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ON FIXED POINT THEOREMS 
FOR ABSOLUTE RETRACTS 

DARIUSZ BUGAJEWSKI 

(Communicated by Michal Zajac) 

ABSTRACT. In this paper we prove a general fixed point principle for mappings 
defined on absolute retracts . In particular, as a corollary from this principle, we 
obtain the answer to the open problem concerning validity of the Darbo-Sadovski 
fixed point theorem for absolute retracts . Our results are illustrated by suitable 
examples and compared with other of this type. 

1. In t roduc t ion 

One of the main results of nonlinear functional analysis is the famous 
Schauder fixed point theorem. It was proved in 1930 (see [9]) for compact map­
pings defined on closed and convex subsets of a Banach space. This theorem has 
many applications in the theory of differential and integral equations and has 
many generalizations. These generalizations can be divided, roughly speaking, 
into three groups. The first group contains results which weaken the assumption 
of compactness of a mapping and the second group contains ones which do not 
contain the assumption of the convexity of the domain. Finally, the third group 
contains results in which one does not assume that a mapping maps its domain 
into itself. 

The aim of this paper is to prove very general Schauder type fixed point 
theorem for mappings defined on absolute retracts without the assumption of 
their compactness. In this place recall that every convex subset of a Banach 
space is an absolute retract (see [9; p. 93, Theorem 10.5]). Moreover, we prove 
fixed point theorems for the special classes of absolute retracts. In particular, 
we formulate the condition for absolute retracts under which the well-known 
Darbo-Sadovski fixed point theorem is valid. 

Our paper is organized as follows: In Section 2 we recall some basic definitions 
and theorems which will be useful in the sequel. Section 3 contains our general 
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fixed point principle and Darbo-Sadovski's type fixed point theorem for absolute 
retracts. Section 4 contains a different type fixed point theorems for absolute 
retracts, examples and a comparison with other fixed point results. Finally, in 
Section 5 we formulate some open problems. 

For the basic concepts concerning the fixed point theory which appear in our 
paper, we refer e.g. [9]. 

2. Preliminaries 

DEFINITION 1. A space Y is called an absolute retract (briefly: AR) whenever: 

(i) Y is metrizable, 
(ii) for any metrizable space X and closed set A C X each mapping 

/ : A —> Y is extendable over X. 

THEOREM 1. (Arens-Eells, [9; p. 158]) Any metric space Y can be isometri-
cally embedded as a closed subset in a normed linear space. 

THEOREM 2. ([9; pp. 93-94, Theorem 10.6]) A metrizable space Y is an AR 
if and only if it is a retract of every metrizable space in which it ^s embedded as 
a closed set. 

DEFINITION 2. A metric space (X,d) is called hyperconvex if, for any in­
dex class of closed balls in X, B(x^ri)) i G / , satisfying the condition that 
d(xi,xi) < ri + r - for all i, j G / , the intersection f] B(xi^ri) is nonempty. 

iei 

Recall that the above notion of hyperconvexity was introduced by N. A r o n -
s z a j n and P . P a n i t c h p a k d i [1] in 1956. 

DEFINITION 3 . For any bounded subset A of a metric space (X, d) the Ku-
ratowski measure of noncompactness — a(A) — is defined as the infimum of 
all positive numbers e such that A can be covered by a finite number of sets of 
diameter < e. 

For the properties and examples of index a , we refer e.g [3] or [4]. 

THEOREM 3. (Darbo-Sadovski) Let D be a closed convex and bounded subset 
of a given Banach space and let f: D —> D be a continuous and a -condensing 
mapping, i.e., 

a(f(A)) < a(A) for each AcD such that a(A) > 0 . (1) 

Then f has at least one fixed point in D. 

Recall that R. E sp i n o l a-G a r ci a has proved that the Darbo-Sadovski 
fixed point theorem is valid in the case when D is a hyperconvex bounded metric 
space (see [10]). 
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3. Fixed point theorems 

Let D be an AR. In view of Theorem 1 we infer that i(D) = K, where K is a 
closed subset of anormed space {E, ||-||) and i is an isometry. Let Kc = convK: 
In view of Theorem 2 there exists a retraction r : Kc —> K. 

Now we are able to formulate the general fixed point theorem for absolute 
retracts, namely: 

THEOREM 4. Let D be an AR, x0 e D and let f: D —•> D be a continuous 
mapping of D into itself If the following implication 

({V = conv(iofoi~1 or(V)) A V CKC) 

V (V = f(V) U {x0} A R D ) ) {-) 

=> V is relatively compact 

holds for every subset V of Kc or D, respectively, then f has a fixed point. 

In the case when i and r are identity maps, Theorem 4 practically reduces 
to [17; Theorem 1]. However, note that in the case when one imposes on / a 
condition formulated e.g. in terms of the Kuratowski measure of noncompact-
ness, the isometry i is not important, because this index does not depend on an 
isometry. 

In Remark 1 we consider particular cases encompassed by Theorem 4 and 
such that r is not an identity map . 

P r o o f of T h e o r e m 4 . Consider the mapping F = i o f o i~l or: 
Kc -> Kc. Let F(V) U {y0} = V, where V C Kc and y0 = i(x0). In fact 
F(KC) cK,so F(V) C K. Further, y0 G K, so V C K. Then, we have 

V = F(V)U {y0} = io f or1 or(V)U {i(x0)} =io f oi~\V)U {i(x0)} , 

so i~l(V) = f o i~l(V) U {x0}. By the assumption i~l(V) is relatively com­
pact, and therefore V is relatively compact. Hence, it is clear that F satisfies 
all assumptions of [17; p . 1, Theorem 1] (actually this result is proved for a Ba-
nach space but the completeness in this theorem is not necessary; cf. [5; p . 35, 
Theorem 1]), and therefore it has a fixed point. To end our proof it is enough 
to remark that x G D is a fixed point of / if and only if i(x) is a fixed point 
of F. Indeed, let x G D be such that f(x) = x. Then we have i~l {r(i(x))) = x 
and therefore i{f{i~1{r(i(x))))) = i{f(x)) = i(x). Thus i(x) is a fixed point of 
F. Conversely, let y G Kc be such that F(y) = y. Then y G K, and therefore 
x = i~l(y) for some x G D. Then, we have i o f o i~l(y) = y, so f(x) = x. • 

R e m a r k 1. Let D be an AR and f:D-+D be a continuous mapping satis­
fying the Darbo-Sadovski condition (1). Let r , K, Kc denote the same as at 
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the beginning of this section. Assume that Kc is complete and the retraction r 
satisfies the following condition 

r(V) C | J Al^ for any V C Kc. (3) 
0<A<1 

Now we show that under the above assumptions / satisfies the assumptions of 
Theorem 4. First, let A C D be such that A = f(A) U {x 0 } . If a(A) > 0, then 
a(A) = a(f(A)) < a(A), what gives a contradiction. Now assume that V C Kc 

is such that V — conv(io f oi~x or("V)). Denote by aE the Kuratowski measure 
of noncompactness in (i?, | | - | | ) . If aE(r(V)) = 0, then 

aE(V) = a(foi~1or(V)) < a(f or1 (r(V))) = 0 , 

so V is relatively compact. On the other hand, if aE(r(V)) > 0, then by (1), 
(3) and by the properties of a we obtain 

aE(V) = a(forx or(V)) <a(i~l or(V)) <a(rl( [J A^)) =aE(V), 
0<A<1 ' ' 

what gives a contradiction. Hence / satisfies the assumptions of Theorem 4 and 
therefore it has a fixed point. 

It is quite clear that instead of (3) one can assume that 

r is nonexpansive. (4) 

In view of (4) and [1; p. 422, Theorem 8] as a corollary of Theorem 4 we obtain 
the Darbo-Sadovski fixed point theorem for hyperconvex metric spaces (see [10; 
p. 135]). 

The cases considered in Remark 1 are special ones of the following theorem. 

THEOREM 5. Let D be a bounded AR and let / : D —r D be a continuous 
mapping satisfying (1). If 

<*E (r(Y)) < aE(V) for any V C Kc 

(briefly: if r is aE-nonexpansive) and Kc is complete, then f has a fixed point. 

P r o o f . It is enough to apply similar arguments as in Remark 1. • 
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4. Examples and other results 

At the beginning of this section we compare Theorem 4 with another exten­
sion of the Schauder fixed point theorem for absolute retracts, namely: 

THEOREM 6. ([12; p. 215, Theorem 5.1]) Let D be an AR and let f: D -> D 
be a compact absorbing contraction (see [12] for the definition). Then f has a 
fixed point. 

In this place recall only that a compact absorbing contraction is assumed 
to be locally compact, that is, for every point of the domain there exists such 
its neighbourhood that the restriction of the mapping to this neighbourhood is 
compact. 

E X A M P L E 1. For simplicity consider first the set D = {x = (xx, x2,..., xn,...) 
G l°° : \\x\\ < 1, xn > 0 for n G N} and let (q n ) n > 1 be a sequence such that 
qn G (0,1) for n G N and qn -r 1. Define 

f(x) = ( ^ , ^ 2 , . . . , ^ , . . . ) , x G D. 

It is well known that every convex subset of a locally convex linear space is an 
AR (see [9; p. 93, Theorem 10.5]), so D is an AR as a convex set. Further, 
it is not difficult to verify that if V C D is such that V = convf(V) or 
V = f(V) U { ( 0 ) n e N } , then V = {(0)n ( E N}, so V is relatively compact. Hence 
/ satisfies the assumptions of Theorem 4. Now we verify that / is not a locally 
compact mapping. Indeed, let D£ = {x G D : \\x\\ < e}, where e G (0,1) and 
let C = {(xn) G D : xn = 0 if A; 7- n, xn = § if A; = n, k,n G N} . We have 
f(C) = {(x\) G D : xn = 0 if k ^ n, xn = fqk if k = n, k,n G N} . It is 
quite clear that a(f(C)) = f, so f(C) is not a relatively compact set. Therefore 
for any open subset U of D such that (0)n G N G U the restriction f\jj of / to 
U is not compact, so / is not a locally compact mapping. Hence / does not 
satisfy the assumptions of Theorem 5. 

R e m a r k 2, Note that D from Example 1 is convex and hyperconvex, / from 
the same example is linear and nonexpansive. In particular, to establish the 
existence of a fixed point of / one can apply Baillon's fixed point theorem [2; 
p. 14, Theorem 5] for nonexpansive mappings defined on a bounded hyperconvex 
space. But using the idea from Example 1 one can consider more sophisticated 
situations. For example, let D = {x G c0 : ||x|| < 1, \xx\ = \x2\} and let 

f(x) = (vlxil> V ^ I ' t t ^ A r - - ) , x ED, 

where (tfn)n>1 is ^ n e s e ( l u e n c e from Example 1. 
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In this case the mapping / does not satisfy also the assumptions of [17; p . 1, 
Theorem 1] and Theorem 8 (see Section 5). 

Now, we formulate two another fixed point theorems for mappings defined 
on an AR. First is the following Krasnoselski-type. 

THEOREM 6. Let E be a Banach space and let K C E be an AR. Assume 
that 

1° / j : K -> E is a contractive map, 
2° / 2 : K -» E is a compact map, 
3° fx(x) + f2(y)eK foranyx,yeK. 

Then f = fx + f2 has a fixed point. 

P r o o f . It is enough to apply similar arguments as in [14; p . 125, Theorem 2] 
and the generalized Schauder fixed point theorem [9; p . 94, Theorem 10.8] instead 
of the classical one. • 

The second result is the following: 

THEOREM 7. Let E be a Banach space and let K C E be a bounded AR such 
that XK C K for every 0 < A < 1. Assume that 

i) / j : K --> E is nonexpansive, 
ii) / 2 : K —r E is a compact map, 

hi) fx(x) + f2(y) e K for any x,y G K, 
iv) every sequence (xn) such that xn e K for n e N and 

lim ( s n - / ( * „ ) ) = 0 , 
n—>oo 

where f = fx+ f2, has a limit point. 

Then f has a fixed point. 

P r o o f . In this case it is enough to apply similar arguments as in [6; The­
orem 1] and a generalized Schauder fixed point theorem instead of the classical 
one. • 

R e m a r k 3 . It is clear that in Theorem 6 and Theorem 7 one can assume that 
E is a Frechet space. Further note that for a bounded AR, K C E, where E 
is a Banach space and XK C K for A G (0,1], Theorem 6 is a special case 
of Theorem 7. Indeed, assume that the conditions 1° — 3° in Theorem 6 are 
satisfied and let (%n)ne?q, %n G K for n G N, be a sequence satisfying the 
equality in the condition iv) of Theorem 7. Let id denote the identity map and 
V = {x : n e N}. In view of the properties of the measure a we obtain 

a(V) < a ( ( id - f ) (V) + f(V)) < a(( id -f)(V)) + a(f(V)) 

<a{f1(V)) + a{f2(V))<qa(V), 
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where q is the contractive constant of fx. Thus a(V) = 0, so V is relatively 
compact. Hence the sequence (xn) has a convergent subsequence and therefore it 
satisfies the condition iv) in Theorem 7, The above observation remains valid for 
the case when E is a Frechet space. In this case one can also apply the Sadovski 
measure of noncompactness (see [16] for the definition and the properties) instead 
of the index a. 

To this end remark that using similar arguments as above one can infer that 
Theorem 6 is a special case of Theorem 4 if we assume additionally that the 
retraction r , defined before Theorem 4, is a-nonexpansive. 

Now we illustrate Theorem 7 by the following example. 

EXAMPLE 2. Let K = {x = (x1,x2,...,xn,...) G Z°° : | | x | | < l , lar-J = |a;2|} . 
It is known (see [1; p. 423, Theorem 9]) that a subset A of a given hyperconvex 
space X is hyperconvex if and only if it is a retract of X by a contracting 
retraction. 

Using this fact it can be easily verified that K is a hyperconvex set, so it is 
an AR ([1; p. 422, Corollary 4]). Let 

/ 1 (x) = ( 0 , 0 , - a : 3 , - x 4 , . . , ) , f2(x) = (\x^\\x2\
J\0, 0 , . . . ) , p G N, p > l , 

f(x) = fx(x) + f2(x), xeK. 

Obviously fx is nonexpansive and / 2 is a compact map. Moreover, it is clear 
that fx(x) + f2(y) G K for any x,y G K. 

Now, let (xk)ke^ be a sequence satisfying the condition in iv). Then we have 

x ~ f(x ) = [xx — \xx | , x2 — |x2 | , 2.2:3, 2.x4,...) . 

Thus lim sup |x n | = 0, lim (xk - \xk\v) = 0, and lim (xk - \xk\?) = 0 . It 
k—>oo n > 3 k—>-oo k-+oo 

is clear that such a sequence (xk)ke^ has a convergent subsequence. Hence the 
mapping / satisfies all assumptions of Theorem 7 and therefore it has a fixed 
point in K. 

Note that also in this example one can replace the space Z°° by c0 . 

In the last remark we compare Theorem 4 and Theorem 7. 

R e m a r k 4. Let K and / denote the same as in Example 2 and let C = 
{x G K : xx = x2 = 0 } . Then we have C = f(C) U { ( 0 ) n 6 N } . But C is not a 
compact set; actually, in view of the well-known result of F u r i and V i g n o 1 i 
[11], a(C) = 2, so / does no satisfy condition (2) in Theorem 4. Therefore 
Theorem 4 and Theorem 7 are independent. 
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5. Open problems 

1. In [7] we have proved the following fixed point theorem for hyperconvex 
metric spaces, namely: 

THEOREM 8. Let X be a hyperconvex metric space, x0 G X and let f be a 
continuous mapping of X into itself If the following implication 

(V is isometric to ef(V) V V = f(V) U {x0}) => a(V) = 0, 

where ef(V) denotes the hyperconvex hull of f(V), holds for every subset V of 
X, then f has a fixed point. 

An interesting problem is to compare Theorem 4 and Theorem 8 for hyper­
convex metric space. 

2. Condition (2) in Theorem 4 depends on the retraction r and the choice 
of the isometric embedding. An open problem is to prove an analogous result to 
Theorem 4 with the condition formulated only by using the mapping / . 

3. The third problem is to find (if exists) an example of a mapping which 
satisfies the assumptions of Theorem 5 and does not satisfy the assumptions of 
Theorem 4. 

4. In Theorem 5 the assumption that r is a^-nonexpansive is a sufficient con­
dition to establish the existence of a fixed point. Discuss possibilities to weaken 
this condition. 
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