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CONGRUENCE FACTORIZATIONS ON
DISTRIBUTIVE LATTICES

IVAN CHAJDA

G. A. Fraser and A. Horn [1] gave conditions for direct decompositions ‘of
congruences on a direct product of two algebras. The aim of this paper is to give
some sufficient conditions for the direct factorization of congruences on distributi-
ve lattices, which are directly decomposable to an arbitrary number of chains.

Let A; for i eI be lattices, 6, be a congruence on A, ioel and J=1I— {i,}.
Denote by A = IT A, the direct product of A; and let 8 = IT 6, be a binary relation

iel iel
on A defined by:

a6b if and only if pr.a6, prb for each i € I, where pr; denotes the projection of A
onto A;. Evidently, 6 is a congruence on A. Further, denote by a(i) = pr.a and by

a(J) the projection of a € A onto IT A,. If 6 is a congruence on A and 6 = IT 6; for

iel iel
some congruences 6; on A; (iel), 0 is called directly factorizable.

Let L be a conditionally complete lattice (see [2], p.64). Then there exist the
supremum and infimum of every bounded family {a, ; 4 € M} of elements a, €L ;
denote it by \/ a, or A a,, respectively. A congruence 6 on L is said to be

ueM neM
conditionally complete, whenever

a6b, for ueM imply ( V a,.) ] ( V b,,)

ueM eM
and

(A% ()
nueM nweM )
for every two bounded families {a, ; u € M} and {b, ; u € M} of elements from L.

Theorem 1. Let A, be conditionally complete chains for iel and 6 be

a conditionally complete congruence on A = I1 A,. Then there exist congruences 6;

iel

on A, such that 6 =11 6,.

iel
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Proof. Denote by {M,; y eI'} the set of all congruence classes of 6. The case
cardI"=1 is trivial. Suppose cardI"=2 and denote M,(i)=prM, for iel.

a) First we prove that for each i € I the family {M, (i); y € I'} forms a partition of
Ai. As U M, =A, clearly [ M, (i) = A.. It remains to prove that for all y’, y" eI’

vel vyer
and i eI, M, (i) n M,(i)=0 implies M,.(i) = M,(i).

Letiel,y',y"el,y'#y"and M,.(i)nM,.(i) # 0. If both M,.(i) and M,.(i) have
no least and no greatest bound, then M,.(i) = A; = M,-(i) because A, is a chain and
the convexity of the congruence class M, on A implies the convexity of the set
M, (i) on A..

Suppose ao,€ M,.(i)nM,(i) and M, (i) has an upper bound. As 6 and A; are
conditionally complete, we have j' =sup M, (i) € M,.(i). Suppose the existence of
b e M,. with b(i)=b,>j' and put J =1 — {i}. Since a,<j' <b,, there exists h € M,-
with h(i)=j' (with respect to the convexity of M,-(i)). Let x e M,. with x(i)=j’
and choose y € A with y(i)=bo, y(J)=x(J). Theny e M, forsome ye ' and y# ¥’
because of y(i)>j'.

Since b, h e M, there exists y,eI’ with p=xvheM,, gq=xvbeM,. Then
there exists y,eI” with yAp e M,,, y Aq € M,,. However,

y@OApE)=bon(x(D)vh(i))=borj =]’
yDap)=y(AGWI)vhI)=x(NA()vhI)=x(T),

i.e. yAp=x€M,, and

y()Aq(@)=bon(j'vbo)=bo
yrq()=x(J),
ie. yaAq=yeM,.

Further, y# vy’ implies M,nM, =@, which contradicts the existence of y,.
Hence b(i)>j' for no element b of M,.(i), thus j' is also an upper bound of
M,.(i). Denote j” =supM,.(i) € M,(i). By the foregoing part of the proof, we have
j"<j'. The converse inequality can be proved analogously, thus j"=j’.
Provided M,.(i) has a lower bound, then also M,.(i) has a lower bound and
inf M,.(i) =inf M,(i) ; it can be proved by dualization. Hence M,.(i) = M,-(i) with
respect to the convexity of the sets M, (i).

b) Prove M, = I1 M, (i) for each yeI. If yoeI" and M,, has not this property,
iel

then there exists a € A with a(i) e M, (i) for each i e I and a ¢ M,,. Then a € M,, for

some y' €I, y' # y,. Hence a(i)e M, (i) for each i €1, i.e. a(i) e M, (i) n M,.(i),

thus, by the foregoing part of the proof, M, (i) = M,.(i) for all ieI. As M,, M,,

are congruence classes, we obtain easily M,,nM, ¥, which is a contradiction.

Accordingly, M, = IT M, (i) for each y € ', thus 6 = IT 6;, where 6, is an equivalen-
iel

iel
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ce on A; induced by the partition {M,(i); yeI'}; evidently, every 0, is
a congruence on A,.
Q.E.D.

Let L be a lattice and I a cardinal number. L is said to be join-IN-complete

provided the supremum \/ a, exists for every family {a,; u e M} of elements
ueM

a, € L with card M <R. A congruence 6 on a join-2R-complete lattice L is called

join-M-complete provided a,0b, for u € M, card M <IN imply ( V au) 6 < V b,‘)
ueM ueM
for every a,, b,eL. A homomorphism 4 of a join-IR-complete lattice L into

a lattice L, is called join-IR-complete, provided \/ h(a,) exists for every family
ueM

Va,) = V@),

ueM

{a,; ueM, a,eL, cardM <} and h (

Theorem 2. Let A;, B; (iel, jeJ) be at least two-element chains with least

elements, cardI=IM and T1 A;, I1 B, be join-MM-complete lattices. If O is

iel jel

a join-IN-complete congruence on Il A; and (H A,~) 6=11 B, then

iel iel jelJ
a) cardJ <cardI

b) 6= I1 6, for some congruences 6, on A; (i€l)
iel

c) there exists an injective mapping w:J— I with A,/ 0.4,=B; for each jeJ.

Proof. Since ( I1 A,~> 0 = IT B;, there exists a homomorphism 4 of A = IT A,

iel jelJ iel
onto B=II B,. As 6 is join-M-complete, also h has this property. Let ioel,
jelJ

a € A,. Denote by a the element of A with a(i,)=a, a(i) =0, for i # i,, where 0, is
the least element of A,. Introduce A; ={a; ; a; € A;}. Clearly A, is a chain which is
a sublattice of A isomorphic with A;. Denote by 0, the element of A with
04(i)=0, for all i e I. Clearly, 0, is the least element of A. The concepts of B, and
Op are introduced analogously.

1°. Let jeJ and b € B,, b+ 05. Prove the existence of ioe I and a(i,) € A, such
that h(a(io))=b. Let acA and h(a)=b.

Since a(i)<a for each i e I, we have h(a(i))<h(a)=b. As B, is an ideal of B,
h(;(T))eB,. Suppose the existence of i, i'€l, i#i' with prh(a(i)) + 0, #
pr,-h(;z?ﬂ). Then 04 =m/\a(7)—, 05=h(0.) = h(a(i)) A h(a(i")), hence
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0;=prh(a(@)) A prh(a(i'y), which is a contradiction. Let io € I and pr(a(io)) 0.
As h(a)=b# 05, such i, exists. Since b =h(a)= Vh(ﬁ) and prh (E}) =(; for
iel

i+ io, we obtain b =prb= 'V’pr,.h(a(i)) =h(a(i)).

2°. Proye that this index i, € I is the same for all non-zero elements from B,. Let
b, b,eB,, b;#0p#b,. By 1° there exist i,, i,el and a,€A,, a,€A, with
h(a,)=b,, h(a,)=b,. Clearly G, # 0. # a,. Suppose i, #i,. As B, is a chain, we
have

05 =h(04)=h(a,na,)=h(a,)Ah(a,)=biAb:# 0,

a contradiction. Thus i, = i,. If b =05, then #(0,) =05 and 04 € A,. Summarizing,
B, ch(A,). As j was chosen arbitrarily, we obtain: for each j e J there exists i; €
with h(A,) 2B ; putting b, =b, we obtain the proof of unicity of such i;.

3°. Suppose B;, ch(A;), B,ch(A)) for iel. As A, is a chain, also A(A;)"is
a chain; however, B,UB, is not a chain for j,#j, thus B,uUB,ch(A,) is
impossible. Hence j—i; is an injective mapping of J into I.

4°. Prove h(A,)=B, for each jeJ. Suppose c e h(A,) — B;. Then c(j') #0; for

some j'#j, j'eJ. Choose d €A, with h(d)=c. Since c(j') e B;, there exists

d,e A, with h(d,)=c(j'). As j—i is injective, we have i;#i;. Hence d Ad,=0,
and

prih(dadi)=pry(cnc())=c(") ac(i") = (i) #0;,

a contradiction. )

5°. Denote by s the mapping j—i; of J into I with h(A.;)=B;. Put ;=6 n
(A, x A)). Then A,/ 0-¢,=B;. The congruence 6; on A, induces a congruence 6
on A; by the rule:

a6b; if and only if a0b,.
Then, evidently, A,g)/6.;,=B;.

If ieI—n(J), put 6;=A; XA Let p, g€ A and pq. Then pra(p) = prih(q)
for each j € J, hence p(7(§))6.q (7w (j)) for each j e J, thus p(i)0q(i) for all i e I.
The converse implication is clear, thus 6 = IT 6,.

iel

Q.E.D.
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MPSIMAS PA3JIOXKHUMOCTD
KOHIPY3HUUN TUCTPUBYTHUBHBIX PELIETOK
HWBan Xanna
Pe3ome
k. A. ®@peiizep 1 A. XOpH onpefenniy yCnOBUs ISl MPAMON Pa3loKUMOCTH KOHIPYIHLMIA Ha
NpsiMbIX NMPOM3BEAECHHUAX ABYX anreOp. B atoi paGore naHbl JOCTAaTOYHbIE YCIOBHMS AN NPSAMOWM

Pa3ioXUMOCTH KOHTPY3HLHIA AUCTPHOYTAaBHOM PELLETKH, KOTOPAs NMPSAMO pa3fiaracTcs B NPOM3BOJbHOE
YUCO Uenent. :
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