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CONGRUENCE FACTORIZATIONS ON 
DISTRIBUTIVE LATTICES 

IVAN CHAJDA 

G. A. Fraser and A. Horn [1] gave conditions for direct decompositions of 
congruences on a direct product of two algebras. The aim of this paper is to give 
some sufficient conditions for the direct factorization of congruences on distributi­
ve lattices, which are directly decomposable to an arbitrary number of chains. 

Let A, for iel be lattices, 0, be a congruence on A,, i0el and J = I — {i0}. 

Denote by A = II A, the direct product of A, and let 0 = II 0, be a binary relation 
i e l iel 

on A defined by: 
adb if and only if prtaQi prf> for each i e I, where prt denotes the projection of A 

onto A,. Evidently, 0 is a congruence on A. Further, denote by a(i) = prta and by 

a(J) the projection of a e A onto II A,. If 0 is a congruence on A and 0 = II 0, for 
i eJ iel 

some congruences 0, on A, (i e I), 0 is called directly factorizable. 
Let L be a conditionally complete lattice (see [2], p. 64). Then there exist the 

supremum and infimum of every bounded family {aM ; p, eM} of elements a^eL; 

denote it by V at* o r A a^ respectively. A congruence 0 on L is said to be 
y. e M y. eM 

conditionally complete, whenever 

and 

aJSby, for \ieM imply ( V av\ & ( V bA 
\yeM I \\ieM / 

( A -v) 0 ( A -v) 
\y eM / VeM / 

for every two bounded families ( f l^^e M} and {feM ; \i e M} of elements from L. 

Theorem 1. Let A, be conditionally complete chains for iel and 0 be 

a conditionally complete congruence on A = II A,. Then there exist congruences 0, 

on A, such that 0 = II 0f. 
i el 
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Proof. Denote by {My; yeT} the set of all congruence classes of 6. The case 
cardF=l is trivial. Suppose cardF^2 and denote MY(i)=priMY for iel. 

a) First we prove that for each / eI the family {MY(i) ;yeT} forms a partition of 

Ai. As [J MY=A, clearly U MY(i) = At. It remains to prove that for all y', y" eT 
Y e r y e r 

and / e J , My<(/) n My«(/) = 0 implies My<(/) = My«(/). 
Let / e I, y', y" e r, y' + y" and Mr(i)nMr(i) ± 0. If both Mr(i) and Mr(i) have 

no least and no greatest bound, then Mr(i) = A, = My<<(/) because A, is a chain and 
the convexity of the congruence class My on A implies the convexity of the set 
MY(i) on A,. 

Suppose a0eMr(i)nMr(i) and My (/) has an upper bound. As 6 and A{ are 
conditionally complete, we have /' =supMy<(/) e My (/). Suppose the existence of 
b eMy« with b(i) = b0>j' andput / = / - { / } . Since a0^/'<fe0- there exists h eMr 

with h(i)=j' (with respect to the convexity of My«(/)). Let x eMr with x(i) = j ' 
and choose y e A with y(/) = b0, y (/) = * ( / ) . Then y eMY for some y e r and y =£ y' 
because of y(i)>j''. 

Since fe, heMr, there exists y i e T with p=xvheMYl, q=xvbeMYl. Then 
there exists y 2 e T with >>A/? eMY2, y Aq eMY2. However, 

y(i)Ap(i) = b0A(x(i)vh(i)) = b0AJ'=j' 
y(J)AP(J) = y(J)A(x(J)vh(J)) = x(J)A(x(J)vh(J)) = x(J), 

i.e. yAp=xeMr, and 

y(/)A(3r(/) = 60AO''v60) = ^0 

y(J)Aq(J) = x(J), 
i.e. y Aq=y eMY. 

Further, y^y' implies MYnMr = 0, which contradicts the existence of y2. 
Hence b(/)>/' for no element fe of My«(/), thus /' is also an upper bound of 

Mr(i). Denote /" = supMy«(/) e Mr(i). By the foregoing part of the proof, we have 
1"^/'. The converse inequality can be proved analogously, thus /" = /'. 

Provided Mr(i) has a lower bound, then also My«(/) has a lower bound and 
infMy(/) = infMy<(/); it can be proved by dualization. Hence MY(i) = Mr(i) with 
respect to the convexity of the sets MY(i). 

b) Prove My = n MY(i) for each y eT. If y0eT and Myo has not this property, 
i el 

then there exists a e A with a (/) e MYo(i) for each i e I and a £ MYo. Then a e MY, for 
some y' eT, y' =£y0. Hence a(/)eMy<(/) for each iel, i.e. a(/)eMyo(/) n My(/) , 
thus, by the foregoing part of the proof, MYo(i) = MY (/) for all / el. As Myo, My, 
are congruence classes, we obtain easily MYonMrj=0, which is a contradiction. 

Accordingly, My = n MY(i) for each yeT, thus 0 = Tl dt, where 0, is an equivalen-
i el iel 
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ce on At induced by the partition {MY(i); yeT}; evidently, every 0, is 
a congruence on A,. 

Q.E.D. 

Let L be a lattice and 9ft a cardinal number. L is said to be join-Wl-complete 

provided the supremum V a» exists for every family {a„; tieM) of elements 
H e M 

aM e L with cardMs$9ft. A congruence 6 on a join-3ft-complete lattice L is called 

join-'HR-compIete provided afib^ for \ieM, card M=$ 3ft imply ( V a A 6 ( V ^ ) 
V eM / V e M / 

for every aM, b^eL. A homomorphism A of a join-3ft-complete lattice L into 

a lattice Li is called join-Wl-compIete, provided V h(av) exists for every family 
(i e M 

{aM ; (.leM, aM e L , cardM^Sft} and /i ( V ^M)
 = V ^(^M)-

\/i e M / n e M 

Theorem 2. Lef A,, £y ( / e J , 16/) be at least two-element chains with least 

elements, card J = 3ft and J IA, , II Bt be join-Wl-compIete lattices. If 6 is 
i e I j eJ 

a join-Wl-complete congruence on II A, and ( n A,A / 6=11 Bh then 
i el \i el If j eJ 

a) c a r d / ^ card J 

b) 6=11 di for some congruences 0, on A, (/ e J) 
i el 

c) fAere exists an injective mapping TC:J-+I with A^d^^Bj for each jeJ. 

Proof. Since ( II A,) 6= II Bh there exists a homomorphism h of A = II A, 
\i el / / j eJ i el 

onto B = IlBy. As 0 is join-3ft-complete, also ft has this property. Let i0el, 
i eJ 

a 6 A,0. Denote by d the element of A with d(i0) = a,d(i) = 0, for /=£ /0, where 0, is 
the least element of A,. Introduce A, = {a,; a, e A,}. Clearly A, is a chain which is 
a sublattice of A isomorphic with A,. Denote by 0A the element of A with 
0A(/) = 0, for all / e I. Clearly, 0A is the least element of A . The concepts of Bf and 
0B are introduced analogously. 

1°. Let j eJ and b eBh bi=0B. Prove the existence of i0el and a(i0)e A,0 such 

that h(a(i0)) = b. Let aeA and h(a) = b. 

Since a(i)^a for each iel, we have h(a(i))^h(a) = b. As B, is an ideal of £ , 

h(a(i))eBj. Suppose the existence of /, i' el, i±V with p^h(a(i)) =/= 0, =£ 

prih(a(i')). Then 0A = a(/)Aa(/'), 0B = /x(0A) = h(a(i)) A /z(a(F)), hence 
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0, =prfh(a(i)) A prfi(a(i')\ which is a contradiction. Let i0 eI and prjh(a(i0)) -,-= 0,. 

As h(a) = b£0B, such i0 exists. Since b =h(a)=\Jh(a(i)) and prih(a(i)) = 0i for 

i^=io, we obtain /3 =prfb= Vprjh(a(i)) = h(a(i0)). 
i e I 

2°. Prove that this index i0el is the same for all non-zero elements from Bh Let 
fcj, b2eBh bx±0B±b2. By 1°, there exist ii, i2el and fl^eA,-, a.2eAl2 with 
h(ail) = bu h(ai2) = b2. Clearly aix=£0A + dh. Suppose ix^hi2. As Bj is a chain, we 
have 

0B = h(0A) = h(ailAdi2) = h(ah) A h(ah) = bxAb2 + 0B, 

a contradiction. Thus ix = i2. If b = 0B, then A(0A) = 0B and 0A e Al0. Summarizing, 
J3, cz A(Al0). As / was chosen arbitrarily, we obtain: for each / eJ there exists ijel 
with A(A,.)z2£Jy; putting bx = b2 we obtain the proof of unicity of such /,. 

3°. Suppose B;iczA(AI), H/2czA(AJ) for iel. As A, is a chain, also A (A,) "is 
a chain; however, BhuBh is not a chain for /i^=/2, thus B7luB/2czA(Al) is 
impossible. Hence /»—>/y is an injective mapping of / into I. 

4°. Prove A(A,.) = By for each j eJ. Suppose c e h(Ai.)-Bj. Then c(j')=/=0r for 

some /'=£/, / ' eJ . Choose deA,. with h(d) = c. Since c(j')eBr, there exists 

dxeAir with h(dx) = c(j'). As /•->/, is injective, we have //^lE- Hence dAdx = 0A 

and 

prrA(rfAd1) = F^(cAc0')) = c 0 ' ) A c 0 ' ) = c 0 ' ) ^ 0 r , 

a contradiction. 
5°. Denote by ;r the mapping /»-»;, of J into / with A(Ajr0))

 = A . Put ft = 0 n 
(A, x A,-). Then A„0)/ftrO) = A- The congruence ft on A, induces a congruence ft 
on A, by the rule: 

afiibi if and only if #,0,6,. 

Then, evidently, A„(j)/6„(j) = Bi. 
If ieI-n(J\ put ft = A, x A£. Let p , (7 e A and pdq. Then Fr;A(p) = prth(q) 

for e a c h / e / , hence F(^0))^o)q(^0')) for each /eJ , thus F(i)ft^O) for all / e l . 

The converse implication is clear, thus 0= TL ft. 

Q.E.D. 
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ПРЯМАЯ РАЗЛОЖИМОСТЬ 
КОНГРУЭНЦИИ ДИСТРИБУТИВНЫХ РЕШЕТОК 

Иван Х а й д а 

Р е з ю м е 

Дж. А. Фрейзер и А. Хорн определили условия для прямой разложимости конгруэнции на 
прямых произведениях двух алгебр. В этой работе даны достаточные условия для прямой 
разложимости конгруэнции дистрибутавной решетки, которая прямо разлагается в произвольное 
число цепей. 
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