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PARABOLIC EQUATIONS WITH
DEVIATING ARGUMENT

LUBICA SEDOVA
1. Introduction

In the present paper we shall consider the parabolic functional differential
equation with deviating argument with infinite memory:
dx + Ax = f(t, X o) Xo=h, (E)
d¢
where A is a sectorial operator on the Banach space X, fis a continuous function
{0,0) x C— X satisfying a special lipschitz like condition. We prove the
existence of a solution and some properties of this solution. The obtained results
and the methods of proofs are analogous to those in [2], where the problem
without deviation had been treated. Therefore we omit in §1 the proofs of the
corresponding results (Lemma 1, Lemma 3), which can be proved by the same
technique. In §2 we can consider the stability and the instability of the zero
solution for such a problem, following the [2] ideas.
In §3, we analogously [1] define the Ljapunov function for such a problem
and investigate the stability.

§0. Assumptions and denotations

X is a real Banach space with the norm L.I.
A: D(A) = X - Xis a sectorial operator with Re a(4)) a (For the definition,
see [He]).

ac(0, 1), t,=>0.

X denotes a power space (following the [21 terminology) with the norm L.I,.
We shall also need the following two estimates, see [2]:

(A1) le=*x|, < C,e"“t%x| for each t > 0 and for each xe X .
(A2) (e —=1I)x|<C(a,A,a,T)tx|, for each xe X*, te<0,T).
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C={u;ueC((—0,0>,X9; o (sup o lu(®)|, < oo}is a Banach space with the
norm |lul = sup |u(@),.
Qe(—.0)
O.(x) denotes {ue C; || x — ul| < ¢ for each xe C.

f:{t,,0) x C— X is a continuous function which satisfies the assumptions
(P1) and (P2):

(P1) fis a locally Lipschitz continuous in both variables (¢y, ©0) x C— X

(P2) For each x¥e C and Te(t,, o) there exists L(x}, T) > 0 and &(x§, T)
such that if |x, — x}| < &, || x, — x¥| < eand te{#, T ), then

1f (2, x)) = f(t, x)lx < L(xF, T x, — x5

heC; his a uniformly continuous function (— oo, 0) - X9
o(t): {t,, 00)— R is a continuous function such that

o)<t for each te{t,, ).

If xe C((— o0, u), X%, we denote x,(s) = x(u + s) for each se (—o0, 0).
We shall consider the problem (E) together with the initial condition

(Co) x, =h

0

§1. Definition of a mild solution

We consider the problem (E, Cy). Let T > t,. Any solution xe C((— 0, T), X°)
of the integral equation

t
x() = "Tx(t) + J e I (s, Xy dsV 1ety, T) (E1)
fo

which satisfies (C,), is said to be a mild solution to the initial problem (E, C,) on
the interval (— oo, T).

Existence theorem 1. There exists a unique mild solution of the problem (E, C,)
on the interval (— oo, T) for some T > t,.
Proof. Choose an arbitrary T; > 5 and L(x,, 1), €(Xy(,» To) from the

assumption (P2) such that

lf(Gs, x))—f(s, x)| <L|x, —x,| for each set, 7> and for each x,,
X € Oy(X4)-

Let S = {x; xe C((— o0, T, X%); x, = h; |x(t) — h(t)l, < 6¥tet, T)}and
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let Gx(¢) =e_A('_"‘)h(0)+J e If(s, x,,)ds for each telt,, T), x€eS,
fo

Gx(t) = h(t — t,) for t < ¢,
The proof of this theorem is based on the Banach fixed point theorem.
We shall show that there exists § > 0 and 7, < T < T;such that G maps S into
S and G is a contraction.
First we take 7; < T; such that

Lj C,(t —s) e ' =9ds < 41—1 for each te ¢y, T}).
fo

Then for x,, x,e C((— o, T)), X9, Xy = X, = h and
X1, wis)> X200 € Oc(x, @(1,)) the following estimate takes place:

' 1
J e IS, X)) — S (S5 X, 0p) dS sillx. = X (1
I a

Let5=£.
2

We shall find such a small T*< T, (we denote it again by 7)) that for each xe S
and s€(ty, 1)) X € O (X)) '

1. First we consider the case w(t,) < f,. In this case there exists because of the
uniform continuity of the function 4y > 0 such that

|zy — zo| < ¥ implies |h(z,) — h(z,)|, < € for each z,, z,e(— 0, 0)

Put 7% 7, > T{*> t, such that |o(s) — w(f)| < y and w(s) < ¢, for each se <z,
T)). Then

1% a9 — xw(lo)la = ?up 0>|h(u) — h(u + (o(s) — o(t)l, < €

for each x,€S.
2. In the case of w(t,) =1, there exists such a >0, y>0 that

£ . £
esupﬂ >,!x((f3)_6— x(u+ t)l, < 5 and |z, — z,| < ¥ implies |h(z,) — h(zy)| < —3— for

each z;, z;e(— o0, 0). Next we put T;*> ¢, such that the following statements
hold:

(@) 6, <TF<T

(ii) |@(s) — o(ty)| < min{B, y}Vse {1, T*

After some calculations we get that

1%1, oy — Xoggla < EVXES.
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We denote 7*again by T,.
Finally, we choose T;** such that T** < T;,

—A(t — ’o) (S

|(e-—A(I—IO) _ I)h(o)'a — I(e -_ I)Aah(o)l < Z

and

f Ce™" (0 = 9116, xaglds <3
fo

for each te(t, T;). Then
1Gx(8) = Gx(t)l, < (6“7 = D) xol, +

t
+ Jv Cae_a(’ ‘cs)(t - s)_aL“xw(s) - xa)(to)” ds +
fo

t
+ J Coe ™t — $) 7S (s, Xplds < 6
‘o

for each xe S.
Thus G maps S into S and G is a contraction.

Corollary 1. On the basis of Theorem 1. there exists a unique mild solution of
the problem (E, C,) on the maximal interval {t,, T'), (eventually T = 0). We shall
call this solution a maximal solution.

We shall follow under what assumptions the interval of the maximal solution is
(ty, ). In the next theorems and lemmas the solution is always a mild solution.

Lemma 1. Assume that the imago f(B) of every closed and bounded set B —
< (0, 00) x C is bounded in X.

If x, is a maximal solution of (E, C,) on (t,, t,), then either t, = + o0 or else there
exists a sequence t,— Ty as n — oo such that |x(t,)|, — .

Lemma 2. Let K(f): {0, o©)—> R be a continuous function. Let. |f(t,
x)| < K@ + ||x||)) for each xeC, t > 0. Then the maximal interval of the
existence of the solution of (E, C,) is (t,, o).

Proof. We shall show it by contradiction. Under the assumptions above
let <{t,, t,) be the maximal interval of the existence of the solution of (E, C,),
where ¢, < 0.

Cleatrly, by Lemma 1., there exists a sequence ¢, — ¢, such that |x(z,)|, — co.
Now

Ix(Dla < Coe™|Xlq + J Co(t — 5)"%e™ ™= K(9)I(1 + [ x,]|) ds.
)
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t
Since the functions e~%, e~ =, K(), f (t — 5)°ds are bounded on the interval
fo

{tp. 1,), We have:
x()l, < C + CII (t—5)"“llx,lds

for each te (¢, t,).

t
After simple calculations it is clear that the function t—+J‘ (t =97 x,||ds is
ly

nondecreasing on the interval (¢ #;). Hence

sup |x(w)l, < C\ + Clj (t —9)7lx,| ds,
ue0,1) 1

which implies that

x|l < Cy + 1Al + CJ (t—9)7"lIx |l ds.
L)

From Gronwall-like Theorem, see [10, p. 188] it follows that |x,| is bounded
function on {t,, t,>, which is a contradiction.

Corollary 2. Let x(f) be a maximal solution on {t,, t,) and let IIﬂt’TQ,I'— be a

+ {lx,
bounded function. Then t, = + 0.

Lemma 3. Assume f maps all sets R* x B < R x C, with B closed and bounded
into bounded sets of X. Assume A has a compact resolvent. If x(t) is a bounded
solution to the problem (E, Cy) on (t,, ), then {x(t); t > t,} lies in a compact set
in X°.

Lemma 4. (Continuous dependence on the initial condition).
Let h, h,e C be uniformly continuous functions on (— oo, 0> — X° Suppose that
h, converges to h for n — co. Denote the solutions of the problem (E, Cy) as x[h],
similarly x[h,] and let {t,, T,), {t,, T,) be a maximal interval of existence of the
solution x[h,), x[h], respectively. Then iminfT, > T; and x,[h] converge to x,[h]
uniformly on the compact subintervals of {to, Tp).

Proof. Let T be an arbitrary such that {t, T) < (¢, T;). By the com-
pactness of the set {x,,,; t€{t,, T )} = C and by (P2) it follows that there exists
y> 0 and L > 0 such that |x, — x,,,| < y for some te {t, T implies

£ (s, x7) = f(S5 Xl < Lllx, — Xa | for each se{t, T>.

301



Now the following estimate holds on each subinterval {t,, T*) < {t,, T such
that x,[A,] exists and | x,[,] — x,[h]l| < y for each tet, T*):

b [,1(0) — x[A1 (D), < C,e™"" " |h,(0) — h(0)|, +

+ CJ (1 = 97"l x,lh,] — x[A]ll ds.

The function ¢ — J (t — 5)" % x,[h,] — x,[A]]l ds is nondecreasing.
0

Hence

Ix[h,) = x[R] < Cillh, — Al + CJ (1 = 5) "l x,[h,] = x,[R]]| ds

for each re(z, T*). From ihe Gronwall-like Theorem, see [He, p. 188] it
follows that

Ix[h,] — x, (Al < C**|[h, — Al ©)

We have shown that for each T* < T such that x,[h,] exists on {¢,, T*)> and
|l x,[h,] — x,[A]]| < y the estimate (3) holds. As well as |4, — h| — 0 for n —» o0,
we have that | x,[h,] — x,[#]| < ¥ on {t, T ) from certain n, for each n > n,.
This completes the proof.

We shall deal with the problem, under what assumptions on f the strong and
the mild solution are the same.

Definition of a strong solution to the problem (E, C,). We consider the problem
(E, Cy). Let T = t,. Any solution xe C((— o0, T'), X?) of the equation (E) for each
te {ty, T) which satisfies (C,) such that

(i) x(t)e D(A) for each te(t,, T)

(ii) x is differentiable on (t,, T') and
(i) the function t — ft, x,,,) is a locally Holder continuous one on (t,, T) into X.
is said to be a strong solution to the problem (E, C,).

Remark 1. If x is a strong solution to (E, C,), it is also a mild solution.
This follows from the theorem 3.2.2. [2].

Lemma 5. Suppose that o: {0, c0) — R is a locally Héolder continuous function
and h is Holder continuous. Let h(0)e X** € for some small e > 0, a + £ < 1. Then
the mild solution to the problem (E, C,) is also a strong one.

Proof. We apply Theorem 3.2.2 in [2]. We must show that the functlon
t - f(t, x,q) is under the assumptions above locally Holder continuous on
(t, T).

One can easy show that the mild solution x is locally Holder continuous on
{ty, T') into X“ (on the basis of the Variation of constants formula and the fact
that x(0)e X**¢). Hence x is Holder continuous on each interval (—oo, ),
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where t < T. From that and from the local Holder continuity of f on (¢, ©0) x C
it follows that for each ¢, (¢, T') there exists 6, > 0, L > 0 such that

|t, — t,| < 6, implies | f(¢,, xw(ll)) — f(t xw(tz))l S Lt — 8 +
+ ”xmu,) — Xo(ty) I < L(t, — ] + H(o(t) — o(1,))) <

< L(t, — 6|+ Hi(t, — ,)™).
This completes the proof.

§2. Stability.

Let x(., ¢,, h) denote a mild solution of the problem (E), with an initial condition
x, = h. Suppose that in the assumptions £, = 0.

Definition of the stability. Let f(¢, 0) = 0 for each t > 0 and hence 0 is a solution
of the equation (E) with the initial condition x, = 0. Then 0 is stable if, for any
t, > 0 and for each € > 0, there exists 6 > 0 such that |h| < § and heC is a
uniformly continuous function implies |x(t, , t,)|, <€ for each t > t,.

0 is uniformly stable if it is stable and ¢ is independent of t,.

0 is asymptotically stable if it is stable and x(t, h, t,) converges to 0 when t — t,
converges to + 0. :

0 is unstable iff it is not stable.

Theorem 2. Let f(t, 0) =0 for each t > 0. Let Reo(A)>a>0. If f(t,
u) = o(||\ui)) uniformly when |u|| — 0, then the null solution is stable.

Proof. The proof is very similar to the proof of Th 5.1.1. in [2]. We can
take a o> 0 such that.

cC, J s7%"ds < % and we can choose ¢ > 0 such that the following state-
0
ments take place:
lull < o implies |f(s, u)| < o|lul| for each s <0, o).

Let § < min —29 : —g— . Suppose that || < &

"0
If |z(2, t,, W, < 0 on {t,, T*), the following estimate is true:

t
2(0la < Coe ™™ Plz(t)l, + 0C,0 f (1 — )" e~ 9ds <
I

Q e——a(l—ll) + g
2 2

Hence |z(?)l. < o for each ¢ > ¢, and 0 is uniformly stabile.

<
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In the next example we shall see that under the assumptions of the above
theorem the trivial solution is not asymptotically stable. This differs from the
theory in [2] for the parabolic equations without delay.

Example 1. We shall consider X = L,(0, n), A = —u", D(4)= W} n
AW, =X', X" =W, - C(0, n).

Let f(t, u) = u’(—1) and let w(t) = 0. Let h,(t, x) = - smx for each t < —1,
n

ne{l, 2, ...}, h,(t, x) = — smx+ u,(x) (1 + t) for each re {—1, 0), where

u,(x, t)—izzf J sinzzdz—lzj J sinz dz dr fort>0
oo o Jo

n
u,(x, 1) = h,(x, 1) fort<0.
It is easy to verify that u,(x, ?) is the solution of the problem (E) with initial
/@)l _ u’(=1)
[l [l

[lull = 0. Smce u, is independent of ¢ and different from 0 for each n, 0 is not
asymptotically stable.

condition uo(t) = h,(t). Of course,

L, converges to 0, if

Example 2. We shall consider two problems:

) L f w2 (r) dr
dt t Jo
u(t, 0) =u(t, n) =
Gy du —u, = ! J u*(r, x)dr
dt t J—t

u(t,0)=u(t, 71)=0
Both can be represented in the form of the equations with the delayed argument,

since

0
0) ft, u)= lj ur(rydr, o@) =t
t J—t

0
G3) ft,u) = ! j ur(ndr, o) =t,

where 4, X, X are as in the previous example. Also lim I]; (ul) | = (. Hence 0
Bl == ||y
is stable in both cases.
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In the rest of this paragraph we shall deal with the case when Rea(4) N {x;
x < 0} # 0 and we shall see that under this assumption 0 will be an unstable
solution. First we shall need some assertion, which will be needed in the proof.

Assertion 1. Suppose X is a real Banach space, M :z — e~ "z is a continuous
linear operator on X with spectral radius r > 0. Given any 6 > 0 and N, > 0,
there exists an integer N > N, and ue X, |u|| = 1 such that |M"u| < (2'2 + &) r"
for n integer ne<0, N, |IM u| > (1 — 8)r" and |M"*+'u| < C,(2'? + &) r" for
eachn +t€{0, N), te0, 1).

Proof. The assertion is the same as Lemma 5.1.4. in [2], only the last
extimate follows from the estimate

IM"* | = |M'M"u| < |M'||IM™| < C,2"2 + 8)r".

Theorem 3. Let all assumptions from §0. hold, except the one about o(A). Let
o(A)n{x; Rex <0} #0. Let |f(s, u)] = O(|u||”) when |u]| -0 and p > 1,
uniformly with respect to s. Let O be a solution of (E). Then O is unstable.

Proof. The idea of the proof is due to [2]. Put M:X%— X% Mz =e "z,
Clearly M is a continuous linear operator with spectral radius r > 1. Hence we
can apply Assertion 1.

We can define operator 7,_,,,: Cn{u, u is uniformly contmuous} - X°
for each re(0, 1) such that for each he D(T,_,,): T,_, ., () =x(t+n—1;
n—1,h).

We shall proceed by contradiction. Suppose that 0 is stable. Then there exist
such ¢> 0, 0> 0 and 8 > 0, that if ||| < &, then ||x(z, 0, h)|| < eforeach ¢t > 0
and |f(s, x,)l < 0(8)llx,||” for each s > 0.

First we shall show the implication
M If A <&, |x,(.,n—1,h)| < eforeachs>n — 1, then | x,(.,n — 1, )| <
< G,|\h|| for each se {n — 1, n) and C, is independent on n. To prove this we
use the Variation of constants formula and the following estimate

N

Ix(2)l, < C*|h(0)], + J C*(ty —s)~“e(llnll + A 1x ()] ds
for each t,e{(n — 1, n).
In the same way as in the previous proofs, by using the Gronwalls lemma we
get (D).

Further we prove the statement
(IT) There exist a, b such that
if |A < aand ||x,l < eforeachs >n— 1, he D(T,_, ), then|T,_, . ,(h) —
— M'h(0)|, < b|h|? for each te (0, 1).
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This statement follows easily from the fact that

n—1+1¢
IT,_1 1 (h) — M'h(0)], = f e AT (s, X ) dS| <

n— 1 a

n—1+1
SJ Cit+n—1—=35)%x|?ds < bl|h|".

Now we shall proceed as in [2] in Thm.5.5.1. We choose 0 < 6<1,

R =2C,(2'* + 8) (where C, is a constant from Assertion 1.) and o is so small

PP —1
that o < g—, @—L < —; where n and K are such constants that
R r—r—ng
IM'| < K(r+n) " for each t>0and " —r>n>0.
We show that to each N, > 0 there exist x,e X* and N > N, such that |x,| = %
r

and the initial function 4 (f) = x, for each t < O such thatif x, = T,(x,_,),n > 1,

1 L
then |x,|| < a for each 1 <n < N and |xy| = <5 - 5) o. But this will be a

contradiction. We take on arbitrary integer N, > 0. In agreement with the
assertion 1 there exists a ue X% N > N, such that |u|, = 1 and u satisfies the

. . c
assumptions of the assertion 1. Put x, = &u, where ¢, = —- Clearly,
"

n—2
) x(n =1+ 0 =T_,, X,y — Mx(n— 1)+ ) M" "L, x —
K=0

— Mx(k)) + M"~'*x(0), where x is the mild solution of the problem (E, C,).
Now

& Rr"

|Mn—l+tx0|as 3||M"_I+’u|,1$

“4)
and for each n

-2
((Z M2k (T, X, — Mx(k))) + T,y Xeo— Mx(n— 1), <

k=0

2

< i K(r+n)' 2" T 0 — Mx(R)l + 1T -1 %0 — Mx(n = D, <
k=0

n—1

< Y bK(r+ ) X ©)
k=0
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In the same way as in [2], one can show by induction that ||x,| < & Rr* and
X+ | < eRr¥+' for each te0, 1), k + t€{0, N), 0 < k integer.  (6)

Since

= n—1 n—k-—1
Y. bK(r + n)y"~'~*(g, Rr)” = bK(& R’ r* 1) 'Y (r + 77) <
k=0 =

r?

1 ., R _,
S—S,r _<_—8]l‘
2
Thuys sgp)lx(t)l,, < §Rr" £ Ro < aVne{0, N) and |xy|, = |[M"x)| —
te{0,n
gr" 1

n—1
— X MY (T X — Mx(R) 20—5)’”8"7:(5‘5)"'
k=0 a

Remark. If f(¢, 0) =0, o(f) <k <0 for each- €0, 0) and 4 is a sec-
torial operator such that o(4) N {x; Re x < 0} = o, is a nonempty spectral set,
then 0 is unstable.

Proof. We shall need a standard decomposition X = X, ® X,, where
A, = Aly, with the spectrum o, and hence, 4, is a continuous linear operator and

clearly X, # 0.
For some x,€ X,, x, # 0 we define the initial function

k
h,()=0  for each te(——oo, 5>

h, (,)=(1 _z_t)xo for each te(l—c,0>.
0 k 2

The problem (E, C) is equivalent to the

S1—“—+Au=0
dt

u(O) = x()’

which has a unique solution e_A"xo. Since g, is a spectral set and hence closed,
there exists > 0 such that o(4,) < — . Thus |e""| < Me #foreacht> 0and
Ie"”"xol,, > Me#|x,|, for each ¢ > 0. This means 0 is unstable.

§3. Ljapunov functions.

We proceed as in [1], where the Ljapunov functions of the functional ordin-
ary differential equations with the delayed argument have been defined, whereby
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the delay is of bounded length. We again consider the problem (E, C,). Let x|z,
(1), @] denote the solution of the problem (E) with the condition x,,,, = @.

We suppose that <0, oc) = {@(¢); t > 0} and w(¢) < t foreach t > 0. Let f be
a function such that there exists a &, > 0 with the property that for each @,
@] < &, @eC is uniformly continuous, the existence interval of the solution
(E), xo = @is <0, x).

Definition. Let V: Rf x C — R be a continuous function and let there exist
continuous functions u, v, w: RS such that u(s) >0, v(s) >0, if s> 0 and
u(0) = v(0) = 0. Let the following estimates

lu( @0),) < V(t, @) <v(lPID
Vi, @) < —w(P0))

for each @eC. r > 0 hold.
Here V(1. @) is defined as follows:

V(t. @) = lim (s)up}]—(V(t X s @(0), B = V(1 Xoy L (1), DY)
=0+ )

Then V(t, @) is said to be a Ljapunov function for the equation (E).
Theorem 4. If V is a Ljapunov function for the equation (E), then the following
Statements hold:
(i) To each € > 0 there exists sucha 6 > 0, 6 < € that | @ | < & implies |x(t, 0.
D)\, < ¢ for each t > 0.
(i1) If im u(s) = oc, then each mild solution of our problem is uniformly bounded

with respect to the initial condition in the following sense: To each a > 0 there
exists a § > 0 such that | @| < a implies |x[t, 0, @], < B for each t > 0.
(iii) Suppose that limof(t, x) = 0 uniformly with respect to t or f maps R x B

into bounded sets in X, where B is a bounded set in C. Further Re c(A) > 0,

®:{0, ) = R is uniformly continuous, w(s) > 0 for each s > 0. Then there exists

a &, > 0 such that | @| < 6, implies |x[t, 0, @]|, converges to if t - x.
Proof. (i) We prove similarly as in [1]:

To each &> 0 there exists a § > 0 such that § < ¢ and v(J5) <u(g). If PeC,

| @] < 6, then

u(jx (0, @D (a()).) < V (¢, x4y [0, P]) < V(0, x,0)[0, D)) <
<o([| @) <v(8)<u(e).
Hence |x [0, @](w(1)|, < & for each 1 > 0. Thus |x (0, @] ()|, < & for each t > 0.
(ii) In the same way as in [1]: To each @ > 0 there exists a 8> 0 that

u(f) = v(a). Let | @| < a, then |x(t, 0, @)|, < p for each t > 0.
(iii) Let 8, > 0, & > 0 and L > 0 be such that | @| < &, implies |x[¢, 0, @]|, <
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< gand |f(t, x(.,0, ®) < Lforeacht>0. Leta+ z< 1,z > 0. Itis easy to
show that by Variation of constants formula there exists a K > 0 such that
|@| < &, implies |x[t, 0, @], . < K for each r > 1 and x[z, 0, @] is a Holder
continuous in ¢ on <1, o0), i.e.

|x(t + h, 0, @) — x(t, 0, D)|, < K*h” foreach t, t + he (1,0), y < 1. (6)

We suppose by contradiction that there exists an initial condition ¢ € C such
that |@| < §, and lim |x(¢, 0, @)|,# 0. Then there exists a § >0 and a
t— 0

sequence Z, — oo such that |x(z,, 0, @)|, > d. Now we construct a subsequence
{t, } such that there exist a sequence ¥, which converges to +oo and
w(1¥) = 1, . With the help of this sequence 7} we can construct such a subse-
quence (we denote it again by ¢}) that ¢} » oo and ¢}, , — t¥> 1 for each k.
Thus, we have a sequence ¢, with the property |x(z, 0, @)|, > dand ¢, = w(t}),
t¥ 7 oo and t¥,, — t¥> 1. Now by (6) and by the uniform continuity of @ on
0, o0) there exists an A, > 0 such that re {zf, t}+ h,)> implies

) o
VU, Xu) < —w(x(@D)]) < —W(E).

From this it follows that
5 .
Y i) = VO, %) < —(3) - Ge= 1),

We take a limit in the last estimate and we get V (¢}, x,;)) < 0 for some k > 0.

But this is a contradiction.
Example. We shall consider X = L,(0, n), A= —u", a=1/2, D(A) =
= W} n W, (0, ) and hence X* = W, (0, 7).

Let [u; = | |u'[*dx and |ul,, < mlul,

0
Let f(t, u) = au(0) + bu(—r) for ue{z, ze C((— o0, 0>, X*) and z is a bounded
function}.

Let w(¢) = t and hence f(¢, u,) = au(t) + bu(t — r).
So we can consider the problem
du =u, + au(t) + bu(t —r)
dt
ut,0)=u@, 1)=0
u(0, x) = P(x),

where @€ C((—0,0), X% is a Holder continuous function with @(0)e X**#
for some >0, a+ < 1.
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We define a function V (for some p > 0)

(% D20, ) + p j

-r

0

v, @)= f

0

DYz, x) dz) dx.

(Hence V is independent of ¢).
We can show that V satisfies the conditions for the Ljapunov function

Vit @)= ;l,-ld)(O)l,’; with u(s) = % 52
and

r n0
V(®) < %M)(O)lf, --I-pj~ J DXz, x)dzdx < %I@(O)Ii +
T Jo J-r
1
2 = 2 10} 2_
+pr sup [P, < (2 + prn >|| [

1
Hence v(s) = (E + ﬂzpr).

We see that u(s) —» oo if s » c0. Now we shall calculate V (1, @) for @. Let ¢,
be a strong solution of the problem (£) with an initial condition u, = @. Clearly
X nlt, @)= Dy .

Hence
V(ts @) = lim sup Ve+h, q)‘v") -V, QI,O) —
h-0+ h
timsup L2218 = VO 200 < jimeup L vr, @,).
h—-0+ h 1= 0+ dt

Now we shall find g— V(t, ¢,,). We have that
t

% va @) = j D, D, .+ pDi(1) — pPi(t — r)dx =
0

n

= j‘ _q)I,xx(Dl + p¢|2(t) - p(Dlz(t - r) dx = _j (pl,xx((pl,xx + ad)l (t) +
(1] 0

n n

p00) — p0i( —ndx = [ 0. a0l +

0

+b®,(t — r)dx + j
0

" (be?
+bD,(t — 1) D, . — pDI(H) + pP}(t — )dx < j (—2 — 1) o+
0
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- (—”——p) Ot — 1) +p(<1>.2(z> + faﬁ.x) dx.
2¢? p

Clearly, if iﬂ < —1 and b < 2,”, then there exists an & > 0 such that
pr

diV(t’ (DIJ) SP J' ¢12(’) - ”zd)lz.xdx +
t 0

‘ j (5 + nz) @2 dx <(a + pr)| @, ().
0

t—0+

Thus lim supdi v, @) < (a+pm)®,O), V(1, ) < (a+ prd) |®O) and
t

272

we can put w(s) = —(a + pn?)s. Hence, if b > 0and a <

, then for each

solution of our problem with an initial condition || @| < othe statements (i), (ii)
and (iii) take place.
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IMAPABOJIMYECKHME YPABHEHI1A C OINIO3AbIBAHUEM
Lubica Sedova

Pesome

IMycts A-cexTOpHaIbHBII onepaTop B mpocTpanctse Banaxa X. B paGoTe moka3zaHo jokaibHOE
CYLIECTBOBAHME PELICHUS 3aa4YH
du
— + Au = f(t,u,)
dt
uy=h

Hanbiie uccnenosana ¢yHkuus JIsnyHoBa W yCTOHYMBOCTL HyJIEBOrO peieHus no JismyHoBy.
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