Věra Mikolášová
On the functional independence of scalar invariants of curvature for dimensions n = 2,3,4

Mathematica Slovaca, Vol. 32 (1982), No. 4, 349--354

Persistent URL: http://dml.cz/dmlcz/129389

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.
ON THE FUNCTIONAL INDEPENDENCE OF SCALAR INVARIANTS OF CURVATURE FOR DIMENSIONS $n=2, 3, 4$

VĚRA MIKLÁŠOVÁ

1. Introduction

Consider an n-dimensional real vector space R^n, the dual vector space R^{n*}, and denote

$$Q_n = R^n \otimes S^n,$$

where S^n is a vector subspace of the tensor product $\otimes^3 R^{**}$ defined by the Young scheme $(2, 1, 0, ..., 0)$. Recall that in the canonical coordinates $t_{ijk}, 1 \leq i, j, k \leq n$ on $\otimes^3 R^{**}$ the subspace S^n is defined by the equations

$$t_{ijk} + t_{ikj} = 0; \quad t_{ijk} + t_{kij} = 0,$$

which means that the canonical t_{ijk} coordinates restricted to S^n are antisymmetric in the last two indices and satisfy a set of "Bianchi" identities.

Denote by $R^p_{qrs}, 1 \leq p, q, r, s \leq n$ the canonical coordinates on the vector space Q_n. In agreement with the above relations

$$R^p_{qrs} + R^p_{qsr} = 0 \quad (1)$$

$$R^p_{qrs} + R^s_{qrp} + R^r_{psq} = 0. \quad (2)$$

In what follows we shall consider the vector space Q_n as a $GL_n(R)$ — module defined by the natural representation of the group $GL_n(R)$. Denote by a^p_i the canonical coordinates on $GL_n(R)$ and introduced the functions b^p_i on $GL_n(R)$ by the relation

$$a^p_i b^q_j = \delta^p_i, \quad (3)$$

where δ^p_i is the Kronecker symbol.

The action of the group $GL_n(R)$ on Q_n is given in canonical coordinates by the formula

$$\tilde{R}^p_{qrs} = a^p_i b^q_j b^r_k R^i_{uvw}. \quad (4)$$
Let $U \subset Q_n$ be a $GL_n(R)$ — invariant open set. Let $f: U \to R$ be a function. Recall that the function f is called a scalar invariant of weight 0, or shortly an invariant, if for every $q \in U$ and every $a \in GL_n(R)$,

$$f(a \cdot q) = f(q). \quad (5)$$

The aim of this paper is to investigate the existence and the number of functionally independent invariants defined on open sets in Q_n (compare with [1]—[5]).

We note that the vector space Q_n coincides with the type fibre of the space of tensors of the type $(1, 3)$ on an n-dimensional manifold X, in which the so-called curvature tensor, associated with a linear connection on X, takes its values. Having in mind this relation, we shall call the invariants whose domains of definition are subsets of Q_n, the invariants of curvature.

In the canonical coordinates $R^p_{\alpha\beta}$, the condition (5) has the form

$$f(R^p_{\alpha\beta}) = f(R'^p_{\alpha\beta}). \quad (6)$$

Differentiating this equation with respect to b^i at the unit element $e = (\delta^i_j)$ of the group $GL_n(R)$, we get, for the function f, the following system of linear, homogeneous, first order partial differential equations for the function f:

$$\Xi'(f) = 0, \quad (7)$$

where, by (6), (4) and (3),

$$\Xi'(f) = -R^p_{\alpha\beta} \frac{\partial}{\partial R'^p_{\alpha\beta}} + R^p_{\alpha\beta} \frac{\partial}{\partial R'^p_{\alpha\beta}} + 2R^p_{\alpha\beta} \frac{\partial}{\partial R'^p_{\alpha\beta}}. \quad (8)$$

The classical Frobenius theorem on differential systems enables us to solve the system (7) and to establish the maximal number of functionally independent solutions.

Solving (7) we restrict our attention to the so-called maximal points, i.e. to those points of the space Q_n for which the rank of (7) is maximal. Therefore it is necessary to determine the rank of the matrix \mathbb{M}_n formed by the coefficients in (8) with respect to the base $\partial/\partial R'^p_{\alpha\beta}$.

The number of lines of the matrix \mathbb{M}_n is equal to that of the differential operators Ξ', i.e. n^2. The relation (1) restricts the number of independent vectors $\partial/\partial R'^p_{\alpha\beta}$ to $(1/2)n^2(n - 1)$ (we take $v < w$). Now consider (2). For $n = 2, 3$, (2) is satisfied identically. For $n \geqslant 4$, (2) gives us $(1/6)n^2(n^2 - 3n + 2)$ additional independent relations among the functions $R^p_{\alpha\beta}$. A similar consideration may be applied to the vectors $\partial/\partial R'^p_{\alpha\beta}$. In this way we obtain that the number of linearly independent vectors $\partial/\partial R'^p_{\alpha\beta}$ is equal to $\dim Q_n$, where

$$\dim Q_n = \begin{cases}
\frac{1}{2}n^2(n - 1), & n = 2, 3 \\
\frac{1}{2}n^2(n - 1) - \frac{1}{2}n^2(n^2 - 3n + 2), & n \geqslant 4.
\end{cases}$$

350
The following table illustrates the dependence of \(\dim Q_n \) on \(n \). Let \(p \) (resp. \(q \)) denote the number of lines in \(M_n \) (resp. the number of independent relations (2)).

To establish the maximal number of functionally independent invariants we must determine the rank of the matrix \(M_n \). The number of functionally independent invariants which is to be found, is equal to the difference of \(\dim Q_n \) and the rank of the matrix \(M_n \) at maximal points. In the sequel, we determine the number of independent invariants for \(n = 2, 3, 4 \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(p)</th>
<th>(\frac{1}{2} n^3(n-1))</th>
<th>(q)</th>
<th>(\dim Q_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>27</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>96</td>
<td>16</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>250</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>540</td>
<td>120</td>
<td>420</td>
</tr>
</tbody>
</table>

2. Invariants of curvature for \(n = 2 \)

The matrix \(M_2 \) is in this case a squared matrix of order 4. It is expressed explicitly in the following table.

<table>
<thead>
<tr>
<th>(\frac{\partial}{\partial R_{112}^i})</th>
<th>(\frac{\partial}{\partial R_{122}^i})</th>
<th>(\frac{\partial}{\partial R_{112}^i})</th>
<th>(\frac{\partial}{\partial R_{212}^i})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2} \varepsilon_1)</td>
<td>(R_{112}^i)</td>
<td>(0)</td>
<td>(2R_{112}^i)</td>
</tr>
<tr>
<td>(\frac{1}{2} \varepsilon_2)</td>
<td>(R_{122}^i)</td>
<td>(2R_{212}^i)</td>
<td>(0)</td>
</tr>
<tr>
<td>(\frac{1}{2} \varepsilon_3)</td>
<td>(R_{112}^i)</td>
<td>(0)</td>
<td>(-R_{112}^i + R_{212}^i)</td>
</tr>
<tr>
<td>(\frac{1}{2} \varepsilon_4)</td>
<td>(-R_{112}^i)</td>
<td>(R_{112}^i - R_{212}^i)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

To establish the rank of matrix \(M_2 \), we calculate its determinant. By simple calculation we get

\[
\det M_2 = (R_{112}^i + R_{212}^i) \begin{vmatrix} 0 & -R_{112}^i & R_{112}^2 & R_{112}^3 \\ R_{112}^i & 0 & -R_{112}^i + R_{212}^i & \end{vmatrix}.
\]

351
Hence it follows immediately that \(\det M_2 = 0 \) and thus \(\text{rank } M_2 < 4 \). It can be easily seen that there exist some points of \(Q_3 \) (maximal points) at which \(\text{rank } M_2 = 3 \). Thus there exists one and only one functionally independent invariant.

It can be shown that such an invariant can be taken for example, as the function

\[
f = R'_{km} R^k_{pq} R^{ap} R^{mq},
\]

where \(R^{pq} \) denotes the elements of the matrix, inverse to the matrix \((R_{ij}) = (R^p_{ij}) \).

3. Invariants of curvature for \(n = 3 \)

The matrix \(M_3 \) is of type 9/27. To find its rank, we use the determinant from its squared submatrix \(M_1 \) of order 9 formed by the coefficients at \(\partial / \partial R^1_{pq}(r < s) \). Substitute in \(M_1 \),

\[
R^1_{112} = R^1_{212} = R^1_{121} = R^1_{212} = R^1_{111} = R^1_{121} = 1,
\]

and zeros for the other \(R^1_{pq} \). It can be easily found by a simple calculation (e.g. by a progressive decreasing of the order) that \(\det M_1 \neq 0 \). It means that \(M_1 \) is regular and \(\text{rank } M_1 = 9 \) on a certain open set containing the considered point. The number of functionally independent invariants at maximal points of the set \(Q_3 \) is therefore equal to 18.

4. Invariants of curvature for \(n = 4 \)

From (8) we get 16 operators \(E_j \) with 96 expressions \(\partial / \partial R^1_{vw} \) whose coefficients will be linear combinations of 96 components of the functions \(R^1_{pq} \). In addition there are fulfilled the “Bianchi” identities (2) representing in this case 16 independent relations among 48 variables. Thus 16 suitably chosen variables can be expressed by means of the remaining 32 ones, for example, as follows:

\[
R^1_{112} = R^1_{112} + R^1_{121}; \quad R^1_{114} = R^1_{124} + R^1_{112}
\]

\[
R^1_{114} = R^1_{114} + R^1_{123}; \quad R^1_{124} = R^1_{134} + R^1_{234}.
\]

Applying the chain rule for partial derivation of composed functions to equation (2), we can easily derive the relation

\[
\frac{\partial}{\partial R^p_{rst}} = \frac{\partial}{\partial R^p_{rsq}} + \frac{\partial}{\partial R^p_{rqs}},
\]

by means of which, we can reduce the number of columns of the matrix \(M_4 \) to 80.

Thus the matrix \(M_4 \) is of the type 16/80. It will be shown that there exist some points at which the rank of \(M_4 \) is equal to 16. Consider the squared matrix \(M_4 \) of
order 16 formed by the coefficients at the operators \(\partial/\partial R^1_{12}, \partial/\partial R^1_{13}, \ldots, \partial/\partial R^1_{413}\). It can be easily found that, e.g., at the point, where

\[
R^1_{12} = R^1_{212} = R^1_{224} = R^1_{323} = R^1_{413} = R^2_{34} = R^2_{413} = R^3_{13} = R^4_{13} = 1
\]

and the remaining coordinates \(R^i_{nm}\) are zeros, we have \(\det \bar{M}_e \neq 0\). Thus at the considered point \(\text{rank } \bar{M}_e = 16\). Consequently, the number of functionally independent invariants of curvature at maximal points of the set \(Q_e\) is 64.

5. Conclusion

Let us summarize the results of this paper. Consider the \(GL_n(R)\) --- module \(Q_n\) and canonical coordinates \(R^i_{jk}\) on \(Q_e\). The relation between the dimension of the vector space \(Q_n\) and the number \(r_n\) of functionally independent (scalar) invariants of the group \(GL_n(R)\) defined on open sets in \(Q_e\) is given, for \(n = 2, 3, 4\), by the following table.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\text{dim } Q_e)</th>
<th>(\text{rank } \bar{M}_e) at maximal points</th>
<th>(r_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>16</td>
<td>64</td>
</tr>
</tbody>
</table>

From the above it follows, among others, that for \(n = 2\) (resp. \(n = 3, n = 4\)) there exists precisely \(r_2 = 1\) (resp. \(r_3 = 16, r_4 = 64\)) functionally independent scalar invariant of curvature.

REFERENCES

Received November 10, 1980

Přírodovědecká fakulta UJEP
Janáčkovo nám. 2a
662 95 Brno
ФУНКЦИОНАЛЬНАЯ НЕЗАВИСИМОСТЬ СКАЛЯРНЫХ ИНВАРИАНТОВ КРИВИЗНЫ ДЛЯ РАЗМЕРНОСТЕЙ \(n = 2, 3, 4 \)

Вера Миколашова

Резюме

В работе рассматривается проблема определения числа функционально независимых скалярных инвариантов тензора кривизны \(R^2_n \), линейной связности на \(n \)-мерном дифференцируемом многообразии, где \(n = 2, 3, 4 \). Показано, что для \(n = 2 (=3, 4) \) существует точно \(r_n = 1 \) (16, 64) функционально независимых инвариантов.