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POLARS AND ANNIHILATORS 
IN REPRESENTABLE DRl-MONOIDS 

AND MV -ALGEBRAS 

J I Ř Í RACHŮNEK 

(Communicated by Anatolij Dvurečenskij ) 

ABSTRACT. Represen table DRl -monoids form a class of algebras con taining 
My-algebras which are known to be an algebraic coun terpar t of the infinite 
valued propositional logic. In this paper, connections between polars and prime 
ideals and properties of sets of annihila tors in representable DRl -monoids, and 
consequently also in MV-algebras, are shown. 

Polars, called also annihilators, (i.e. sets of elements orthogonal to all elements 
of given subsets) in MV-algebras were introduced by B e l l u c e in [2] and 
further studied by H o o in [11], by D i N o l a , L i g u o r i and S e s s a in [8] 
and by B e l l u c e and S e s s a in [3]. In [2] it is proved that every polar is an 
ideal and that the polar of a non-trivial linearly ordered ideal is a prime ideal, 
and by [11], the converse assertion is also true. In [8] the properties of polars of 
prime ideals are examined. 

By [23] and [24], MV -algebras are in a one-to-one correspondence with spe­
cial kinds of (bounded) dually residuated lattice ordered commutative monoids 
(DRl-monoids) introduced by S w a m y in [26]. The connections between 
MV-algebras and I}It!/-monoids are summarized in Theorems 1, 2 and 3 below. 

Ideals, prime ideals and polars in DRl -monoids were studied in [29], [19], 
[20], [21], [22], [10]. 

In this paper it is shown that prime ideals in any MV-algebra A and 
in the bounded DRl -monoid induced by A coincide and moreover that this 
DRl -monoid is representable. Therefore we will study connections between some 
types of prime ideals and polars in representable DRl -monoids, and the corre­
sponding results for MV-algebras including also the results of [2], [11] and [8] 
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will be then obtained as direct consequences. Similarly wre will get properties 
of annihilators (which generalize polars and also further types of ideals) and 
relative annihilators in MV-algebras by specializing of those in DRl-monoids. 

The notion of an MV-algebra was introduced by C. C C h a n g in [5] and 
[6] as an algebraic counterpart of the Lukasiewicz infinite valued propositional 
logic There are various (but mutually equivalent) definitions of these algebras. 
For instance (see [7]): 

DEFINITION. An algebra A = (A, ©,->,0) of signature (2,1,0) is called an 
MV -algebra if it satisfies the following identities: 

(MV1) x © (y © z) = (x © y) © z; 
(MV2) x 0 H = y@x\ 
(MV3) £ 0 0 = x; 
(MV4) -i-ix = x; 
(MV5) x 0 - O = -O; 
(MV6) -»(-u; 0 y) © y = ~^(x 0 -iy) © x. 

If A is an MV-algebra, set x V y = ->(-i.z, © y) © y and x A y = ->(-"X V -<H) 
for any x , i / E i . Then (A, V, A, 0, -^0) is a bounded distributive lattice (0 is 
the smallest and ->0 is the greatest element in A) and (A, ©, V, A) is a lattice 
ordered commutative monoid (/-monoid). 

By the work of D. M u n d i c i [8], MV-algebras can be viewed as intervals of 
abelian lattice ordered groups (/-groups). Namely, let G = ((?, + ,0 , — (•), V, A) 
be an abelian /-group and 0 < u £ G. For any x,y G [0,u] = {x G G : 0 < 
x < u} set x © y = (x + y) A u and -ix = u — x. Put T(G,u) = ([0, w],©, ~>,0). 
Then T(G,u) is an MU-algebra. In [8] it is proved that AfV-algebras of this 
form are completely representative because for every MV-algebra A there exist 
an abelian /-group G and an element u, 0 < u G G, such that A is isomor­
phic to T(G,u). Using this correspondence between MV-algebras and abelian 
/-groups, many results concerning classes of MV-algebras have been obtained 
by J a k u b f k in [12], [13], [14] and [15]. 

Another type of lattice ordered commutative monoids called dually resid-
uated lattice ordered monoids (DRl-monoids) was introduced and studied by 
K. L. N. S w a m y in [26], [27] and [28] as a mutual generalization of abelian 
/-groups and Brouwerian algebras. 

DEFINITION. A DRl-monoid is an algebra A = (A, + , 0, V, A, —) of signature 
(2,0,2,2,2) such that: 

(1) (A, + , 0) is a commutative monoid. 
(2) (A,V,A) is a lattice. 
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(3) (A, +, V, A) is a lattice ordered semigroup (Z-semigroup), i.e. A satisfies 
the identities 

x + (yV z) = (x + y)V(x + z), 

x + (y A z) = (x + y) A (x + z). 

(4) If < denotes the order on A induced by the lattice (A, V, A), then for 
each x,y G .A, the element x — y is the smallest z G A such that 
y + z > x. 

(5) A satisfies the identity 

((x-y)V0)+y<xVy. 

As is shown in [26], condition (4) is equivalent to the following system of 
identities: 

x + (y - x) > y, 

x-y<(xVz)-y, 

(x + y) - y < x, 

and hence jDiJZ-monoids form a variety of algebras of type (2,0,2,2,2). 

Remark. 
a) In Swamy's original definition of a F)i?Z-monoid (called there a DRl-semi­

group), the identity x — x > 0 is also required. But by [16], in any algebra 
satisfying (l)-(4) the identity x — x = 0 is always satisfied. 

b) If G = (G, +, 0, —(•), V, A) is an abelian Z-group and — denotes the group 
subtraction, then (G, -f-,0, V, A, —) is a i?i?Z-monoid. Brouwerian algebras are 
other examples of .DiJZ-monoids. Recall that a Brouwerian algebra B = (B, V, A) 
is a dually relative pseudocomplemented lattice (this means that for arbitrary 
a,b G B there exists a least x G B with b V x > a) with greatest element. 
It is obvious that B has smallest element 0. Denote by a — b the relative 
pseudocomplement of b with respect to a. If we denote by + the lattice join V, 
then (JB, +, 0, V, A, —) is really a i)-RZ-monoid. 

In [23] and [24] the connections between DRl -monoids and MV-algebras are 
described. We have the following theorem: 

THEOREM 1. ([23; Corollary 2], [24; Note]) Let A = (A,e,->,0) be an 
MV -algebra. For any x,y G A set x < y <=> -.(-ire © y) © y = y. Then 
< is a lattice order on A (with the lattice operations x V y = ->(-># ffiy) ®y and 
x A y = ->(->£ V ->y)), for any r,s G A there exists a least element r 0 s with 
the property s © (r © s) > r, and (A, ©,0, V, A, ©) is a DRl-semigroup with 
smallest element 0 and greatest element 1 = —«0 satisfying the identity 

(i) 1 0 ( i e a r ) = a : . 
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THEOREM 2. ([23; Theorem 3], [24; Note]) Let A = (A ,+ ,0 , V, A, - ) be a 
bounded DRl-monoid with smallest element 0 and greatest element 1 satisfying 
the identity 

(i) l-(l-x) = x. 

Set ->£ = 1 — x for any x e A. Then (A,+,- i ,0) is an MV-algebra. 

Let us extend the language of bounded i)i?Z-monoids to (+ ,0 , V, A, —, 1) 
and then denote by VlZl^ the equational category of bounded DRl -monoids 
satisfying (i) and by MV the equational category of MV-algebras. Then there 
holds the following theorem: 

THEOREM 3, ([24; Theorem 3]) The categories VTlll(^ and MV are isomor­
phic. 

Using the above results, many properties of MV-algebras will be derived 
directly from those of DRl -monoids. 

Recall that if A = (A, 0 , -i, 0) is an MV-algebra and 0 ^ I C A, then I is 
called an ideal of A if 

(a) (Va,bel)(a®bel), 
(b) (VaG I)(\/xe A)(aAx = -.(-.(a©--a;) ©->x) e I). 

Let B = (B, +, 0, V, A, - ) be a jDit/-monoid and let c * d = (c - d) V (d - c) 
for any c,de B. Then 0 / J C B is called an ideal of B if 

(c) (\fa,beJ)(a + beJ), 
(d) (VaE J ) ( V x G 5 ) ( x * 0 < a * 0 = * xG J ) . 

If a jDi?/ -monoid F? is induced by an MV-algebra, then x * 0 = x for any 
x e B, and hence condition (d) can be replaced by 

(d') (VaeJ)(VxeB)(x<a=>xeJ). 

Therefore it is obvious that in MV-algebras ideals in the sense of MV-alge-
bras (MV-ideals) and those in the sense of DitZ-monoids (DRl-ideals) coincide. 

Let us denote by X(A) the set of all ideals of a DRl -monoid or of an 
AFV-algebra A The prime ideals play a fundamental role in both theories. 

An ideal I of an MV-algebra A is called prime if for any x,y e A, xAyel 
implies x G I or y G I. (See e.g. [8].) On the other hand, if I is an ideal of 
a Dit/-monoid A, then it is called prime in A if for arbitrary J,K G 1(A) , 
J n K = I implies J = I or K = I. (See [19].) For comparing both notions of 
prime ideals, and also both types of algebras, the following notion will be useful. 

A F)it/-monoid A is called representable (see [30]) if (x — y) A (y — x) < 0 
for each x,y G A. 

It is known ([30]) that a JDi?/-monoid is representable if and only if it is iso­
morphic to a subdirect product of linearly ordered DRl -monoids. E\ery abelian 
/-group and every Boolean algebra (as a special case of a Brouwerian algebra) 
are representable DRl-monoids. 
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PROPOSITION 4. Let A be a representable DRl-monoid and I G 1(A). Then 
the following conditions are equivalent: 

1. I is prime (as a DRl-ideal). 
2. (VJ,K el(A))(JnKCl => (J CI or K C I)). 
3. (Vx,yG A)(0<xAy e I => (x G I or y G I)). 
4. (Wx,y G A)(x Ay = 0 ==> (x G I or y G I)). 
5. (Vx.y G . 4 ) ( x A | / G / = > (x G I or y e I)). 
6. { J G -£(-4) : I C J } zs linearly ordered. 

P r o o f . The equivalence of conditions 1, 2 and 3 is proved (even more gen­
erally for the class of so called autometrized algebras) in [19; Theorem 1], the 
equivalence 1 and 4 is proved in [10; Proposition 3.1], and the equivalence of 1 
and 6 in [21; Theorem 6]. 

4 =-> 5: Let x,y G A and x Ay G I. Then by [19; Lemma 6], (x — (xAy))A 
(y — (x A y)) = 0, hence x — (xAy) el or y-(xAy) G I. Let x — (x A y) G I. By 
[19; Lemma 6], wre have x = (x A y) + (x — (x A y)), therefore by the assumption, 
x G I. 

5 => 4: Let x,y G A, x A y = 0. Since 0 G I, we get x G I or y G I. • 

PROPOSITION 5. If A is an MV-algebra, then the DRl-monoid induced by 
A is representable. 

P r o o f . Let x, y G A. Then by [23; Theorem 1, Corollary 2], in the induced 
DRl -monoid it holds that 

(x - y) A (y - x) = ->(y 0 -ix) A ->(x © -*y) 

and by [5; Theorem 3.3 (dual)], the identity 

-"•(y ffi -"x) A - i (x © -"?/) = 0 

is satisfied in each JWV-algebra. • 

R e m a r k . 
a) By Propositions 4 and 5, the prime ideals in any MV -algebra and in its 

induced DRl-monoid coincide. 
b) Moreover we get as a consequence the well-known fact that every MV-al-

gebra is a subdirect product of linearly ordered MVr-algebras. ([6; Lemma 3]) 

Let us now consider the set 1(A) of all ideals of an MV-algebra A. It is 
obvious that 1(A), ordered by set inclusion, is a complete lattice (in which 
infima coincide with set intersections). Applying [29; Theorem 6] and using [23; 
Theorem 7], one can show that the lattice (1(A), C) is algebraic and Brouwerian. 
By Propositions 4 and 5, the prime ideals in A are exactly the finitely meet-
irreducible elements in the lattice 1(A). 
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Let Bbea subset of an MV-algebra A. Denote by BL = {x e A : xAb = 0 
for all b e B}. Then BL will be called the polar of B. If a G A, then we denote 
by a1- the polar {a}1- of the singleton {a} . (Note that B1 is in [2], [8] and 
[11] called the annihilator of B. In accordance with the theories of lattices 
and autometrized algebras, we reserve this notion for other types of subsets.) A 
subset C C A is called a polar in A if there exists B C A such that C = BL. 
Set B±A- = ( 5 ± ) - L . Obviously, B C i i s a polar in A if and only if B = BL± . 
If we denote by V(A) the set of all polars in A. then by [2; Theorem 25] (and 
also as a consequence of [20; Theorem 1]), V(A) C 1(A). By [20; Corollary 
of Theorem 2], any polar in A is the polar of an ideal of A. Hence by [29; 
Lemma 7], the polars in A are exactly the pseudocomplements of elements of 
the Brouwerian lattice 1(A). Therefore by Glivenko's theorem (see e.g. [1]) the 
set V(A) of all polars of an arbitrary MV -algebra ordered by set inclusion is a 
complete Boolean algebra. (See also [23; Theorem 10].) 

Remark . If A is a general Di?/-monoid, then for any B C A, the polar B1^ 
of B is defined by BL = {x G A : (x * 0) A (a * 0) = 0 } . For DitZ-monoids 
corresponding to MV -algebras this definition is equivalent to the one above. 

Both polars and prime ideals in MV -algebras are not only special cases 
of ideals, but also there are closer connections between them. Some of these 
connections are shown in [2], [8] and [11]. Using the theory of J9it/-monoids, wre 
shall now describe this situation in further results. 

Let A be a DRl-monoid. If I is a prime ideal in A, then / is called a minimal 
prime ideal in A if it is a minimal element in the set of all prime ideals in A 
ordered by set inclusion. By [20], every prime ideal contains a minimal prime 
ideal. One can prove ([21; Theorem 3]) that every ideal in A is the intersection 
of prime ideals, and in particular, every polar P in A is, by [10; Corollary 2.5], 
the intersection of minimal prime ideals not containing P1-. 

Let 0 ^ a G A. Denote by val(a) the set of all ideals in A maximal with 
respect to the property of not containing the element a. It is obvious that 
val(a) 7-- 0. If I G val(a), then I is called a value of a. Every value of any 
element 0 7-- a G A is by [21] a prime ideal in A. 

Now we can prove the following theorem. 

THEOREM 6. Let A be a representable DRl-monoid and {0} ^ I G 1(A). 
Then the following conditions are equivalent. 

1. I is linearly ordered. 
2. If0<ael. then a1- = i x . 
3. J-1 is a prime ideal. 
4. J-1 is a minimal prime ideal. 
5. I11- is a maximal linearly ordered ideal in A. 
6. I-1-1- is a minimal polar. 
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7. IL is a maximal polar. 
8. Every 0 < a G J has exactly one value. 

P r o o f . 1(A) is a Brouwerian lattice, and by [17; Lemma 2.1], the equiva­
lence of conditions 3, 4, 6, and 7 is valid in any of such lattices. 

1 =-> 2: It is easy to verify that if A is a representable jDiJZ-monoid, 
I G 1(A) and x e A, then x G I if and only if x * 0 G I. Now let J G I(.A) be 
linearly ordered and 0 < a G / . Let x G o 1 \ / 1 . Then a A (x * 0) = 0 and, at 
the same time, there exists 0 < b G / such that b A (x * 0) > 0. Let us denote 
y = b A (x * 0). Obviously y G L Moreover 0 < a A y < a A ( x * 0 ) = 0, hence 
a Ay = 0. Therefore, if a < y, then a A y = a, and thus a = 0, and if a > ?/, 
then y = 0, a contradiction. Hence aL = IL. 

2 = > 3: For every 0 < a € I, let aL = IL. Let x,y e A, x Ay = 0. If 
x <£ IL, then there exists 0 < b G J such that x A b = 0, and thus for any 
0 < a G J we have xa = x A a > 0 and xa G J. Let y <fc IL. Then y g xL, and 
hence 2? = z a Ay > 0. Evidently z < x, z <y, therefore z = 0, a contradiction. 
This means that x E IL ov y e IL. 

3 ==> 1: Let IL be a prime ideal in A. Let us suppose that a,b € I and 
a A b = 0. Then a e IL or b G IL, and hence a = 0 or b = 0. Therefore by [10; 
Proposition 3.7], we get that I is linearly ordered. 

1 = > 5: Let 7 be linearly ordered. Then by 3, ILLL = IL is a prime ideal 
in A, and thus the polar ILL is linearly ordered. Let J G 1(A), J 2 J"1"1 a n d 
let J be linearly ordered. Then by 3, JL is prime. Moreover J 2 IXJ- implies 
JL C J 1 , hence by 4 we get J-1 = J-1, and so J = ILL. 

5 = > 1: Let ILL be a (maximal) linearly ordered ideal in A. Then J C ILL 

implies that J is also linearly ordered. 

3 = > 8: Let us suppose that IL is prime. Let 0 < a G J and [/, V G 
val(a). Hence (since, by [21; Theorem 1], U and V are prime ideals) aL C U 
and a 1 C V, therefore also IL C U and IL C V. Thus by Proposition 4, ff 
and V are comparable, and so U = V. 

8 ==> 1: Let us suppose that I is not linearly ordered. Then by [10; Propo­
sition 3.7], there exist 0 < a, b G J such that a A b = 0. Then a G bL, b £ aL, 
but b £ bL, a g a-1. J is an ideal, hence aVbel. Since b1 G 1(A), (by [21; 
Theorem 2]) there exists P G val(b) such that bL C P. Obviously aVb £ P, 
hence there exists Pb G val(a V 6) with P C Pb. Then Pb is a proper prime ideal 
in A, and because, by [22; Lemma 1], for arbitrary 0 < x,y G A and proper 
prime ideal Q m. A, x\y £Q Hand only if x £ Q or y £ Q, we obtain b £ Pb. 

Similarly there exists Pa G val(a V6) such that a£Pa. Since Pa^Pb, aVb 
has two different values. • 
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R e m a r k . In the paper [25], the class 11ZN was studied of all algebraic distribu­
tive lattices L such that the join-subsemilattice Con(L) of compact elements 
of L is a sublattice of L and the lattice Con(L) is relatively normal. Structure 
properties of the lattices of llZAf have been further developed in [9]. (Recall 
that a distributive lattice is called relatively normal if the set of all its prime 
ideals is a root-system under set-inclusion.) By [25; Corollary 3.2], an algebraic 
distributive lattice L such that Con(L) is a sublattice of L belongs to the class 
11ZN if and only if the meet-prime elements of L form a root-system. 

By [29; Theorems 1, 6, Lemma 4], for an arbitrary DRl-monoid A, the lat­
tice 1(A) of ideals of A is a complete algebraic Brouwerian lattice in which 
the compact elements are exactly the principal ideals. Moreover, by [19; Propo­
sitions 2, 3], the principal ideals of an arbitrary DRl-monoid A form a sub-
lattice of 1(A) and, by our Proposition 4, the prime ideals of representable 
DRl -monoids form a root-system. Hence for any representable DRl -monoid A 
we have that 1(A) belongs to the class 11ZN. We say that {0} / / G 1(A) is 
a linear element in 1(A) if the set {K G 1(A) : K C / } is a chain. Therefore 
some of results of [25] can also be applied in our situation. For example, by [25; 
Proposition 5.2], we obtain that conditions 1-8 of Theorem 6 are also equivalent 
to each of the following conditions ({0} ^ I G 1(A)): 

9. I is a linear element in 1(A). 
10. ILL is a maximal linear element in 1(A). 

Since ideals (prime ideals, polars, respectively) in any MV-algebra and in 
the induced DRl -monoid coincide, we get as an immediate consequence: 

COROLLARY 7. If A is an MV-algebra and {0} ^ / G 1(A) , then conditions 
1-10 from Theorem 6 and the preceding Remark are equivalent. 

R e m a r k . The equivalence of 1 and 4 for MV -algebras is also proved in [11; 
Theorem 4.14]. 

Now we can prove a generalization of [8; Theorem 3.3]. 

THEOREM 8. Let A be a representable DRl-monoid and I a prime ideal in A. 
Then 1^ =A or I±JL =1. 

P r o o f. Let IL ^ {0} and let x G I^L \ I. Then also x * 0 G IL± \ I. If 
t / G / 1 , then (x * 0) A (y * 0) = 0, hence, because x * 0 ^ J , we get p O G / , 
and thus y G I. Since I1-1 is the complement of IL in V(A), I1 Hi1-1 = {0}, 
and so we also have I1- n I = {0}. therefore y = 0. That means Jx = {0}, 
a contradiction. Thus I-11- = I. • 
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COROLLARY 9. Let A be a representable DRl-monoid and I a prime ideal 
in A such that / x ^ {0}. Then 

a) /-1 is a maximal proper linearly ordered ideal in A. 
b) / is a minimal prime ideal in A. 

P r o o f . 
a) By Theorem 8, / = / ± x . We have IL G 1(A) and I1- £ {0}, hence 

(/_L)J_ = Z"11 = / is a prime ideal, thus by Theorem 6, IL is linearly ordered. 
Moreover (I1)-11- = /-- , therefore, again by Theorem 6, /-1 is maximal among 
linearly ordered ideals in A. 

b) By Theorem 6 it is now obvious that / = ( Z 1 ) 1 is a maximal prime ideal. 

• 
Remark. 

a) We have shown that if / is a prime ideal in A, then either I±A- = A or 
/ is minimal prime. 

b) Using the same arguments as before Corollary 7, one can reformulate The­
orem 8 and Corollary 9 for prime ideals in MF-algebras. Then [8; Theorem 3.4] 
is a special case of Corollary 9 a). 

Now we shall study annihilators in DRl -monoids and iWV-algebras, which 
generalize the polars of those algebras. (Annihilators in normal autometrized 
/-algebras were introduced in [4].) 

D E F I N I T I O N . 

a) If A is a DRl -monoid and a , 6G/4 , then the set 

(a, b) = {x G A : (a * 0) A (x * 0) < n(b * 0) for some n G N} 

is called a relative annihilator of the element a with respect to the element b. 
b) A subset B C A is called a relative annihilator in A if B = (a, b) for 

some a, b G A. 

R e m a r k . 
a) If a is an element in a DRl -monoid A, then, by [29], the principal ideal 

1(a) is 
1(a) = { x G - 4 : x * 0 < n(a * 0) for some n G N} . 

Therefore for any a,b € A, (a, b) = {x G A: (a * 0) A (x * 0) G 1(b)} . 
b) For any a G A, the polar a1- is a relative annihilator in A because 

aL = (a, 0). In particular, A — 01 is a relative annihilator in A. 
c) Since each DRl -monoid A is a normal autometrized /-algebra, by [4; 

Theorem 1], we have that every relative annihilator in A is an ideal of A. 
d) As is shown in [4], the relative annihilators in a (representable) 

DRl -monoid need not form a complete lattice with respect to set inclusion, 
so we will use the following concept. 



Jlftl RACHUNEK 

DEFINITION. If A is a DRl-monoid and B C A, then B is called an anni-
hilator in A if B = f]{B : 7 G T} for a system of relative annihilators B 
( 7 G T ) in A. 

The set of all annihilators in A will be denoted by Ann(^4). 

THEOREM 10. Let A be a DRl-monoid. Then V(A) C Ann(i4) C 1(A) and 
Ann (A) is a complete lattice with respect to set inclusion which is a complete 
inf-subsemilattice of the lattice 1(A). 

P r o o f . By the definition of an annihilator and parts b) and c) of the pre­

ceding remark it is obvious, firstly that (Ann(A), C) is a complete lattice with 

least element {0} and greatest element A in which infima coincide with inter­

sections, and secondly that Ann (A) C 1(A). 

If Be V(A), then B = f] cL = f] (c, 0), therefore B G Ann(A). D 
c G B 1 cGB-L 

Let us denote by A(M) the least annihilator in A containing MCA. In 
particular, set A(c) = A({c}) for any c G A. 

The following theorem shows some further connections between ideals and 
annihilators. 

THEOREM 11. 

a) If A is a DRl-monoid, then every principal ideal of A belongs to Ann(A). 

b) If A is representable and I is a prime ideal in A such that I1 ^ {0}. 
then I G Ann(A). 

P r o o f . 

a) By [4; Theorem 4], A(c) = A(l(c)) = 1(c) for any c G A, hence 

1(c) G Ann(A). 

b) By Theorem 10 it is obvious that I C A(I) C J1-1. If A is representable, 
then by Theorem 8 , 7 = I11-, and thus / = A(I). D 

COROLLARY 12. Theorems 10 and 11 are true for arbitrary MV-algebra A. 
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