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NORMAL FORMS AND BIFURCATIONS OF SOME
EQUIVARIANT VECTOR FIELDS

MILAN MEDVED

Many recent papers (e. g. [2], [8], [10], [20], [21]) and also some books (e. g. [9],
[16], [19]) have been dealing with local bifurcations for equivariant vector fields
and as the main tool the well-known Ljapunov-Schmidt reduction meth-
od has been used. Recently global bifurcations of periodic solutions of equiva-
riant vector fields are very intensively studied (see, €. g., [7] and [18]) and besides
the Ljapunov-Schmidt method also topological and homotopical methods are
used there. However, there are only few remarks in the above mentioned papers
and books about the existence of some further invariant sets and about dynami-
cal properties of invariant sets including periodic trajectories. The Ljapunov-
Schmidt method is very useful for detecting periodic trajectories but it can hardly
be used for detecting other, more complicated invariant sests and their dynami-
cal properties. A very effective method for a complex study of the local proper-
ties of differential equations is the normal forms method. Motivated by the
paper of J. Guckenheimer [11] on a codimension two bifurcation with
circular symmetry we study several bifurcation problems concerning equiva-
riant vector fields whose normal forms possess some invariant subvarieties. The
reductions of such vector fields to these subvarieties often represent bifurcation
problems with known solutions. In the papers of A. K1i& [13], [14] the idea
of looking for periodic solutions of symmetric equations on some invariant
submanifolds defined by the symmetry of these equations is also used. Namely,
he studies there the period doubling bifurcation for 1-parameter families of
vector fields invariant with respect to an involutory mapping.

We use in this paper a normal form theorem published very recently in [6].
Normal form theorems of such kind (see also [4] and [18]) seem to be a very
powerful tool especially for solving bifurcation problems of equivariant vector
fields on higher dimensional spaces.

1. 0(2)-equivariant vector fields on R*

J. Guckenheimer studied in [11] vector fields on R* with non-zero nilpotent
linear parts equivariant with respect to the diagonal action of 0(2), the group of
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orthogonal 2 x 2 matrices, on R*. He derived a normal form of order 3 for such
vector fields and studied their 0(2)-equivariant unfoldings which have the form

X =y 4+ (57 + x37) (b x, + byyy)
Xy =y, + (x{ + x7) (b1 X, + bpyy2)
V= Ax + Ay 4+ (X7 + x3) (byx, + bypyy)
Yy = AXy + yy + (xf + x3) (by X,y + byys),

where b;e R and A,, 4, are real parameters.

The subvanety D: = {(x, y)eR X y - xzy, = O} is an invariant set of the
family (1). The functions a = x} + x#, 8=y} + y and y = x,y, + Xx,y, are
invariant with respect to the diagonal action of 0(2) and if (x,(¢), x,(¢), y,(2),

¥-(t)) is a solution of (1) lying on D and u(?): =%b,2(x1(t)+x§(t))3/2

v(t): = (i) + y3(O)'? + by (x{(1) + x3(1))**, then (u(1), v(2)) is a solution of
the system

u=v

b= A+ Ay + (bz. + % bk, — sz) u + 3(by + bp)uv +03) P

(cf. [11]). If by, # 0, by, + by, # 0, then the bifurcations of (2) are well known (see
e.g. [3], [12], [17]). It is also well known that under these generic assumptions the
family (2) is structurally stable in the space of equivariant families of plane
vector fields of the form Z = (4, Z), A = (4,, 4,) € R?, possessing the symmetry
property f(A, —Z) = — f(4, Z).

Using the normal form theorem from [6] we derive a normal form of order k
(3 = k = ) for an 0(2)-equivariant vector field on R* with a non-zero nilpotent
linear part. If we truncate terms of higher order than 3 in this vector field, we
obtain a normal form of order 3 which differs from this studied by J. Gucken-
heimer in [11], however it is again 0(2)-equivariant and the set D defined as
above is its invariant set. The same is also true not only for this normal form
of order 3 but for the normal form of arbitrarily large order.

Consider the system

y =Ly +f), (3)

where ye R"or ye C", fe C',2 < r £ o0, f(0) = 0 and all eigenvalues of L, have
zero real parts. A transformation of the form y = x + @(x), where @ is a
C”-map, transforms (3) into the form

% = g(x): = Lyx + F(x) + R(2), 4)
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where Re C’, R(x) = 0(||x||*), | £k <r < o and F is a polynomial map of
degree k. If Fis as simple as possible (e. g. if it does not contain any resonant
term; see [12]), then the system

X =h(x): = Lyx + F(x) (5)

is called a normal form of the system (3) of order k. If fe C*, then a normal form
of (3) can often be found in the form (5), where F is a smooth map (not a
polynomial map in general) and the map R in (4) is a flat map, i.e. a smooth
map with zero Taylor series at the origin. Then the system (5) is called a normal
form of order oo. .

In our further considerations we assume fe C*®.

Theorem 1. (see [6, Theorems 3, 4]). Let the matrix L, of the linear part of (3)
be in the Jordan form and all its eigenvalues have zero real parts. Then there is a
smooth transformation of coordinates y = x + ®(x) near the origin, transforming
(3) into the following normal form of order o

X=Lox+ Y o(x) £ x, (6)
i=1
where ¥, ¥,, ..., &, are linear operators commuting with L§ (L§— the adjoint
of L) such that for almost all x the system {¥x: j =1, 2, ..., n} forms a basis
Jor R" (or C", if (3) is defined on C") and a)(x), j =1, 2, ..., n are first integrals
of the system
X = L¥. @)

If there exists a linear unitary operator T which commutes with the vector field (3),
then a normal form of the form (6) can be found which commutes with T as well
as with eLal, teR.

The assertions of Theorem 1 are formulated in [6] for normal forms of finite
order only, however the Borel theorem (see, €. g., [1, Theorem 4. 9]) implies that
the same assertions are valid also for normal forms of order oo.

Now, let us consider a system of the form (3) on R* equivariant with respect
to the diagonal action of 0(2). By [11] the matrix L, has the form

a, 0 a3 0
_ 0 a” 0 a|3
L= ay 0 ay 0 ®)

0 a; 0 aj;

and this matrix is nilpotent if and only if a,, + a;; =0, a,,a;; — a;a;, = 0. If
the matrix (8) is non-zero and nilpotent, then, using an 0(2)-equivariant linear
change of coordinates, one can transform the system (3) into the same form with
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0010
000 1

L=loooo ®
0000

which is also 0(2)-equivariant. Therefore we assume L, to be in the form (9).

Let M,(0(2)) be the set of all 4 x 4 matrices defining linear vector fields on
R* eqivariant with respect to the diagonal action of 0(2) and let N < M,(0(2))
consists of all non-zero nilpotent matrices. Since a;; + a3 =0,
a,,as3 — a3ay, = 0, Ly # 0 for Lye N and L, of the form (8), the implicit function
theorem implies that N is a smooth submanifold of A,(0(2)) of codimension 2.
If L: R* - M,(0(2)),

L(A): = (10)

A= (4, A)eR?, then L transvérsally intersects N.

We shall therefore study unfoldings of (3) with L, given by (9) which has its
linear part defined by (10). First, let us outline how to derive a normal form for
(3) with L, given by (9).

Let x = (x,, X5, X3, X4), X = x, + ix,, ¥ = x, + ix,. Then one can write (3) in
the folllowing complex form:
X=Y+FX X,7,7) an
Y=FEX, X, Y, Y).

Ifwedenote X =z, Y=w,u=X=2v=Y=wand add to (11) its complex
conjugate system, then we obtain a system of the form (3) on C* with

0100

0000 :
L°‘0001' (12)

0000

Using Theorem 1 one can derive the following normal form of this system of
order o0:

Z=w

13
w=wP(z, Z, wZ — z2W) + whP(z, Z, wZ — zw) + Q,(z, 2) (13)
Z=w
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(14

W = wP\(z, Z, WZ — zW) 4+ wP(z, Z, wz — zW) + Q,(z, 2),

where P, P,, Q, are complex valued functions. In [6] and also in [4] a normal
form of systems on R* with the linear part defined by (12) is derived and it has
formally the same form as (13), (14), where the real variables x,, x,, x;, x, are
instead of z, w, Z, W, respectively, and some smooth real functions instead of P,,
P, and Q,. Obviously, it is sufficient to consider the system (13) only. Since the
original system (3) is 0(2)-equivariant, the system (13) is invariant with respect
to the transformations

Xi(z, w) = (e®z, ¢"®w), @R (15)
X,(z, w) = (z, w). (16)

By Theorem 1 there is a normal form of the system (3) of the form (13), (14)
which is also invariant with respect to these transformations. This invariance
implies that

R(Z, Z-, wzZ — ZW) = I//I(IZIZ, wz — Z"T))’ I)Z(Z, f’ wz — ZM—/') = 0»
Q.(z, 2) = z¥(z|*) for some complex valued functions ¥,, ¥,. We obtain a
system of the form
Z=w

. 17
w=w(z’, wz — zw) + z¥(z]). (17

If z = x, + ix,, w = x; + ix,, then the system (17) written in real coordinates x,,
X,, X3, X4 has the form

xl = X3

Xy = X4

Xy = X3 P(X] + X3, XX — X,%3) — X4 P(xf 4 X3, X1 x4 — x03) +
+ xRy (xf 4 x3) — X, Ry(x{ + x3)
X3 Py(XF + X3, XXy — X,%3) 4+ Xy P (x5 + X3, 20X, — Xp3) +
+ X, Ry(x} + x3) + x,R\(x? + x3)

(18)

X4

for some smooth real functions P,, P,, R,, R,. As a consequence of the in-
variance of the system (17) with respect to the map X, (see (16)) we have that
¥ in (17) is a real function and this implies that in (18) we have R, = 0. The
invariance of (17) with respect to the map (16) implies the invariance of the
system (18) with respect to the map (16) implies the invariance of the system (18)
with respect to the map X;(x,, x,, X3, X4) = (X;, — X, X3, —Xx,) and therefore
P, = 0. Thus we have obtained that the 0(2)-equivariant system (3) on R* has
the following normal form of order co:
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fC, = X3
’X.’IZ = X4
Xy = 7‘31)()512 + xzz, X1 X4 — X5X3) + le(x12 + xzz)

X, = xdp(xlz + x22, X1Xg — X3X3) + XZQ(xlz + x22),

(19)

where P, O e C*. Since our considerations are local, near the origin, we may
assume without loss of generality that

|P(u, v)] £ K for all (u, v)e R, (20)
where K is a positive constant.

Lemma 1. Let the condition (20) be satisfied, p(t) = (x,(2), x,(2), X5(1), x4(2))
be a solution of the system (19) and p(0)eD: = {(x,, X,, X3, Xg)€ R*: x,x4 —
— X,x; = 0}. Then ¢(t)e D for all te R.

Proof. If WY(2) = x,(t) x4(t) — x,(t) x5(¢), then

d¥(t)
dt

If @(0)e D, then ¥(0) = 0 and therefore we have

= P(xi(0) + x3(1), (1)) ¥(0). 2]

(1) — ¥(0) = f " Blei(s) + x3(s), H(s) (Hs) — H(0)) ds

0

and this yields the inequality
10 - YOI S K [ 1#06) - #O)
0

The Gronwall lemma implies that ¥(¢) = ¥(0) = Oforall te R,i.e. @(t)e D for
all teR.
The reduction of the system (19) to the subvariety D has the form

X, =X
X, = X4

X3 = %, P(x? + x2) + x,0(x% + x3),
%y = x,P(x? + x3) + x,0(x2 + x3),

(22)

where P(u): = P(u, 0), O(u): = O(u, 0).
Now, let us consider an 0(2)-equivariant unfolding of (19) which has the form
X = X,
X, =X
2 4 (23)
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Xy = Xy + Aoxy + X,G(xl 4 X7, XX — X3, A) + X H(x{ + x7, 1)
Xy = Xy + QX + X,G(x} + X3, x,%4 — Xx3, A) + x, H(xi + x3, A),
where A = (N;L" Ay, ..., A )€ R¥ is a parameter, G, He C*, G(u, v, 0) = F(u, v),
H(u, 0) = Q(u) for (u, v)e R*. We assume that
|G(u, v, A)) £ L for all (u, v, A)e R?> x R¥, (24)

where L is a positive constant. By the same procedure is in the proof of Lemma 1
one can show that if the condition (24) is satisfied, then the subvariety D from
Lemma 1 is also an invariant set of the unfolding (23). The reduction of the
system (23) to the set D has the form

X, = X3
xZ = X4
X3 = Xy + Xy + 3 P(x] + x3, A) + x,Q(xi + x3, A)
Xg = MXp + Apxy + X, P(x] + x3, ) + x,0(x7 + x5, 2),
where P(u, 0) = P(u), Q(u, 0) = O(u) for (u, v)eR2 The family (25) is an
0(2)-equivariant unfolding of (22). One can check that if x = (x;, X5, X3, X,) 18
a solution of the system (25) and @ = x? + x7, B= xi + X7, ¥ = X1X4 + X;X3,
then (a, B, y) is a solution of the system
a=2y
B =24y + LB+ P(a, ) B+ Qa, 1)) (26)
y=PB+Aa+ 4Ly+ P(a, )y + Q(a, ) a.
Since aff = y* + 6%, where § = x,x, — x,X;, the equality .5 = 0 implies that
af = y>. Using this equality one can show that if X = \/_ Y= \/E then (X, Y)
is a solution of the system
X=Y
Y=LX4+4LY+0WX*, )X+ PX,AY.

(25)

27

Theorem 2. Let F be a smooth vector field on R* which is equivariant with
respect to the diagonal acation of 0(2) on R*. If the vector field F has the
equilibrium point at the origin with linearization defined by a non-zero mlpotent
matrix, then the following assertions hold: ‘

(1) A normal form of order oo of the vector field F has the form (19) and it is
0(2)-equivariant.

(2) If the condition (20) is satisfied, then the subvariety D: = {(x,, X;, X3,
x,) € R*: x,x, — x,x; = O} is an invariant set of the system (19).

(3) If F is the vector field defined by (19), then the vector field F|D is represented
by the system (22) which is 0(2)-equivariant.
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(4) The family (23) is an 0(2)-equivariant unfolding of (19), the set D is its
invariant set and the reduction of (23) to this set has the form (25) which is an
0(2)-equivariant system.

O If x=(x, xz, X3, X,) is a solution of the system (25) and a = xi + x3,
B= x4+ x}, v =xX; + X,X,, then (a, B, 7) is a solution of the system (26).
Moreover, if xeD and X = \/—(} Y= \/B then (X, Y) is a solution of the
system (27)

©6) Ifap(o 0) , aQ((i, 0)

famzly in the space of all 2-parameter families of plane vector fields equivariant
with respect to the rotation by r in the plane (for the bifurcations of (27) see,

e.g., 3], 12, 17]). ,
Proof. The assertions (1)—(5) follow from Lemma 1 and the considera-

tions before Theorem 2. The assertion (6) is a consequence of the results
published by J. Carr in [3].

# 0 and A€ R?, then (27) is the structurally stable

6P(0 0) 90Q(0, 0)
0x 0x
possessing a singularity of codimension greater than 2. Bifurcations of vector
fields of the form (27) near a codimension 3 singularity are studied in [5] (see also
[15] for the nonsymmetric case).

= 0, then.the family (27) is an unfolding of a vector field

2. On vector fields with a pair of pure imaginary eigenvalues of multiplicity 2

Let us consider a smooth vector field on R* represented by the system (3)
with

0 - 1 0
o 0 0 1
0 0 0 —w (28)
0 0 o 0

The analysis of bifurcations of unfoldings of such a vector field is still an open
problem. For a normal form and quotations of papers concerning this case see,
e.g., [12].
The system (3) with L, given by (28) can be written in the following complex
form:
Zy =iwz, + 2, + F(z), 2, Z), Z,)

29
Z =iw22+5(21,22, Z-]’ Z—Z)' ( )
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Assume that the following conditions are satisfied:

F(Z,,%,, 21, 23) = E(2), 23, £, ;) for i=1,2 andall z,zeC, (30)

T) s = 1) i@ —05; ,-i@z
e'°F(zy, 25, 7,, ;) = F(e'°z, €°z,, %2}, € 7°Z,)

: (31
for j=1,2 andall @eR, z, z,eC.

After introducing new variables w, = e ~"'z,, w, = e "z, the system (29) be-
comes

‘4:"1 =W, + E(Wh_wb—wl’ W) (32)
Wy = B (wy, wy, Wy, Wy).
Since we assume that the functions F|, F, satisfy the conditions (30), (31), the
system (32) is invariant with respect to the transformations X, X, (see (15),
(16)), i. e. the corresponding real system is 0(2)-equivariant. By Theorem 1 (see
also [6]) the system (32) has the following normal form of order oo:

=)
Y2 =002 v15, — 5132 + 1ol yida — Py,

and this system is also invariant with respect to the transformations X, and X,.
Using this invariance property one can check thatif y, = x, + ix,, y, = X3 + ix,,
then the system (33) written in the real variables x,, x,, x;, x, has the form

(33)

X; = X3
Xy = X4
Xy = X3 P(xl + X7, X — x03) + X, Q(x7 + X7, X1 X4 — X,X3)
Xy = X, P(x] + x7, x1%, — X,%) + %,0(x] + X3, XX, — X,%3).
Since our considerations are local, near the origin, we may assume without loss
of generality that
|P(u, v)) £ K forall (u, v)eR>% (35)

Similarly as in the proof of Lemma 1 one can show that the subvariety
D: = {(x,, X5, X3, X4) € R*: x,x, — x,x; = 0} is an invariant set of the system (34).
The Areduction of (34) to the subvariety D has the form (22), where P(u) = P(u,
0), Q(u) = Q(u, 0).

Now, consider the following 0(2)-equivariant unfolding of the system (34):
x, = .X3
Xy =X,

X3 = hx; + Axy + x,@(x} + x2, x,x4 — X,%3, A) +

b PO + X2, X% — Xox, ) (36)
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Xo = Xy + Xy + X @(X] + X3, X1 X4 — X3, A) +
2 2
+ 3, WXy + X3, XX — X,X3, A),

where @, ¥ are smooth functions, @(u, v, 0) = P(u, v), Y(u, v) = O(u, v),
A= (A, Ay, ..., 1)ERF
We assume that the following condition is satisfied:

|®(u, v, )| £ L forall (u,v, A)e R* x R*, 37

where L is a positive constant. Then the set D is an invariant set of the system
(36) (see Lemma 1) and the reduction of this system to the set D has the form
(25), where P(u, A) = @(u, 0, A), Q(u, A) = ¥(u, 0, A). We have proved the
following theorem.

Theorem 3. Let F be a smooth vector field on R* defined by the equation (3) with
L, given by (28), and let the system (29) be its complexification. Then the following
assertions hold:

(1) The transformations w, = E~"'z,, w, = e "'z, transform the system (29) into
the form (32) which is invariant with respect to the transformations (15), (16).

(2) The real system corresponding to the system (32) has the form (34) and this
system is 0(2)- equivariant.

(3) If the condition (37) is satisfied, then the set D:={(x,, X,, X,
x4)€ R*: x,x, — X,x;} is an invariant set of the system (34) and its reduction
to the set D has the form (22), where P(u) = P(u, 0), Q(u) = O(u, 0).

(4) The family (36) is an 0(2)-equivariant unfolding of the system (34) and if the
condition (37) is satisfied, then the set D is an invariant set of this family. The
reduction of the system (36) to the set D has the form (25) and for this family
the assertions (5) and (6) of Theorem 2 are valid.

3. 0(2) x S'-equivariant vector fields on C’

M. Golubitsky an M. Roberts studied in their paper [8] the Hopf
bifurcation for vector fields on C? equivariant with respect to the following
transformations:

(z,, z,) = (e'°z,, e °z,), @R ‘
K(z, 23) = (23, z)) (38)
fP(Zn ZZ) = (ewzla f—’i'pzz)’ (DER

(0(2) x S'-equivariant vector fields; see [8]). By [8, Proposition 2.1] such equiva-

riant vector fields have the form
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Z Zy . Z
[,]=(p+iq)[ :I+(r+zs)6|: ], (39)
2> 23 Z;

where z,, z,€C, p, ¢, r, s are smooth functions of (N, A) with real values,

N=l|z]>+ 152 A=8% 6=z —|z*. Following [8] we write z, = xe' ",
z, = ye''* and from (39) we obtain the system
).c = +ro)x amplitude equations (40)
y=@-—rdy
Y, =q+s6
; 1 phase equations. 41)
'PZ = q - 56

The equations (40) are invariant with respect to the transformations I:(x,
») = (x, —y)and J: (x, y) = (», X), i. e. these equations are invariant with respect.
to the action of the dihedral group D,. By [2] this is the general form of
D-equivariant vector fields on R?. :

Now assume that the functions p, g, r, s depend also on some parameter
A€ R*. Then we have the family - -

X =p(N, A, ) x +r(N, A, A)dx
_}.) =p(N9 Aa /1)}’ - r(Na Aa A’)ay’

where N = x>+ y2, 6§ = y> — x2, A= 6 and p, r are smooth functions. The
phase equations have the form

¥, = g(N, A4, A) + s(N, 4, )&
?.’2 = q((N9 As A’) '_S(N’ Aa 1)69

where g, s are smooth functions. Since we are interested in bifurcations near the
origin, it is convenient to study a modification of the system (42). If U, V are
neighbourhoods of the origin in R**? such that U = V and V is a compact set,
then there are smooth functions 7: R“** - R, p: R**2— R such that F =r,
p=ponUand 7 =0, =0 outside V. By the modification of the system (42)
we mean the system of the same form, where the functions j and 7 are instead
of p and r, respectively. Then the functions j and 7N are obviously bounded and
so we may assume without loss of generality that for the original system (42) the
following condition is satisfied:

(42)

“43)

Ir(u, v, Yul £ K, |p(u, v, Y = K (44)

for all (u, v, A)e R? x R*, where K is a positive constant. Using the system (42)
it is easy to prove the following lemma.
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Lemma 2. If (x(¢), y(t)) is a solution of the system (42) and
N(t) = x*(t) +y*(t), 8(t) = y*(t) — x*(t), then (N(¢), 8(t)) is a solution of the
system

N = 2(p(N, 8% AN + r(N, 8% 1) 6?)
"= 2(p(N, 6%, 1) & — r(N, 6%, L) No)

Lemma 3. Let ¢(t) = (x(t), y(t)) be a solution of the system (42) and
e0)eE: ={(x, y)eR?*:5: = y* — x? = 0}. Assume that the condition (44) is
satisfied. Then ¢(t)e E for all te R.

Proof. From the condition (44) we obtain that if @(0)e E and ¥(t) =
= y2(t) — x*(t), then

(45)

(1) — H(O0)| < 4K j |%(s) — #(O) ds
0

and the Gronwall lemma implies that ¥(¢) = PY(0) =0 forallte R, i.e. p(t)e E
for all te R.
The reduction of the system (42), (43) to the invariant set E is

X = PQ2x% A)x

. (46)
y=P2y% Ay
¥ = 02x2 A
‘1 O@2x ) 47
¥, = Q(2x?%, 2).
Theorem 4. Let
?=f(z, A), zeC* AeR* (48)

be a smooth k-parameter family of vector fields on C? equivariant with respect to

the transformations (38) and assume that (0, 0) = 0. Then the following asser-

tions hold:

(1) The family (48) has the form (39).

Q) If z=(zy, 2,), 2, = xe'M, Z, = ye”’z, then the equations for x, y, ¥,, ¥, have
the form (42), (43).

(3) If the condition (44) is satisfied, then the set E:={(x, y, ¥,
¥,)e R*:y* — x* = 0} is an invariant set of the family (42), (43).

(4) The reduction of the family (42), (43) to the invariant set E has the form (46),
47).

() If (xo, yo, PV, ¥9): = mo€ E and y(t) = (x(2), y(1), ¥1(1), Wy(1)) is a solution
of the system (46), (47) satisfying the initial condition y(0) = y,, then
z(t) = (z,(2), z,(2)) = (x(t)e”"('), y(t)eiwz(')) is a solution of the system (48),
i.e. (39).
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(6) If (xo, o) is an equilibrium of the system (46), then the set T(x,, y,): = {(z1,
2,)€Cizy =xe' ), 2, = yoe' 2, W, Wye R} is an invariant set of the system

[Zl] = (P(z;* + |z, A) + iQ(z,* + |z, 1) [Z‘:la (49)

2, 2
where P(u, 1) = p(u,0, 1), Q(u, X) = q(u, 0, A), i. . this is the system (39) with
0=0,T(0,0) = {(0,0)} and if x, # 0, yo = * Xo, then T(xy, y,) is an invariant
2-tori T? of (43). ’ '

(7) An equilibrium solution (x,, y,) of the amplitude equations (46) is stable if and
only if the corresponding equilibrium point T(0, 0) (if x, = 0) or invariant
2-torus T? = T(xy, yo) (if xo # 0, y, = + Xx,) is a stable invariant set of the
system (48).

Proof. The assertions (1)—(5) follow from Lemma 2, Lemma 3 and the
considerations before Theorem 4. The assertions (6), (7) follow from the rela-
tions z, = xe'™, Z,= ye'%, where (z,, z,) is a solution of (49) and (x, y, ¥, ¥,)
is a solution of the system (46), (47).

Remark. Since we have to do with the réduction to the invariant set £
defined by the equation x? = y?, this reduction does not possess the invariant
circle T'(x,, 0) or T(0, y,) for x, # 0, y, # 0. Of course, the original general
system (39) may possess such invariant circles (see [8]). However, our reduction
(46), (47) is very simple and its equilibria are relatively simply computable. The
form of these equations enables us to solve also higher codimensional bifurca-
tion problems. Using the Malgrange-Weierstrass preparation theorem (see, e. g.,
[1, Theorem 6.3]) we are able to simplify the system (46), (47) near the origin as
follows. By this theorem the following holds:

If

k
P(O,O)=aP—(OI:—92=O, k=1,2,...,n—1

, 0"P(0, 0) 20
Ox

ox"

b

00,0=2209_o  ;_12 . m-1, 2209,
ox/ Ox™

then there is a neighbourhood W, x W, = R x R* of the origin and smooth
functions @(x, 1), ¢ (1), k=1, 2, ..., n, n(x, 1), @), j =1, 2, ..., m defined
for all xe W}, Ae W, such that &(x, 1) # 0, n(x, A1) # 0 for all (x, ) e W, x W,
?.(0) = 0, w(0) = O for all k, jand P(2x?, ) = O(x, 1) (x*)" + @,(4) (x*)" '+
+ o+ @A), 02x% 4) = n(x, A) (x)" + @,(4) ()"~ + ... + &y (4)) for
all (x, 1) e W, x W,. Putting these expressions into the system (46), (47) and
dividing it by the function ©(x, 1) we obtain the system

x=x"+ @AM x¥ 2+ ... + ¢,(})
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. (50)
y=y"+oMy" 4+ ...+ o)

¥ = R(x, ) (x4 0,(A)x¥" 2+ ... + w,(1)
¥ = R(x, ) (" + @,() X" 2 + .. + (),

where R(x, ) = n(x, A) (O(x, 1)) ~".
If k=dimA=n, ®:= (¢, ¢, ..., ¢,): R" > R" and if we assume that the
derivative d@(0): R" — R" is an isomorphism, then we may introduce new

coordinates g = ¢,(4),i = 1,2, ..., nin a sufficiently small neighbourhood of the

origin in the parameter space. In these new coordinates the family (50), (51) has
the form

(51

X=x"+ex" 1+ .. +¢

) (52)
V=y"+ey"  + ... +¢g

¥ = R(x, &) (x + &,(e) x>+ ... + &,(¢))
¥, = R(x, &) (x™ + @,(e) x™ 2 + ... + &,(¢))

where £ = (¢, &, ..., &)€ R" and the functions R, &,, ..., @, have the same
properties as R and ,, @, ..., ,, respectively.

Obviously, if (x,, y,) is an equilibrium of (52) and xZ = yZ, then we have three
equilibria (x,, x,), (x5, — Xo), (— X, X,) generated by the real root of the equation

X"+ ex 1+ ..+ =0 (54)

(53)

and the following proposition holds.

Proposition. If ¢ is the numbear of real roots of the equation (54), then the
number of equilibria of (52) lying in the invariant set E: = {(x, y)e R*: x* — y* =
= 0} is 3c.
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HOPMAJIBHBIE ®OPMbI U BUOYPKALIUUA HEKOTOPBIX DKBUBAPUAHTHBIX
BEKTOPHbBIX ITOJIEN

Milan Medved
Pe3ome
B 2T0if crathe paccMaTpuBaroTcs Oudypkaumm riaakux 0(2)-35KBUBAPHAHTHBIX BEKTOPHBIX
. 4 1 .
noneit Ha R* u Toxke 0(2) x S'-3XBHBAPHAHTHBIX BEKTOPHBIX NoJieit Ha C2. [Toka3aHOo YTO HEKOTOP-
bIC HOPMaJIbHBIE (POPMBI GECKOHEYHOTO NMOPAAKA TAKUX BE KTOPHBIX MOJIEH UMEIOT CrelMaIbHbIE

MHBAPUAHTHBIE MHOrooOpa3us U MPUBEIEHB HEKOTOPbIE TEOPeMBbI Kacatolleecs Oudypxaumun pe-
IYKIMH TaKUX HOpMasbHBIX OpM Ha ITH MHOrooGpa3sus.
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