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NORMAL FORMS AND BIFURCATIONS OF SOME 
EQUIVARIANT VECTOR FIELDS 

MILAN MEDVED 

Many recent papers (e. g. [2], [8], [10], [20], [21]) and also some books (e. g. [9], 
[16], [19]) have been dealing with local bifurcations for equivariant vector fields 
and as the main tool the well-known L j a p u n o v - S c h m i d t reduction meth
od has been used. Recently global bifurcations of periodic solutions of equiva
riant vector fields are very intensively studied (see, e. g., [7] and [18]) and besides 
the Ljapunov-Schmidt method also topological and homotopical methods are 
used there. However, there are only few remarks in the above mentioned papers 
and books about the existence of some further invariant sets and about dynami
cal properties of invariant sets including periodic trajectories. The Ljapunov-
Schmidt method is very useful for detecting periodic trajectories but it can hardly 
be used for detecting other, more complicated invariant sests and their dynami
cal properties. A very effective method for a complex study of the local proper
ties of differential equations is the normal forms method. Motivated by the 
paper of J. G u c k e n h e i m e r [11] on a codimension two bifurcation with 
circular symmetry we study several bifurcation problems concerning equiva
riant vector fields whose normal forms possess some invariant subvarieties. The 
reductions of such vector fields to these subvarieties often represent bifurcation 
problems with known solutions. In the papers of A. Klic [13], [14] the idea 
of looking for periodic solutions of symmetric equations on some invariant 
submanifolds defined by the symmetry of these equations is also used. Namely, 
he studies there the period doubling bifurcation for 1-parameter families of 
vector fields invariant with respect to an involutory mapping. 

We use in this paper a normal form theorem published very recently in [6]. 
Normal form theorems of such kind (see also [4] and [18]) seem to be a very 
powerful tool especially for solving bifurcation problems of equivariant vector 
fields on higher dimensional spaces. 

1. 0(2)-equi variant vector fields on R4 

J. Guckenheimer studied in [11] vector fields on R4 with non-zero nilpotent 
linear parts equivariant with respect to the diagonal action of 0(2), the group of 
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orthogonal 2 x 2 matrices, on i?4. He derived a normal form of order 3 for such 
vector fields and studied their 0(2)-equivariant unfoldings which have the form 

x, = yj + (xf + x|) (bux! + b12y}) 

x2 = y2 + (*? + *2> (bl1*2 + b!2y2) 

yj = X]X] + A2y, + (xf + xf) (b2Xxx + b22y0 

y2 = A>\*2 + ^2 + (*? + *l) (b21*2 + b22y2)> 

where bi}eR and Xu X2 are real parameters. 
The subvariety D: = {(x, y)ei?4:xjy2 — x2y, = 0} is an invariant set of the 

family (1). The functions a = xf + x2
2, fi = yf + y2

2 and y = x1y1 + x2y2 are 
invariant with respect to the diagonal action of 0(2) and if (x,(t), x2(t), yi(t), 

MO) * a so,u,io„ of (.) lying on D and , ( 0 : =^MhO + *{«))». 

t;(r): = (j>,2(/) + yl(t))xl + bn(x
2(t) + x2

2(t))3/2, then (u(t), v(i)) is a solution of 
the system 

u = v 

.3 , i /A , u \*.2„ , n / ^ ( 2 ) . - A,. + V + (ft21 + - ft,,*, - ft, A j . . + 3(ft„ + ftj. „ + 0(3) 

(cf. [11]). If b21 # 0, bn + b22 # 0, then the bifurcations of (2) are well known (see 
e-g- [3], [12], [17]). It is also well known that under these generic assumptions the 
family (2) is structurally stable in the space of equivariant families of plane 
vector fields of the form Z =/(A, Z), A = (A,, X2)eR2, possessing the symmetry 
property f(A, — Z) = — f(A, Z). 

Using the normal form theorem from [6] we derive a normal form of order k 
(3 ^ k ^ oo) for an 0(2)-equivariant vector field on R4 with a non-zero nilpotent 
linear part. If we truncate terms of higher order than 3 in this vector field, we 
obtain a normal form of order 3 which differs from this studied by J. Gucken-
heimer in [11], however it is again 0(2)-equivariant and the set D defined as 
above is its invariant set. The same is also true not only for this normal form 
of order 3 but for the normal form of arbitrarily large order. 

Consider the system 

y = L0y+f(y), (3) 

whereye R" or ye CnJ'e C , 2 ^ r <* oo,f(0) = 0 and all eigenvalues of L0 have 
zero real parts. A transformation of the form y = x + <P(x), where <£> is a 
CX-map, transforms (3) into the form 

x = g(x) : = L0x + F(x) + R{z)9 (4) 
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where ReC\ R(x) = 0(||JC||*), 1 <_ k _g r __; oo and F is a polynomial map of 
degree k. If F is as simple as possible (e. g. if it does not contain any resonant 
term; see [12]), then the system 

x-h(x): ~L0x + F(x) (5) 

is called a normal form of the system (3) of order k. Iffe C00, then a normal form 
of (3) can often be found in the form (5), where F is a smooth map (not a 
polynomial map in general) and the map R in (4) is a flat map, i.e. a smooth 
map with zero Taylor series at the origin. Then the system (5) is called a normal 
form of order oo. 

In our further considerations we assume feC00. 

Theorem 1. (see [6, Theorems 3, 4]). Let the matrix L0 of the linear part of (3) 
be in the Jordan form and all its eigenvalues have zero real parts. Then there is a 
smooth transformation of coordinates y = x + @(x) near the origin, transforming 
(3) into the following normal form of order oo: 

n 

x = L0x + £ aj(x) i?yx, (6) 
j=i 

where ££u $£2, ..., ££n are linear operators commuting with L$(L$— the adjoint 
of L0) such that for almost all x the system {J£jx: j = 1, 2, ..., n} forms a basis 
for Rn (or Cn, f(3) is defined on Cn) and ay(x),j = 1, 2, ..., n are first integrals 
of the system 

x = Lpc. (1) 

If there exists a linear unitary operator T which commutes with the vectorfield(3), 
then a normal form of the form (6) can be found which commutes with T as well 

L*t 

as with e °, teR. 
The assertions of Theorem 1 are formulated in [6] for normal forms of finite 

order only, however the Borel theorem (see, e. g., [1, Theorem 4. 9]) implies that 
the same assertions are valid also for normal forms of order oo. 

Now, let us consider a system of the form (3) on R4 equivariant with respect 
to the diagonal action of 0(2). By [11] the matrix L0 has the form 

(8) 

and this matrix is nilpotent if and only if a,, + a33 = 0, ana33 — aua3x = 0. If 
the matrix (8) is non-zero and nilpotent, then, using an 0(2)-equivariant linear 
change of coordinates, one can transform the system (3) into the same form with 

211 

«11 0 «IЗ 0 

Lo = 
0 
öЗ I 

au 

0 
0 

«зз 

fliз 

0 
_ 0 flзi 0 ÖJЗ 



Ln = 

0 0 1 0 " 
0 0 0 1 
0 0 0 0 
0 0 0 0 

(9) 

which is also 0(2)-equivariant. Therefore we assume L0 to be in the form (9). 
Let M4(0(2)) be the set of all 4 x 4 matrices defining linear vector fields on 

R4 eqivariant with respect to the diagonal action of 0(2) and let IV <z M4(0(2)) 
consists of all non-zero nilpotent matrices. Since #,, + <% = (), 
aua33 — a13a31 = 0, L0 # 0 for L 0e /Vand L0 of the form (8), the implicit function 
theorem implies that N is a smooth submanifold of M4(0(2)) of codimension 2. 
I fL : i? 2 ^M 4 (0(2)) , 

L(Я): 

0 0 1 0 
0 0 0 1 
A, 0 Я2 0 
0 A, 0 Яj_ 

(10) 

X = (Xx, A 2 ) G R 2 , then L transv&r sally intersects N. 

We shall therefore study unfoldings of (3) with L0 given by (9) which has its 
linear part defined by (10). First, let us outline how to derive a normal form for 
(3) with L0 given by (9). 

1—'Ci x —*- \xj, x2? *̂3> "̂ 4/9 -̂  — *̂ l ' x̂2? : 

the folllowing complex form: 
x4 + ix4. Then one can write (3) in 

(П) 
X= Y+F,(X, X, Y, Y) 

Y = F2(X, X, Y, Y). 

If we denote X = z, Y= w,u = X = z, v = Y = w and add to (11) its complex 

conjugate system, then we obtain a system of the form (3) on C 4 with 

(12) 

Using Theorem 1 one can derive the following normal form of this system of 
order oo: 

" 0 1 0 0 " 

L0 = 
0 
0 

0 
0 

0 
0 

0 
1 

0 0 0 0 

Z = W 

w = wPx(z, f, wž — zw) + wP2(z, z, wž — zw) + Ö,(z, z) 

ž — w 

(13) 

212 



. n4) 
w = wP,(z, Z, WZ - zw) + wP2(z, z, wz - zw) + Q,(z, z), 

where PX9 Pl9 Qx are complex valued functions. In [6] and also in [4] a normal 
form of systems on R4 with the linear part defined by (12) is derived and it has 
formally the same form as (13), (14), where the real variables xu xl9 x3, x4 are 
instead of z, w9 z, w9 respectively, and some smooth real functions instead of P]9 

P2 and Q,. Obviously, it is sufficient to consider the system (13) only. Since the 
original system (3) is 0(2)-equivariant, the system (13) is invariant with respect 
to the transformations 

Xx(z9 w) = (ei@z9 e
iBw\ 0eR (15) 

X2(z9 w) = (z~, w). (16) 

By Theorem 1 there is a normal form of the system (3) of the form (13), (14) 
which is also invariant with respect to these transformations. This invariance 
implies that 

P,(z, z, wz — zw) = ^,(|z|2, wz — zw), P2(z, z, wz — zw) = 0, 

Qx(z9 z) = zW2(\z\2) for some complex valued functions W]9 W2. We obtain a 
system of the form 

z == w 

w = wWx(\z\2
9 wz - zw) + zW2(\z\2). 

(17) 

If z = x, + ix29 w = x3 + ix49 then the system (17) written in real coordinates xX9 

xl9 x39 x4 has the form 

Xx = X 3 

X2
 :=:: A4 

x3 z==- XT)AX\XX + x2 , Xjx4 x2*^3/ •̂ 4J 2̂\'̂ 1 + *̂2? xix4 x2*^3/ + /i o\ 
+ x,R,(x,2 + x2

2) - x2R2(x,2 + xl) 
X4 = X^Jr2\Xx + x2, XXX4 — X2X$) + X4JLX\X2 + X2 , xix4 x2"^3/ • 

+ xxR2(xf + x2
2) + x2Rx(xf + x2

2) 

for some smooth real functions PX9 Pl9 Rl9 R2. As a consequence of the in
variance of the system (17) with respect to the map X2 (see (16)) we have that 
W2 in (17) is a real function and this implies that in (18) we have R2 == 0. The 
invariance of (17) with respect to the map (16) implies the invariance of the 
system (18) with respect to the map (16) implies the invariance of the system (18) 
with respect to the map X3(xl9 xl9 x3, x4) = (xl9 —xl9 x3, — x4) and therefore 
P2 = 0. Thus we have obtained that the 0(2)-equivariant system (3) on R4 has 
the following normal form of order oo: 
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X\ — X"i 

X.22X4~ ~ 2 2 ( 1 9 ) 
x3 =:: x3-» vxl + x2 , xlx4 x2^3/ + *^l5s^v^i + *̂ 2 ) 
x4 ==: x4x \x j + x2 , xjx4 x2x3/ + x2atJ»>Vxl + *̂ "2 /* 

where P, Q G C 0 0 . Since our considerations are local, near the origin, we may 
assume without loss of generality that 

\P(u9 v)\ = K for all (u, v)eR\ (20) 

where K is a positive constant. 

Lemma 1. Let the condition (20) be satisfied, cp(t) = (xi(t), x2(t), x3(tX ^ ( 0 ) 
be a solution of the system (19) and <p(0)eD: = {(x,, x2, x3, x4)eR4:xlx4 — 
_ x2x3 = 0}. Then (p(t)eDfor all teR. 

Proof . If ¥(t) = J C , ( 0 * 4 ( 0 ™ x2(t)x3(t)9
 t h e n 

^ - P(x2(t) + x2(t), ¥(t)) ¥(t). (21) 
dt 

If (p(0) e Z), then *.F(0) = 0 and therefore we have 

¥(t) - ¥(0) = P P(x,2(s) + x|(s), ¥(s)) (¥(s) - ¥(0))ds 
Jo 

and this yields the inequality 

I ¥(t) - *F(0)| = K f I ^(s) - <F(0)| ds. 
Jo 

The Gronwall lemma implies that *F(t) = ¥(0) = 0 for all t e i?, i. e. 0>(t) e Z) for 
a l l tei? . 

The reduction of the system (19) to the sub variety D has the form 

X\ -— X*i 

Xn —— XA 

\ ~ (22) 
x3 = X3P(xf + x|) + xtCkx? + x|), 
x4 = x4P(xj2 + x2

2) + x2Q(x\ + x2
2), 

where P(u): = P(w, 0), Q(u): = ()(w, 0). 
Now, let us consider an 0(2)-equivariant unfolding of (19) which has the form 

xl = x3 

X-y =z
 XA 

(23) 
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x3 — Ajxj + A-ix3 + X$(j(X\ + x2 , xix4 — x2x3, A) + X\ti\X\ + x2 , X) 

x4 = Ajx2 + A x̂4 + x4&(xi + x2 , xix4 — x2*^3? A) + x2/l(xj + x2 , A), 

where A = (A,, A2, ..., Xk)eRk is a parameter, G, FIeC00, G(u, v, 0) = P(u, v), 
H(u, 0) = Q(u) for (w, V)GR2. We assume that 

|G(w, t>, A)| g L for all (w, 0, A)e R2 x i?*, (24) 

where L is a positive constant. By the same procedure is in the proof of Lemma 1 
one can show that if the condition (24) is satisfied, then the subvariety D from 
Lemma 1 is also an invariant set of the unfolding (23). The reduction of the 
system (23) to the set D has the form 

X\ ^^ x^ 

X*y ^^ XA 

(25) 
x3 = X\X{ + XjX3 + x3P(xf + x2

2, A) + xiQ(xi2 + x2
2, A) 

x4 = Ajx2 + A2x4 + X4P(X\ + x2 , A) + x20(xi + x2 9 A), 

where P(w, 0) = P(u), Q(u, 0) = Q(u) for (u, v)eR2 . The family (25) is an 
0(2)-equivariant unfolding of (22). One can check that if x = (xl5 x2, x3, x4) is 
a solution of the system (25) and a = x2 + x|, /3 = x3

2 + x|, Y = x\x4 + xix3> 
then (a, /?, Y) is a solution of the system 

a =2Y 

$ = 2(X\ r+X2P+ P(a, X)P+ Q(a, X) y) (26) 

7 = p+X\a + X2Y+ P(a, A)7 + Q(a3 X)a. 

Since aji = y2 + S2, where 8 = x{x4 — x2x3, the equality 8=0 implies that 
aj3 = Y2- Using this equality one can show that if X = %fa, Y = yffi, then (X, Y) 
is a solution of the system 

X~Y , , (27) 
Y=X\X+X2Y+Q(X2,X)X+P(X2,X)Y. 

Theorem 2. Let F be a smooth vector field on R4 which is equivariant with 
respect to the diagonal acation of 0(2) on R4. If the vector field F has the 
equilibrium point at the origin with linearization defined by a non-zero nilpotent 
matrix, then the following assertions hold: 
(1) A normal form of order 00 of the vector field F has the form (19) and it is 

0(2)-equivariant. 
(2) If the condition (20) is satisfied, then the subvariety D: = {(xi, x29 x3> 

x4)eR4: x,x4 — x2x3 = 0} is an invariant set of the system (19). 
(3) IfFis the vector field defined by (19), then the vector field F/D is represented 

by the system (22) which is 0(2yequivariant. 
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(4) The family (23) is an 0(2)-equivariant unfolding of (19), the set D is its 
invariant set and the reduction of (23) to this set has the form (25) which is an 
0(2yequivariant system. 

(5) If x = (xl9 x2, x3, x4) is a solution of the system (25) and a = xf + xf, 
j5 = xl + x|, 7 = xjx3 + x2x4, f/ien (a, /?, 7) is a solution of the system (26). 
Moreover, if xeD and X = y a , F = Vp, t/ten (X, 7) is a solution of the 
system (27) 

(6) Z f a P ( 0 > Q) # 0, S g ( 0 ? Q) # 0 and XeR\ then (27) is the structurally stable 
8x 5x 

family in the space of all 2-parameterfamilies of plane vector fields equivariant 
with respect to the rotation by n in the plane (for the bifurcations of (21) see, 
e.g., [3], [12], [17]). 

Proof . The assertions (1)—(5) follow from Lemma 1 and the considera
tions before Theorem 2. The assertion (6) is a consequence of the results 
published by J. Carr in [3]. 

I f e P ^ O ) 9Q(Q> 0) = Q̂  t h e n t h e f a m i l y ( 2 7 ) i s a n u n f o l d i n g 0 f a vector field 
3x 9x 

possessing a singularity of codimension greater than 2. Bifurcations of vector 
fields of the form (27) near a codimension 3 singularity are studied in [5] (see also 
[15] for the nonsymmetric case). 

2. On vector fields with a pair of pure imaginary eigenvalues of multiplicity 2 

Let us consider a smooth vector field on i?4, represented by the system (3) 
with 

0 -co 1 0 " 
(0 0 0 1 
0 0 0 -CÛ 

0 0 co 0 

(28) 

T h e analysis of bifurcat ions of unfoldings of such a vector field is still an open 
problem. For a normal form and quotations of papers concerning this case see, 
e.g., [12]. 

The system (3) with L0 given by (28) can be written in the following complex 
form: 

£, = KHZ, +z2 + E,(z,, z2, £„ £2) 

i 2 = icoz2 + F2(zu z2, £ „ £2). 
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Assume that the following conditions are satisfied: 

Fi(zuz29 z„ z2) = Fl(zu z2f f „ f2) for i = 1, 2 and all z„ z2e C, (30) 

e^(z„ z2, z„ z2) = Fi(e
iezu e/az2, e~0zu e~i0z2) 

for 7 = 1 , 2 and all <9ei?, z„ z2eC. 

After introducing new variables w, = e~/ft*z„ W2 = e~~imtz2 the system (29) be
comes 

iv, = w2 + Fx(wu w29 wu w2) 

w2 = F2(wl9 W2, w„ w2). 

Since we assume that the functions Fl9 F2 satisfy the conditions (30), (31), the 
system (32) is invariant with respect to the transformations Xu X2 (see (15), 
(16)), i.e. the corresponding real system is 0(2)-equivariant. By Theorem 1 (see 
also [6]) the system (32) has the following normal form of order oo: 

yl=y2 ( 3 3 ) 

y2 = yl<Pl(lyl.2> yly2 ™ yly2) + y2%(lyl|2? yly2 ~ yly2X 

and this system is also invariant with respect to the transformations Xx and X2. 
Using this invariance property one can check that if yx = xx + ix2, y2 = x3 + ix4, 
then the system (33) written in the real variables x„ x2, x3, x4 has the form 

Xx = x3 

* 2 = X 4 _ - 2 2 ( 3 4 ) 
X3 : = X-$JiyXx + x2, xjx4 x2*^3/ ' *̂ l2._5v̂ l • ^2* xlx4 "^2*^3/ 

x4 = X4Jr\Xx + x2, Xjx4 x2*^3/ ~» ^2xi\?^\ • ^2' XXX4 x2x3/. 

Since our considerations are local, near the origin, we may assume without loss 
of generality that 

\P(u9 v)\SK for all (u9 v)eR2. (35) 

Similarly as in the proof of Lemma 1 one can show that the subvariety 
D: = {(xx, x2, x3, x4) e R4: xxx4 — x2x3 = 0} is an invariant set of the system (34). 
The reduction of (34) to the subvariety D has the form (22), where P(u) = P(u9 

0), Q(u) = Q(u9 0). 
Now, consider the following 0(2)-equivariant unfolding of the system (34): 

X i -"- X\ 

X2 = x4 

X^ = Ajxj + A2x3 + X$W(XX + x2, xjx4 — x2*^39 ^) "+ (1&\ 
+ Xx i \XX + x2, xjx4 — x2x3, A>) 
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x4 — A|x2 + ^2x4 ~f~ x4CP(x| + x2 , xjx4 — x2-^3? X) 4" 

~t" x2 T'\<XX "T~ x2 , xjx4 x2x3, /t ,̂ 

where d>, *P are smooth functions, #(«, tj, 0) = P(u, v), W(u, v) = Q(u, v), 
X = (Aj, A2, ..., Xk)eR'. 

We assume that the following condition is satisfied: 

10(w, t;, A)| £ L for all (w, i;, A)e i?2 x Rk, (37) 

where L is a positive constant. Then the set D is an invariant set of the system 
(36) (see Lemma 1) and the reduction of this system to the set D has the form 
(25), where P(u, X) = <P(u, 0, A), Q(u, X) = W(u, 0, X). We have proved the 
following theorem. 

Theorem 3. Let Fbe a smooth vector field on R4 defined by the equation (3) with 
L0 given by (28), and let the system (29) be its complexification. Then the following 
assertions hold: 
(1) The transformations wx = E~~imzx, w2 = e~~imz2 transform the system (29) into 

the form (32) which is invariant with respect to the transformations (15), (16). 
(2) The real system corresponding to the system (32) has the form (34) and this 

system is 0(2)- equivariant. 
(3) If the condition (37) is satisfied, then the set Z):={(x l 9 x2, x3, 

x4)eR4: x!x4 — x2x3} is an invariant set of the system (34) and its reduction 
to the set D has the form (22), Where P(u) = P(w, 0), Q(u) = Q(u, 0). 

(4) The family (36) is an 0(2yequivariant unfolding of the system (34) and if the 
condition (37) is satisfied, then the set D is an invariant set of this family. The 
reduction of the system (36) to the set D has the form (25) and for this family 
the assertions (5) and (6) of Theorem 2 are valid. 

3. 0(2) x S]-equivariant vector fields on C2 

M. G o l u b i t s k y an M. R o b e r t s studied in their paper [8] the Hopf 
bifurcation for vector fields on C2 equivariant with respect to the following 
transformations: 

0(zu z2) = (ei0zu e~i0z2), 0eR 

K(zu z2) = (z2, zx) (38) 

<p(zuz2) =(e*zue*z2),<peR 

(0(2) x Sl-equivariant vector fields; see [8]). By [8, Proposition 2.1] such equiva
riant vector fields have the form 
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-"(P + адM + fr+.^^P1], (39) 
A 

where zx, z2eC, p, q, r, s are smooth functions of (N, A) with real values, 
N = |z,|2 + \z2\

2, A = 82, 8= \z2\
2 - |z,|2. Following [8] we write zx = xe'**, 

z2 = ye 2 and from (39) we obtain the system 

x = (p + rð) x 
ў = (p-rő)y 

Ч?x=q + sS 

Чţ^q-ső 

amplitude equations (40) 

phase équations. (41) 

The equations (40) are invariant with respect to the transformations I:(x9 

y) -»(x, — y) and J: (x, y) -»(y, x), i. e. these equations are invariant with respect 
to the action of the dihedral group D4. By [2] this is the general form of 
D4-equivariant vector fields on R2. 

Now assume that the functions p, q, r, s depend also on some parameter 
XeRk. Then we have the family 

x = p(N9 A9 X) x + r(N9 A9 X) Sx 
y = p(/V, 4 X)y - r(/V, A9 X) Sy9

 ( 4 2 ) 

where IV = x2 + y2, 8 = y2 — x2, A — S2 and p, r are smooth functions. The 
phase equations have the form 

% = q(N9A9X) + s(N9A9X)S 
W2 = q((N9A9X)~s(N9A9X)89 

where q9 s are smooth functions. Since we are interested in bifurcations near the 
origin, it is convenient to study a modification of the system (42). If U9 V are 
neighbourhoods of the origin in Rk + 2 such that 0 aV and V is a compact set, 
then there are smooth functions r:Rk + 2 -> R9 p:Rk + 2 -> R such that r = r, 
p = p on U and r = 0, p = 0 outside V. By the modification of the system (42) 
we mean the system of the same form, where the functions p and f are instead 
of p and r, respectively. Then the functions p and rN are obviously bounded and 
so we may assume without loss of generality that for the original system (42) the 
following condition is satisfied: 

\r(u9 v9 X) u\ = K9 \p(u9 v9 X)\ = K (44) 

for all (u9 v9 X)eR2 x Rk
3 where K:is a positive constant. Using the system (42) 

it is easy to prove the following lemma. 
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Lemma 2. If (x(t)? y(t)) is a solution of the system (42) and 
N(t) = x2(t) +y2(t), S(t) = y2(t) - x2{t% then (iV(t), 8{t)) is a solution of the 
system 

N = 2{p(N, 8\ X)N + r(/¥, 8\ X) S2) 

8 = 2{p(N9 S
2, X)8~ r(N, 82, X)NS) 

Lemma 3. Let cp(t) == (x(t), y(t)) be a solution of the system (42) and 
<p(Q)eE: = {(x, y)eR2: 8: = y2 — x2 = 0}. Assume that the condition (44) is 
satisfied. Then (p(t)eEfor all teR. 

Proof . From the condition (44) we obtain that if <p(Q)eE and T{t) = 
= y2(t) - x2(t), then 

| «F(f) - ¥"(0)| = 4K | Y(s) - «F(0)| <fc 

and the Gronwall lemma implies that Y(t) = !P(0) = 0 for all teR, i. e. q>(t)eE 
for all t e R. 

The reduction of the system (42), (43) to the invariant set E is 

x = P(2x2, X)x 
• Dr> 2 n

 ( 4 6 ) 

y = P(2y2, X)y 
% = Q(2x2, X) 

% = Q(2x2, X) 
(47) 

Theorem 4. Let 

z=f(z,X), zeC2, XsRk (48) 

be a smooth k-parameter family of vector fields on C2 equivariant with respect to 
the transformations (38) and assume, that f(0, 0) = 0. Then the following asser
tions hold: 
(1) The family (48) has the form (39). 

jiff ;w 

(2) If z = (z,, z2), z, = xe \z2= ye 2, then the equations for x, y, *FU *F2 have 
the form (42), (43). 

(3) If the condition (44) is satisfied, then the set E: = {(x, y, *FU 

*F2)eR4:y2 — x2 = 0} is an invariant set of the family (42), (43). 
(4) The reduction of the family (42), (43) to the invariant set E has the form (46), 

(47). 
(5) If(x0, y0, ¥* ¥*): = Y0eEandr(t) = (x(t),y(t), %(t), V2(t)) is a solution 

of the system (46), (47) satisfying the initial condition y(0) = y0, then 
z(t) = (2,(0, z2(t)) = (x(t)eiW'('\ y(t)ei'F2(')) is a solution of the system (48), 
i. e. (39). 
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(6) If(x0, y0) is an equilibrium of the system (46), then the set T(x0, y0): == {(zi, 
z2)eC2:z, = xoe' \ z2 = yoe' 2, *FX9 ^2^^} *5 a w invariant set of the system 

•(P(\zx
2 + \z2\

2,X) + iQ(\zx\
2 + \z2\

2,X)) (49) 

where P(u, A) = p(u, 0, A), Q(w, A) = q(w, 0, A), i. e. this is the system (39) with 
5 = 0 , T(0,0) = {(0,0)} and ifx0 # 0, y0 = ± x0, then T(x09 y0) is an invariant 
2-toriT2 of (48). 

(7) _4n equilibrium solution (x0, y0) of the amplitude equations (46) is stab/e fand 
only if the corresponding equilibrium point T(0, 0) (if x0 = 0) or invariant 
2-torus T2 = r(x0 , y0) (if x0 # 0, y0 = + x0) is a stable invariant set of the 
system (48). 

Proof . The assertions (1)—(5) follow from Lemma 2, Lemma 3 and the 
considerations before Theorem 4. The assertions (6), (7) follow from the rela-
tions zj = xe \ z2 = ye 2, where (z,, z2) is a solution of (49) and (x, y, y,, *P2) 
is a solution of the system (46), (47). 

Remark . Since we have to do with the reduction to the invariant set E 
defined by the equation x2 = y2, this reduction does not possess the invariant 
circle T(x0, 0) or T(0, y0) for x0 ^ 0, y0 # 0. Of course, the original general 
system (39) may possess such invariant circles (see [8]). However, our reduction 
(46), (47) is very simple and its equilibria are relatively simply computable. The 
form of these equations enables us to solve also higher codimensional bifurca
tion problems. Using the Malgrange-Weierstrass preparation theorem (see, e. g., 
[1, Theorem 6.3]) we are able to simplify the system (46), (47) near the origin as 
follows. By this theorem the following holds: 

m o)-2^3-2) _0 . ^ 1 .2 . . . . , „ - l .
s " / ' t o - 0 >#o. 

dxk dx" 

e(0,o) = * 2 M = o, j=i,2,...,m-h^S!M>^ 
dxJ dxm 

then there is a neighbourhood Wx x W2a R x Rk of the origin and smooth 
functions 0(x, A), (pk(X), k = 1, 2, ..., n, t](x, A), (Qj(X),j = 1, 2, ..., m defined 
for all xe Wx, Xe W2 such that 0(x, X) -£ 0, t](x, X) -.- 0 for all (x, X)e Wx x W2, 
<pk(0) = 0, o)j(0) = 0 for all kj and P(2JC2, A) = 0(x, X) ((x2)" + <p„(X) (x2)" -' + 
+ ... + (px(X)), Q(2x2, X) = 7](x, X) ((x2)m + com(X) (x2)m-x + ... + cox(X)) for 
all (x, A)e Wx x W2. Putting these expressions into the system (46), (47) and 
dividing it by the function 0(x, X) we obtain the system 

x = x2" + (p„(X) x2" ~2 + ... + <px(X) 
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(50) 
y=,y^+(Pn(X)y2n-2+...+(Px(X) 

% = i?(x, X) (x2m + mJX)x2m-2 + ... + mx(X)) 

W2 = R(x,X)(x2m + mJX)x2m-2 + ... + ml(X)l 

where i?(x, X) = ^(x, X) (0(x, A))"1. 
If k = dim A = n, 0 : = (pl9 $>2, ..., (pn):R

n -+ Rn and if we assume that the 
derivative d&(0):Rn -+ Rn is an isomorphism, then we may introduce new 
coordinates et = ^(A), i = 1,2,..., n in a sufficiently small neighbourhood of the 
origin in the parameter space. In these new coordinates the family (50), (51) has 
the form 

X = X2n + 8nX2n-2 + . . . + €x 

• 2« 2n 2 (52) 
y=y + ^ y + . . . + * | 

% = i?(x, e) (x2m + mje)x2m~2 + ... + mx(s)) 

W2 = R(x,s)(x2m + mJs)x2m-2+... + mx(e)) 

where s= (£,, s2, ..., sn)eRn and the functions i?, mXj ..., mm have the same 
properties as R and mx, m2, ..., mm, respectively. 

Obviously, if (x0, y0) is an equilibrium of (52) and x0 = y0
2, then we have three 

equilibria (x0, x0), (x0, — x0), (— x0, x0) generated by the real root of the equation 

x2w4-^x2w~2+ ... + £,=<> (54) 

and the following proposition holds. 

Proposition. If c is the numbear of real roots of the equation (54), then the 
number of equilibria of (52) lying in the invariant set E: = {(x, y) e R2: x2 — y2 = 
= 0} is 3c. 
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НОРМАЛЬНЫЕ ФОРМЫ И БИФУРКАЦИИ НЕКОТОРЫХ ЭКВИВАРИАНТНЫХ 
ВЕКТОРНЫХ ПОЛЕЙ 

МПап МеёуесГ 

Р е з ю м е 

В этой статье рассматриваются бифуркации гладких 0(2)-эквивариантных векторных 
полей на I? и тоже 0(2) х 51-эквивариантных векторных полей на С2. Показано что некотор
ые нормальные формы бесконечного порядка таких ве кторных полей имеют специальные 
инвариантные многообразия и приведены некоторые теоремы касающееся бифуркации ре
дукции таких нормальных форм на эти многообразия. 
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