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MIXED NORM SPACE 
OF PLURIHARMONIC FUNCTIONS 

HASI WULAN 

(Communicated by Michal Zajac) 

ABSTRACT. Let Ct be a bounded symme tr ic domain in C n . For 0 < p, q < oo 
and a normal function <£, we show tha t the mixed norm space ap,q,<p(Q) of 
pluriharmonic functions on ft is a self-conjugate class. 

Let ft be a bounded symmetric domain in the complex vector space C n 

(n > 1), 0 G ft, with Bergman-Silov boundary 6, T the group of holomorphic 
automorphisms of ft, and T0 its isotropy group. It is known that ft is circular 
and star-shaped with respect to 0, and that b is circular. The group T0 is 
transitive on 6, and b has a unique normalized T0-invariant measure a with 
a(b) = l. 

By H(ft) denote the class of all holomorphic functions on ft. Every / G H(ft) 
has a series expansion ([1]) 

/(*) = £**>*,(*) > akv = l i m | / ( r 0 O 0 <M0 , (1) 
k,v r

 b 

oo uk 

which converges uniformly on every compact of ft, where Yl = Z) _C • The set 
kyv fc=0v=l 

of functions {(j>kv(z)}, fc = 0 , 1 , . . . , v = 1,2, . . . , uk = C^+k_1 is a complete 
orthogonal system of homogeneous polynomials on ft which are orthonormal 
on b ([2]). 

Let / G H(ft) with the expansion (1) and /? > 0, the /3th fractional derivative 
of / is defined by 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 32A10, 32A99. 
K e y w o r d s : bounded symmetric domain, pluriharmonic functions, mixed norm space, self-
conjugate. 
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where T(-) denotes the gamma function, and we know that fW is holomorphic 

on ft ([3]). 

A positive continuous function tp on [0,1] is called normal if there exist a 

and b (0 < a < b) such that 

<p(r) . .. <p(r) 
1. ,., ... is non-mcreasmg and lim ,,, \ n = 0, 

(1 -r)a r-»i (1 -r)a 

(p(r) <p(r) 
2. , v . is non-decreasing and lim - — . = oo. 

(l-r)b B r-*i(l-r)
b 

A continuous real function u on ft is called pluriharmonic if for every holo­
morphic mapping 7 of the unit disk D into ft, it o 7 is harmonic on D. Since 
ft is simply connected ([9; p. 311]), every pluriharmonic function on ft is the 
real part of a holomorphic function ([10; p. 44]). Let u be pluriharmonic on ft, 
then u = R e / , where f = u + iv is holomorphic on ft, and v is called the 
pluriharmonic conjugate of u. 

For a normal function (p and 0 < p,g < 00, we introduce the mixed norm 
space a p , 9 , v ? (ft) as the set of pluriharmonic functions u on ft with finite norm 

i/p 

u v,ч,ч> (l-r)-VPWMa

p(r,U)drV , (2) 

,i/в 
where Mq(r,u) = { J | « ( r O I « < M 0 } 

For the unit ball B of C n and the special case <p(r) = (1 — r ) a , S t o i l 
[4] and S h i [8] proved that ap,q,ip(B) = ap,q,a(B) is a self-conjugate class for 
0 < p, q < oo and a > 0, that is, if u G ap,q'a(B), then the pluriharmonic 
conjugate v G ap,q,a(B). For a bounded symmetric domain ft, S h i [5] and 
X i a o [6] proved that ap,q,a(Q) is a self-conjugate class for 0 < p, g < oo and 
a > 0. In this article, we generalize all of these results to a general normal 
function </? on bounded symmetric domains in C n . Here some new techniques 
have been used. 

THEOREM. Let f(z) -= u + iv be holomorphic in ft with /(0) real, and 0 < 

p / < p < o o , 0 < q / < < 7 < c o . j3 = n(^j — M . T/ien /or normal functions (p 

and il>(r) = (1 — r)^<.D(r), ive /ia/ve 

l l/IUv^ciMU',*- (3) 
Here and later, C always denotes a positive constant, not necessarily the 

same one at each occurrence which is independent of / . 

COROLLARY. Let f(z) = u + iv be holomorphic in ft with /(0) real, and 
0 < p, q < oo. Then for each normal function ip we have 

l l / l l p , , , v < C | | u | | P i , ) V . 
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From the corollary above, we easily obtain that the space ap,q,<p(ft) is a self-
conjugate class for 0 < p, q < oo and any normal function <p. 

To prove the main theorem, we need the following lemmas. 

LEMMA 1. ([7]) Let 1 < k < oo. A > 0, /i > 0. h: (0,1) -» [0,oo] measurable. 
Then 

1 / r v k 1 

f(l-r)k^ll [(r-t^h^dt) dr <C f (I - r)k^kX~xhk(r) dr . 

0 ^ 0 ' 0 

LEMMA 2. ([5]) Z,e* 0 < p, g < oo, 0 < r < 1. T/ien 
r 

r p M p ( r , / ) < C J ( r - t y - l M P q ( t , f W ) dt, p<q; (4) 
0 

r 

r 'M«(r , / ) <C J(r- t)^1M«(t,/W) dt, 0 < Q < 1; (5) 
0 

r 

rMq(r,f) <CJMq(t,fW)dt, l<q<oo. (6) 
0 

LEMMA 3. Let f = w+iv be holomorphic in Q with /(0) real, and 0 < q < oo. 
Then /or 1/3 < r < 1, we have 

Mg(r , /M) < C(l - r ^ M ^ - n ) . (7) 

P r o o f . In [5], J. H. Sh i proved that (7) is valid for 1 < q < oo. For 
0 < q < 1 and 1/3 < r < 1, by [7], we obtain 

(H- l ) /2 

M^rjW-f^^C^-r)-*-1 J M*(t,u()dt, (8) 

( 3 r - l ) / 2 

where fAw) = f(w£), £ E b, w E D. Applying the formula in [5] 
2TT 

- L Jdo(t)Jg(Zeie)dO = J' g(i)da(i), g&Ll(b), 

6 0 6 

and (8) we have 

Af|(r,/W - / ( 0 ) ) < C(l - r ) -«M«(-±- , t . ) . 

From |/(0)|? = |u(0)|« < CM«(-f - ,«) , we get 
M«(r,/W) < C(l -r)-«M«(-±E,ti) . 

D 
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LEMMA 4. Let f e H(Q) and <p be normal, 0 < p, q < oo. Then 

^(1 -r)-V(r)MJ(r f / ) dr < C f (1 - r)"-V(r)MJ(r,/W) dr. (9) 

P r o o f . Replacing r by rp + 1 in the left-hand integral of (9), we have 

l 

ll/HP,<.,*> = / ( - - ^P+1)P6_V(rp+1)(l -rp+1)-p6Mp(^P+1»/)(P+ 1>P dr 
0 

1 

< C ((1 - r ) " V W r p M ^ ( r , / ) dr . 
o 

(10) 
Case I. p < g. By Lemma 1 and (4), we have 

l 

J(l-r)~lipP(r)rpMp(rJ) dr 
o 

1 r 

< c / ( l - r ) - y ( r ) dr f (r-t^M^tJ^) dt 

(ID 
< C / ( l - r)0""1 dr | ( r - *)p- V(<)(- " *r°PMp(t, /[1]) d* 

o o 
l 

< C / ( l - r)p"Vp(r)Mp(r, /W) dr. 
o 

Case 2. p > g and q > 1. By Lemma 1 and (6), we have 

l 

/ ( l - r ) " 1(PP(r)rpMP(r, / ) dr 
o 

1 , r 

<c/(l-r)-Vp(r)(/M,(f,/t1l) 
0 ^ 0 

^dí dг 

0 ^ o ' 
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<C J(\-r)aP-x{]<p(t)(l-t)-aMq(t,fM) dt\ dr 

1 

<C /(l - r ) p -V(O^J(^ / I 1 ] ) dr- (12) 
o 

Case 3. p > q and 0 < g < 1. By (5) of Lemma 2 and Lemma 1, we have 

l 

/ ( l -r)-V(r)rPMJ(r , / )dr 
o 

< C J(\ - r)~ V(r) ( j(r - t)*-*M* (t, /M) 
0 ^ 0 

< C / ( l - r)"*-1 f / ( r - ty~ V(0(1 - 0_a9M« (*, /W) 
0 ^ 0 

1 

<C /(l-r)p-Vp(r)MP(r,/W) dr. 

\ P / ? 

díl dr 

P/,
 < i з ) 

Combining (10), (ll), (12) and (13), Lemma 4 is proved. • 

Proof of T h e o r e m . By Lemma 4, we can obtain 

l 

"/US*.* = / ( * -*rV(r)M£(r , / ) dr 
0 

1 

< C / ( l - r) '" V(r)MJ(r, /W) dr (14) 

= C ( / + /)= : C < / ' + «-
0 1/9, 
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Therefore, 

1/9 

Ix = [(l-r)p-l+b'p^p(r){l-r)-b'pM%(rjW) dr 

o 

< C ^ ( l / 9 ) ( l - l /9)-6 ' 'Mf (1/9,/W) 
l (1 5) 

<C f(l-ry-1+b'^p(r)(l-r)-b'pMp(r,f^) dr 

1/9 

= CI2. 

By [11; Lemma 2], we easily obtain 

M g ( r 2 , / ) < C(l -r)-n^'-l^Mq,(r,f), 0<q'<q<oo, 

it follows that 
l 

J2 = / ( l - r)p-l*l>p{r)Mp(r,fM) dr 

1/9 

l 

= 2 í ( l - r 2 ) P - V ( r 2 ) M P ( r 2 , / Ш ) r dr 

1/3 

i 

<C 1(1- r f - f V f r j M j (r, /M) dr . 

1/3 

By Lemma 3 and ip(r) = (1 — r)Pip{r), we immediately obtain 

l 

I2<C J(l- r ) " V ( r ) M £ ( - ± - , u ) dr 

1/3 

1 

< c | ( i - r ^ - V r ø í i - W X M 1 ^ ) d ' 
1/3 

ì 

<C f(l- r)~ V ( r ) M ^ ( r , u ) dr 

(16) 

< C sup ^ ( r ) M g , ( r , г í ) ) p - p H ^ . 
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On the other hand, 
l 

IMIp^',* = / ( ! - r ) " V ' ( r ) < ( r , « ) dr 
0 

1 

> j(l - t)»*>'- V'(*)(l - t)-#M((t,u) dt 
r 

>C(^(r)M ( / , ( r ,u)) p ' . 

Therefore, 
sup <p{r)Mg,(r,u) < | |ti | |^ , . (17) 

0 < r < l y ^ * ^ 

From (14), (15), (16) and (17), we obtain that (3) holds. This completes the 
proof of Theorem. • 
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