially ordered sets A, B in the previous example satisfy neither (i) nor 
(ii). It can be proved that if A, B consist of two or three connected components 
and each of these connected components containing more than one element is 
a direct product of indecomposable factors (the number of mutually isomorphic 
factors can be arbitrary), then A2 = B2 implies A = B. The question, if this 
implication holds also in the case when A, B consist of more than three connected 
components (but finitely many), is open. 
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