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ABSTRACT. We revisit the full content of Hilbert’s Fifth problem which asks
whether topological groups on manifolds are automatically analytical. It is not too
well know that this same problem has history in the case of topological semigroup.
too. and this history can be traced back to A bel. We explain what is known in
this regard and lead up to contemporary problems in the Lie theory of semigroups.

In the year 1900, at the International Congress of Mathematicians in Paris,
David Hilbert formulated 23 Problems which, on the basis provided by
the achievements of 19th century mathematics, would decisively influence the
course of the history of mathematics in the 20th century. Among these, one of
the most familiar is the fifth; it deals with the transformation groups introduced
during the preceding decades by Sophus Lie who died in 1899. It is com-
monly known that essential aspects of Hilbert’s Fifth Problem were solved
by papers published by Gleason,and Montgomery (1 March 15, 1992)
and Zippin in the vear 1952. What is less commonly known is the fact that
Iilbherts Fifth Problem has other aspects, among which there is a semigroup
theoretical one. It is this aspect on which I shall focus in this essay ! which 1
am honored to dedicate to Stefan Schwarz, who among a generation
ol pioneers of semigroup theory such as A. H. Clifford, P. Dubreil.
ooille, VoV Vagner, A.D. Wallace promoted the algebraic and
the topological theory of semigroups so significantly.

ANS Subject Classification (1991): Primnary 22A15, 22D05, 22-03. 01AL5. 01A60.

Koy words: Analvtic semigroup, Hilbert’s Fifth Problem, Functional equations. Locally
compact group. Cancellable semigroup

P presented some of these observations in a lecture at the University of Erlangen on
Julv 601993
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The second article in the very first volume of Crelle’s Journal in the vear
1826 is entitled ,,Untersuchung der Funktionen zweier unabhangig veranderlicher
GroBen z und y, wie f(x,y), welche die Eigenschaft haben. da§ f(z. f(.r.y)
eine symmetrische Funktion von z, x und y ist*.

Its authoris N. H. A bel, who communicates the following result: Hat ein:
Funktion die im Titel genannte Eigenschaft, so gibt es eine Funktion v derart.
dafl Y f(z,y) = (z) + ¥(y) gilt. While it is not specifically stated that v is
invertible, the discourse in the paper makes it clear that this is meant. We note
right away that any of the functions f described in A b el’s proposition defines
on R the structure of a commutative semigroup.

Let us have a hard look at this statement and take S = ]4.>[. This set is
homeomorphic to R, and therefore any example we inspect on this space is. by
transport of structure, an example on R. We write a Ab = min{a.b} and define
f:5%x8—=58by f(z,y) = ((x A6) +y) A12. Then for any choice of elements
z,y,2 € S we observe zA6 >4 and f(z,y) > 8, and thus f(z, f(z.y)) = 12.
Thus f is certainly an example of one of A bel’s functions. But we also note
that f(5,7) = b+ 7) A 12 = 12, yet f(7,5) = (6 +5) A 12 = 11 # f(5.7).
Thus f is not commutative, and thus cannot satisfy the conclusion of A be!l’s
proposition. Continuity can’t be the problem since our function f is certainlv
continuous.

A closer inspection of A bel’s paper shows that early on he claims that
[ (z f(z,y)) = f(z, f(y,x)) can hold only if f(z,y) = f(y.r) holds. This is not
a legitimate conclusion as our example shows. But let us simply go ahead and
impose, in addition to A b el’s explicit hypotheses, the assumption of comun-
tativity of f. Then it is certainly correct to say that the functions f: Rx = —
considered by A bel are, in modern parlance, precisely the commutative semi-
group multiplications on R. Then, assuming the invertibility of v and the conti-
nuity of f (which is also implicit in A b e l’s argument) we may restate A bel's
proposition in the following form:

ABEL’S THEOREM. (Preliminary version) An abelian topological semigroup
on R is isomorphic to the group (R,+) or one of its open connected subsemi-
groups.

Indeed, the intervals homeomorphic to R are exactly the nonempty open
intervals of R. Hence apart from R we have to allow the intervals (ja. >’ .+1.
0 < a, and all those arising from these by reflection x +— —.r about the origin.

But wait: The operations f: R x R — R, given by f{r,u) = r /A y. or by
flryy) == xVy =max{x,y}, or by f(RxR)=={r}, rc i, areall commutative
topological semigroup multiplications on R. and none of these is isomorphic 1o

one of A bel’s multiplications. Perhaps [ was supposed to be difterentiabic
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Indeed. in his argument A b el proceeds without further ado to differentiate as
soon as the need arises. But then we consider f: R xR — R, f(z,y) = zy, a
seniigroup multiplication which is even (real) analytic. It again fails to be one of
those listed by A b el since it has two idempotents, and A b e 1’s multiplications
have at most one. This example is even mentioned by A bel himself: he says
that the functional equation ¢ (zy) = ¥ (r) + ¥(y) is solved by ¥(z) = alog z.

At the latest, at this point one realizes one of the basic difficulties hampering
all carly works in this area: the lack of precision of the very concept of function.
No domain and codomain is ever specified. Perhaps in elementary analysis this
was not so essential. But the issue of domain and codomain begins to be of
paramount significance if “arbitrary” or even “wanted” functions are substituted
into themselves. This deficiency in a precise definition of a function remained
a handicap, 60 vears later, in Sophus Lie’s definition and discussion of his
“transformation groups”

e nl — 5 B B .
T = filey, o xnian, ... am)
and the postulated substitutions

Fi(hCe o rpsan o am), o fulan, o ensar, oo am )by, b,,,,)

= .f'}'(xla~-~~,-'I7'n,;('la-~~a(—'m)-

It was B. Riemann who recognized with full clarity the significance of a
domain and codomain of a function, as is exemplified by the Riemann Mapping
Theorem or the very invention of the Riemann surfaces. (I was alerted to this
observation by my colleague Detlef Laugwitz.) But Riemann’s insights
apparently remained without influence on Lie.

A semigroup S is cancellable or cancellative if
(Va.a.be s) (ra =a2b = a =b) and (ar=0br = a=0b).

Today we know by and large all topological semigroup multiplications on .
They exist in great abundance (see e.g. [10; p. 206 ff.]. and [26]). Most of them
are not cancellable.

A b el too.in the very first step of his argument had assumed that f(a.a)
Joecby implied a = 6. Thus we should restate the proposition formulated in 1826
v A bel in Crelle 1 sharply as follows:

ABEL'S THEOREM. An abelian cancellable topoiogical semigroup on ¥ is iso-

tmorptizeio the group VR A=) or one of iis open connected subscmigroups.

This canses us to formuadate the issue opened by A bel as follovs:
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ABEL’S PROBLEM. Determine all cancellable topological semigroup structures
on a connected topological manifold.

Although not noticed always and everywhere, A bel’s considerations have
an influence to this very day. Exactly on the turn of the century the following
question is being raised:

Hilbert 5, Part 2. I"Jberhaupt werden wir auf das weite und nicht un-
interessante Feld der Funktionalgleichungen gefiihrt, die bisher meist nur
unter Voraussetzung der Differenzierbarkeit der auftretenden Funktionen
untersucht worden sind. Insbesondere die von A b e ] mit so vielem Scharf-
sinn behandelten Funktionalgleichungen ... weisen an sich nicht auf, was
zur Forderung der Differenzierbarkeit der auftretenden Funktionen zwingt
... In allen Fallen erhebt sich daher die Frage, inwieweit etwa die Aus-
sagen, die wir im Falle der Annahme differenzierbarer Funktionen machen
konnen, unter geeigneten Modifikationen ohne diese Voraussetzung gultig
sind.

It was David Hilbert, who expressed these sentences on the occasion of
the International Congress of Mathematicians in the year 1900. Here he placed
before the mathematical public his famous 23 problems. On the one hand, this
lecture was a stock-taking of the situation of mathematics at the turn of the
century, i.e., of the achievements of the 19th century in this field. On the other
it proclaimed a program for the mathematics of the 20th century in many facets.
It is impossible to overestimate the influence which this address exerted on the
development of mathematics in this century. Our quote of the problem con-
cerning A b el’s functional equations is a portion of the famous Fifth Problem.
However, this portion is much less known than the first part.

Hilbert 5, Part 1. Lie hat bekanntlich mit Hinzuziehung des Be-
griffs der kontinuierlichen Transformationsgruppe ein System von Ax-
iomen fiir die Geometrie aufgestellt und auf Grund seiner Theorie der
Transformationsgruppen bewiesen, dafl dieses System von Axiomen zum
Aufbau der Geometrie hinreicht. Da Lie jedoch bei Begriindung seiner
Theorie stets annimmt, da die die Gruppe definierenden Funktionen
differenziert werden konnen, so bleibt in den L ieschen Entwicklungen
unerortert, ob die Annahme der Differenzierbarkeit bei der Frage nach den
Axiomen der Geometrie tatsichlich unvermeidlich ist oder nicht vielmehr
als eine Folge des Gruppenbegriffes und der iibrigen geometrischen Axiome
erscheint. Diese Uberlegungen ... legen uns die allgemeine Frage nahe in-
wieweit der L i e sche Begriff der kontinuierlichen Transformationsgruppe
auch ohne Annahme der Differenzierbarkeit der Funktionen unserer Un-
tersuchung zugdanglich ist.

In modern parlance, a [real] Lie group is a group on a [real] analytic mani-
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fold, whose operations are [real] analytic. At the time of Hilb er t’s proclama-
tion, the classification of simple Lie groups was well under way. L ie himself,
but also Engel and Killing had realized, that such a classification was
primarily a problem of linear algebra. A global determination of these groups
was achieved by Poincaré, Elie Cartan,and Hermann Weyl.

The first part of Hilber t’s Fifth Problem is a problem on transformation
groups. When specialized to the action of a group on itself by translation, it may
be formulated in the form of a question as follows: Is every topological group on
a topological manifold a Lie group? In view of an eventual classification of
connected Lie groups it seems permissible to formulate Hilber t’s bold grasp
of the problem as follows:

HILBERT’S FIFTH PROBLEM FOR GROUPS, GENERAL VERSION.
Determine all topological group structures on a connected topological manifold.

When formulated in this way, our version of A bel’s Problem is even more
comprehensive. Hilbert’s comprehensive formulation yields a key to both
problems:

HILBERT’S FIFTH PROBLEM. Investigate the circumstances under which the
solutions of functional equations on topological manifolds are automatically dif-
ferentiable or even analytic.

I think that at the time Hilbert formulated his problems the difference
between a topological and a differentiable manifold was adequately understood.
Weierstrass’ functions were well known. It was known since 1906, that
K och’s snow flake curve ([14]) was topologically equivalent to the circle, and
geometric intuition alone sufficed to convince anyone that it could not inherit a
differentiable structure from the plane in which it was embedded. It was, how-
ever, premature for a precise understanding of topological groups on connected
topological spaces which were not euclidean manifolds. There are indications in
the formulation of Hilb er t’s Fifth Problem. Subsequent to his description of
Lie’s formalism he states

Hilbert 5: “Infinite” groups. Auch fiir unendliche Gruppen ist, wie
ich glaube, die Untersuchung der entsprechenden Frage von Interesse.

It remains in the dark what is meant by “infinite”. It is clear that not the
cardinality of the underlying set is meant, but the “number of parameters”
which permit a description of the group. In the rendering of Lie’s formalism
above, the “parameters” are ay,...,a,. Today we would speak of an infinite
dimensional group. However, to this very day this opens a vast field which,
among other things would have to include the additive groups of all topological
vector spaces. Nevertheless we might focus, from modern perspective, at least
on locally compact spaces without any dimensional restriction, and formulate a
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problem for which the time had not arrived in 1900, but which. in a certain
sense, is implicit in Hilbert's formulation:

HILBERT 5: “INFINITE” GROUPS, MODERN INTERPRETATION.
Determaine all topological group structures on a connected locally compact space.

This problem is more comprehensive than the first part of Hilb et s Fifth
Problem. In this formulation it is no longer evident at all what the problem
should have to do with analyticity, and it is indeed amazing that it shouid turn
out that such links exist.

Several different strands of mathematical culture are tied to these earlv works.
[t is certainly natural that the first part of Hilbert's Fifth Problen should
nave evoked the development of a theory of topological groups, their repre-
sentation theory — at any rate it provided continuous momentum to such de-
velopments. A bel’s work on functional equations is claimed as the origin of
the general theory of functional equations one of whose foremost promoters is
Jdnos Aczél. There is a very worth while survey article on the state of the
second part of Hilbert’s Fifth Problem [2]. In respect of what we formulatec
above as A bel’s Problem, however, it does not represent the latest state o
information.

In the preceding sections we have attempted a certain overview of the problen
situation at the end of the 19th century which was presented by Hilbhert h
his IFifth Problem in a visionary fashion. We now turn to a discussion ot the
present state of knowledge. Obviously it cannot be exhaustive.

In the first half of the century the theory of compact topological gronps was
completed through pioneering contributions by Hermann Wevl. John
von Neumann and L. S. Pontryagin. The essential tool is the exis-
tence of an invariant probability measure for the Borel sets on a compact gronp.
and the essential structural insights arise from the representation theory o
harmonic analysis, as one likes to say in the context of topological eroupsi. Tl
information that there are sufficiently many irreducible unitary representations
since these have to be finite dimensional, suffices for the following importam
conclusion for a compact group G:

THEOREM 1. There are arbitrarily small closed normal subgrowps N of (7
cuch that G/N is a Lic group.

In other words: Every compact group & can be “approximated by Lie
egroups”. (Given certain background theories one can say that ¢ is a strict pro-
jective limit of compact Lie groups. But for our purposes the present fornni-
lations suffice.) One might be induced to conclude that this information ~ettles
Hilbert’s Fifth Problem for compact groups m the alfirmative right awav.
A closer inspection, however. shows that this is not vet the case. However, o
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closer penetration into the structure theory of compact L ie groups produces
the following result which renders the information in Theorem 1 considerably
more precise:

THEOREM 2. For every neighborhood V' of the identity in G there is a com-
pact normal subgroup N and a local Lie group® U in G which commutcs
clementwise with N and is such that the map (n,u) —nu: N x U — NU C V
15 a homeomorphism onto a neighborhood of the identity which is containcd
v

This theorem allows us a reformulation. whose approach belongs to Lie
oroup theory:

THEOREM 3. For any neighborhood V' of the identity there is a compact nor-
mal subgroup N C V| a connected Lie group L, and an injective continuous
homomorphism [: L — G such that the function (n,z) = nf(x): N x L —
is a continwous group homomorphism with discrete kernel.

In particular, ¢ and N x L are locally isomorphic topological groups.

With this Theorem 3 we can give fairly direct answer to Hilbert's Prob-
lem: A topological group which is locally isomorphic to a Lie group is a Lie group.
Thus. by the Theorem 3. we may assume that G = N x L with a Lie group L
in such a fashion that there is a euclidean ball neighborhood E of the identity
containing N (identified with N x {1}). The inclusion i: N — FE — N x L is
null-homotopic since £ is contractible. Let p: N x L — N be the projection.
Fhen pi: N — N s the identity, and is null-homotopic as i is null-homotopic.
Thus N is contractible. However, the only contractible compact gronp is the sin-
eleton one. Thus G = L. We have obtained a positive answer for Hilbert's
Iifth Problem for compact groups.

A second class of groups for which this problem was solved by the fourth
decade in this century is that of abelian groups. The duality theory of Pon -
tryvagin and van Kampen provides the following structure theorem:

THEOREM 4. A locally compacl connceled abelian group is isomorphic lo
o =" with a compact group K.

Thus Hilherts Fifth Problem for abelian groups is reduced to that for
compact groups {(such as A}, and for these the problem was decided. The com-
pact abelian Lie groups are distingnished among all compact groups by the fact
that their character group is finitely generated.

20U s called a local Lie group in (¢ if there is a Lie group L. an identity neighborhood
I Land o homeomorphisi ¢z U s {7 satistving f(ey) = fo) f(y) for all woyowey e U
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This was the situation before the Second World War and still by the mid-
dle of the century. Even for low dimensional topological manifolds nothing was
known. Among the cognoscenti it was said that Montgomery invested a
lot of effort in the dimensions 2 and 3 and finally cracked these cases. Typically
it was unknown whether a locally compact and connected group had to con-
tain an arc. It was realized by A. M. Gleason that this could be proved.
When Montgomery heard about this, he instantly recognized the signifi-
cance for a solution of Hilbert’s Fifth Problem. His joint paper with Leo
Zippin was submitted to the Annals of Mathematics on March 28, 1952, and
Gleason’s article on June 13, 1952. Recently, G. D. Mostow pointed
out in a lecture [16; p. 11] that “Gleason’s arc resulted from his remarkable
idea of constructing a semig-group of subsets; according to Gleason, that idea
came to him while reading Hille’s book ‘Semi-groups of operators on Hilbert
space’ — a wonderful instance of unpredictable pregnancies in mathematics”.
With these contributions, Hilber t’s Fifth Problem was resolved, in as much
as locally euclidean groups were concerned, by an affirmative answer. The proof
was presented by Montgomery and Zippin in atext book in 1955 which
instantly became a classic. The considerable technical complication of the proof
was never really simplified.

The decade of the fifties is also marked by the first attempts to deal with
topological semigroups in a systematic way. In the USA the prime promoter was
A.D.Wallace in New Orleans, in Central Europe Stefan Schwarz
was the one mathematician who recognized certain basic features of compact
semigroups which were to become basic stock in the trade [20], [21], [22], [23].
In particular, he contributed to the understanding of the structure of compact
monothetic semigroups, i.e., compact topological semigroups in which the pow-
ers of one element are dense. Commutative semigroups in which every singly
generated subsemigroups is contained in a compact one allows a partition into
what one calls archimedean components. In the sixties, the structure theory of
compact topological semigroups reached a plateau on which it stayed since; the
monograph by Paul Mostert and myself [10] was an attempt to round off
this theory and present a summary of what was known then.

Questions on the wider frame of Hilber t’s Problem concerning the struc-
ture of connected locally compact groups were not settled at once, however. Yet
this aspect of the problem was resolved by Hidehiko Y amabe who showed
[24], [25] that the Theorem 1, which we formulated for compact groups above,
remains intact for all locally compact groups G such that the factor group G/Gy
modulo the connected component of the identity is compact. These groups are
called almost connected.

This information was all that was needed at the time in order to elucidate the
structure of locally compact connected groups. For as early as 1949 the Annals
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of Mathematics published a seminal paper by Iwasawa [12] in which the
basic properties of those locally compact groups were uncovered which could be
approximated by connected L ie groups. For instance, the Theorem 2 above was

proved for these groups. As a consequence, the Theorems 2 and 3 are available
for locally compact and almost connected groups.

Iwasawa also proved the following result, which after Y amabe’s theo-
rem can be formulated as follows:

THEOREM 5. In a locally compact almost connected group G, every compact
group is contained in a maximal compact group K to which all other maxi-

mal compact groups are conjugate, and there are continuous homomorphisms
fiy---s fn: R — G such that the map

(k,(ml,...,wn)) —kfi(z1) - falzn): KXR* - G

is a homeomorphism.

In particular, G is homeomorphic to K x R®. As a consequence, all topo-
logical characteristics of the group G are completely known, since the structure
of K is extremely well understood.

It was above all one part of the information emerging from the solution of
Hilbert’s Fifth Problem which influenced group theory vitally thereafter,
namely, that portion which dealt with the structure theory of locally compact
groups. This information permitted the accumulation of much knowledge about
the structure of locally compact groups since the sixties. It was Hilbert, who
spoke in the connection with Lie groups about the foundations of geometry.
The structure theory of locally compact groups plays a fundamental role in the
contemporary theory of the foundation of geometry, notably in the theory of
locally compact connected projective planes which appears to reach a certain
level of completion [7].

What is the status of A bel’s Problem which was more comprehensive than
Hilbert’s?

In the aftermath of the work on Hilbert’s Fifth Problem we register an
article by R. Jacoby [13] in 1957 in the Annals of Mathematics . In this
paper, it was shown that a locally euclidean local group was a local Lie group.
This result, whose proof is very complicated, appeared to fall into oblivion until
in the middle of the seventies, under the directionof Dennison R.Brown
of the University of Houston a dissertation was written by R.S. Houston
which addressed the question of cancellable topological semigroups on manifolds.
This author combined classical semigroup techniques (as they are known in
the context of the so called Ore condition, sufficient for embeddability of a
semigroup into groups) with Jacoby’s result and constructed for each of his
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semigroups a L i e group in which quotients of elements from the semigroups can
be locally embedded. The belated publication of these results appeared in 1987
[4]. A systematic clarification of the situation was achieved by Wolfgang
Weiss and myself in 1988 [11] by employing sheaf theoretical methods. On
the basis of the results by Brown and Houston we showed the following
results:

THEOERM 6. Let S be a cancellative topological semigroup on a topological
manifold. Then the following propositions hold:

(1) On S there exists a unique analytic structure, with respect to which
the multiplication S X S — S is analytic.

(2) There exists a canonically determined simply connected Lie group G (S)
and an analytzc cancellative semigroup S with an analytzc covermg
morphism p: S — S and an analytic homomorphism f: S — G(S)
which in all points is a local isomorphism of analytic manifolds.

(3) G(S) contains a countable central subgroup Gg which is algebraically
isomorphic to the group of covering transformations of the covering

p: S — S. If one defines G(S) = G(S)/Gs, there is a commutative
diagrams of homomorphisms

in which the map S — G(S) is the universal homomorphism of S into
a topological group.

It is still an open problem whether G has to be closed (and then, because
of its countable cardinality, has to be discrete). This is of considerable interest
because this condition is necessary and sufficient for G(S) to be a Lie group.
Apart from this open problem, the Theorem 6 settles A bel’s Problem in the
affirmative: Cancellative topological connected locally euclidean semigroups are
analytic and closely tied to a Lie group. Abel was right: A bel’s Theorem
is correct as soon as the postulate of cancellability, made implicitly by Abel,
is made explicit.

The general circumstances described in the Theorem 6 are interesting in many

respects. We illustrate them by an example which is very close to a very classical
environment.

We consider the Lie algebras g =sl(2,R) C sl(2,C) = g¢. In the algebra g
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we set

(10 0 1 0 1\ [ z y+t
["*-"”]_'"<() —--1)“’(1 0)“(—1 0>“<y—t —:1:>'

The determinant

€T y+i
y—1t -z

def

L(‘I’lvyﬁ t) = det[]:,y, t] = ‘ g ——:13'2 — y‘z _|__ t2

is a Lorentzian form on g which is invariant under inner automorphisms. The
set

W= {[z,y.1]: L(z,y.2) >0, t>0}

is a Lorentzian cone which is invariant under inner automorphisms. In the
6-dimensional real Lie algebra gc the set g @ tW is a wedge which is in-
variant under inner automorphisms generated by g. We consider the groups
(' = SI(2,R) C SI(2,C) = G¢ of dimensions 3 and 6, respectively. There is a
theorem which is relevant to our situation and of which we know far reaching
generalizations today.

THEOREM. (G. 1. Ol'shanskil) The subset H = Gexp(i- W) is a closed sub-
scmigroup with a nonvoid interior S (which satisfies SH = HS C S).

The map (g, X) — gexp(i- X): G x W — S is a diffeomorphism which
induces an isomorphism of analytic manifolds G x interior(W) — 5.

The group SI(2,C) acts on the Riemann sphere §? = CU {oo} according to
the following definition:
a b\ __ax+b
((7 d) T e+ d

et N denote the northern hemisphere of S?. We have

N

H={geSl(2.C): g-N N},
\' - {(] [ SI(Z,G:) L g- [V g Illt jv} )

The group G = SI(2.R) is homeomorphic to R? x §'. Its fundamental
croup is 2. The Lorentzian cone W is homeomorphic to a closed half space

MR iy AT

0.l According to our theorem, S is homeomorphic 1o

while & is homeomorphic te S x R” . Hence there is a sim-

P T+

ply connected covermg monoid ff of [/ which is homeomorphic to 77 o 527

Fhe interior 70 of [T is the siply connected covering semigroup of S Tt -

oy
e
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cancellative and homeomorphic to R®. The group SI(2,C) is homeomorphic
to SU(2) x R* ~ §* x R*. Accordingly it is simply connected. The Theo-
rem 6 applies to T'. The canonically associated simplyv connected Lie group

G(S) is SI(2,C), and the covering homomorphism p: T — T mentioned in the

T

tl

heorem 6 (3) is the identical self-map of T'. Indeed, we have a homomorphism
=T — S — SI(2,C) which is a local homeomorphism. Its corestriction to
1e image S is even a covering morphism. One can show [8] that none of the

L

semigroups H and T is algebraically embeddable into any group. let alone an-

al

ytically embeddable into a Lie group.

Semigroups of the type Gexp(iW) arise in the context of unitary represen-

tation theory. One can ask the question whether unitary representations of a

or
m

‘oup, like the universal covering G of SI{Z,R) in our example. can be “holo-
orphically extended”. Answers to such questions are highly significant for the

representation theory of such groups [18].

The Abel-Hilbert-Problem has led us to analytic semigroups which

illustrate the phenomenon that a consistent continuation of the program initiated
by Hilbert’s Fifth Problem breaks the houndaries of group theory and has
significant consequences in modern representation theory [8]. [91,
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