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ABSTRACT. Representable DRI-monoids form a class of algebras containing
MYV -algebras which are known to be an algebraic counterpart of the infinite
valued propositional logic. In this paper, connections between polars and prime
ideals and properties of sets of annihilators in representable DRI-monoids, and
consequently also in MV -algebras, are shown.

Polars, called also annihilators, (i.e. sets of elements orthogonal to all elements
of given subsets) in MV -algebras were introduced by Belluce in [2] and
further studied by Hoo in [11], by Di Nola, Liguori and Sessa in (8]
and by Belluce and Sessa in [3]. In [2] it is proved that every polar is an
ideal and that the polar of a non-trivial linearly ordered ideal is a prime ideal,
and by [11]. the converse assertion is also true. In [8] the properties of polars of
prime ideals are examined.

By [23] and [24], MV -algebras are in a one-to-one correspondence with spe-
cial kinds of (bounded) dually residuated lattice ordered commutative monoids
(DRl-monoids) introduced by Swamy in [26]. The connections between
MV -algebras and DRI-monoids are summarized in Theorems 1, 2 and 3 below.

Ideals, prime ideals and polars in DRI-monoids were studied in [29], [19],
[20], [21], [22], [10].

In this paper it is shown that prime ideals in any MV -algebra A and
in the bounded DRI-monoid induced by A coincide and moreover that this
D RI-monoid is representable. Therefore we will study connections between some
types of prime ideals and polars in representable DRI-monoids, and the corre-
sponding results for MV -algebras including also the results of [2], [11] and [§]
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will be then obtained as direct consequences. Similarly we will get properties
of annihilators (which generalize polars and also further types of ideals) and
relative annihilators in MV -algebras by specializing of those in DRI-monoids.

The notion of an MV -algebra was introduced by C. C. Chang in [5] and
[6] as an algebraic counterpart of the Lukasiewicz infinite valued propositional
logic. There are various (but mutually equivalent) definitions of these algebras.
For instance (see [7]):

DEFINITION. An algebra A = (A,®,-,0) of signature (2,1,0) is called an
MYV -algebra if it satisfies the following identities:

(MV1) z(y®z2)=(zdy)® 2;
(MV2) 20y =y ®;

(MV3) z0=1x;

(MV4) ——z =z;

(MV5) z@ -0 =-0;

(MV6) =(-z@y)dy=—(zdy) o=x.

If Aisan MV-algebra,set zVy=-(-z®dy)®y and z Ay =-(-zV —y)
for any z,y € A. Then (4,V,A,0,-0) is a bounded distributive lattice (0 is
the smallest and —0 is the greatest element in A) and (A, ®, V,A) is a lattice
ordered commutative monoid (/-monoid).

By the work of D. Mundici [8], MV -algebras can be viewed as intervals of
abelian lattice ordered groups (I-groups). Namely, let G = (G.+.0,—(-),V.A)
be an abelian /-group and 0 < u € G. For any z,y € [0,u] ={r € G: 0 <
r<u}set z®y=(z+y)Au and ~z =u—z. Put T(G,u) = ([0.4], s, ,0).
Then I'(G,u) is an MV -algebra. In [8] it is proved that MV -algebras of this
form are completely representative because for every MV -algebra A there exist
an abelian [-group G and an element u, 0 < u € G, such that A is isomor-
phic to I'(G, u). Using this correspondence between MV -algebras and abelian
l-groups, many results concerning classes of MV -algebras have been obtained
by Jakubik in [12], [13], [14] and [15].

Another type of lattice ordered commutative monoids called dually resid-

uated lattice ordered monoids ( DRI-monoids) was introduced and studied by

K. L. N. Swamy in [26], [27] and [28] as a mutual generalization of abelian
l-groups and Brouwerian algebras.

DEFINITION. A DRI-monoid is an algebra A = (A, +,0,V, A, —) of signature
(2,0,2,2,2) such that:

(1) (A,+,0) is a commutative monoid.
(2) (A,V,A) is a lattice.
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(3) (A,+,V,A) is a lattice ordered semigroup (l-semigroup), i.e. A satisfies
the identities

z+@yVvz)=(z+y)V(z+2),
z+(yAz)=(x+y)A(z+2).
(4) If < denotes the order on A induced by the lattice (4, V,A), then for
each z,y € A, the element z — y is the smallest z € A such that

y+z2>cw.
(5) A satisfies the identity

(z—y)vVO)+y<zVy.

As is shown in [26], condition (4) is equivalent to the following system of
identities:
z+(y-—z)>y,
r-y<(zVz)-y,
(z+y)-y<z,
and hence DRI-monoids form a variety of algebras of type (2,0,2,2,2).

Remark.

a) In Swamy’s original definition of a DRI-monoid (called there a DRI -semi-
group), the identity x — 2 > 0 is also required. But by [16], in any algebra
satisfying (1) —(4) the identity z — z = 0 is always satisfied.

b) If G = (G,+,0,—(-),V, A) is an abelian [-group and — denotes the group
subtraction, then (G,+,0,V,A, =) is a DRI-monoid. Brouwerian algebras are
other examples of DRI-monoids. Recall that a Brouwerian algebra B = (B, V, A)
is a dually relative pseudocomplemented lattice (this means that for arbitrary
a,b € B there exists a least £ € B with bV z > a) with greatest element.
It is obvious that B has smallest element 0. Denote by a — b the relative
pseudocomplement of b with respect to a. If we denote by + the lattice join V,
then (B,+,0,V, A, —) is really a DRI-monoid.

In [23] and [24] the connections between DRI-monoids and MV -algebras are
described. We have the following theorem:

THEOREM 1. ([23; Corollary 2], [24; Note]) Let A = (A,®,—,0) be an
MYV -algebra. For any z,y € A set t <y < -(z20y)dy =y. Then
< is a lattice order on A (with the lattice operations zVy = ~(—z®y) Dy and
z Ay = -(-xVy)), for any 7,5 € A there ezists a least element r © s with
the property s® (res) > r, and (A,®,0,V,A,0) is a DRI-semigroup with
smallest element 0 and greatest element 1 = =0 satisfying the identity

(i) 1e(lez)=r=.
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THEOREM 2. ([23; Theorem 3], [24; Note]) Let A = (4,+,0,V,A,—) be a
bounded DRI-monoid with smallest element 0 and greatest element 1 satisfying
the identity

H1-1-2)==z.
Set ~t =1—2z for any x € A. Then (A,+,—,0) is an MV -algebra.

Let us extend the language of bounded DRI-monoids to (+,0,V,A,—,1)
and then denote by DRI,;) the equational category of bounded DRI-monoids

satisfying (i) and by MV the equational category of MV -algebras. Then there
holds the following theorem:

THEOREM 3. ([24; Theorem 3]) The categories DRly;y and MV are isomor-
phic.

Using the above results, many properties of MV -algebras will be derived
directly from those of DRI-monoids.

Recall that if A = (A,&,-,0) is an MV -algebra and § # I C A, then I is
called an ¢deal of A if

(a) (Va,be(a®bel),

(b) VaeI)Vze A)(anz=~(-(a®~z)® ) €I).

Let B = (B, +,0,V,A,—) be a DRI-monoid and let cxd = (c—d) V (d —¢)
for any ¢,d € B. Then § # J C B is called an ideal of B if

(c) (Va,be J)(a+beJ),

(d) VaeJ)VzeB)(z+x0<ax0 = z€J).

If a DRI-monoid B is induced by an AV -algebra, then z * 0 = = for any
z € B, and hence condition (d) can be replaced by

(d) (VaeJ)VzeB)(z<a = z€J).

Therefore it is obvious that in MV -algebras ideals in the sense of MV -alge-
bras ( MV -ideals) and those in the sense of DRIl-monoids ( DRI-ideals) coincide.

Let us denote by Z(A) the set of all ideals of a DRI-monoid or of an
MYV -algebra A. The prime ideals play a fundamental role in both theories.

An ideal I of an MV -algebra A is called prime if for any z,y € A, tAy € [
implies € I or y € I. (See e.g. [8].) On the other hand. if I is an ideal of
a DRI-monoid A, then it is called prime in A if for arbitrary J, K € Z(A),
JNK =1 implies J =1 or K =1I. (See [19].) For comparing both notions of
prime ideals, and also both types of algebras, the following notion will be useful.

A DRIl-monoid A is called representable (see [30]) if (x —y)A(y—2) <0
for each z,y € A.

It is known ([30]) that a DRI-monoid is 1cpresentable if and only if it is iso-
morphic to a subdirect product of linearly ordered DRI-monoids. Every abelian
[-group and every Boolean algebra (as a special case of a Brouwerian algebra)
are representable DRI-monoids.
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PROPOSITION 4. Let A be a representable DRI -monoid and I € Z(A). Then
the following conditions are equivalent:
1. I is prime (as a DRI-ideal).
(VIL,KeZ(A)(JNKCI = (JCI or KCI)).
Vz,yc A)(0<zAyel = (zel oryel)).
(Vz,yc A)(zAy=0 = (z€l or yel)).
Vz.ye A)(zAyel = (z€l or yel)).
. {Je€Z(A): I1CJ} islinearly ordered.

O o w N

Proof. The equivalence of conditions 1, 2 and 3 is proved (even more gen-
erally for the class of so called autometrized algebras) in [19; Theorem 1], the
equivalence 1 and 4 is proved in [10; Proposition 3.1}, and the equivalence of 1
and 6 in [21; Theorem 6).

4 = 5: Let z,y € A and zAy € I. Then by [19; Lemma 6], (z— (zAy)) A
(y—(zAy)) =0, hence z—(zAy) € I or y—(zAy) € I.Let z—(zAy) € I. By
[19; Lemma 6], we have z = (zAy)+ (z— (z Ay)), therefore by the assumption,
zel.

5 = 4: Let z,y€ A, xAy=0.Since 0 €I, weget x€loryel. O

PROPOSITION 5. If A is an MYV -algebra, then the DRI-monoid induced by
A is representable.

Proof. Let z,y € A. Then by {23; Theorem 1, Corollary 2], in the induced
DRI-monoid it holds that

Z-yA(@y—z)=-(y&-z)A~(z®~y)
and by [5; Theorem 3.3 (dual)], the identity
“(y@®-z)A-(zd-y)=0
is satisfied in each MV -algebra. O

Remark.

a) By Propositions 4 and 5, the prime ideals in any MV -algebra and in its
induced DRI-monoid coincide.

b) Moreover we get as a consequence the well-known fact that every MV-al-
gebra is a subdirect product of linearly ordered MV -algebras. ([6; Lemma 3])

Let us now consider the set Z(A) of all ideals of an MV -algebra A. It is
obvious that Z(A), ordered by set inclusion, is a complete lattice (in which
infima coincide with set intersections). Applying [29; Theorem 6] and using [23;
Theorem 7], one can show that the lattice (I (4), g) is algebraic and Brouwerian.
By Propositions 4 and 5, the prime ideals in A are exactly the finitely meet-
irreducible elements in the lattice Z(A).
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Let B be a subset of an MV -algebra A. Denoteby B+ ={z € A: zAb=0
for all b € B}. Then Bt will be called the polar of B. If a € A, then we denote
by at the polar {a}* of the singleton {a}. (Note that B+ is in [2], [8] and
[11] called the annihilator of B. In accordance with the theories of lattices
and autometrized algebras, we reserve this notion for other types of subsets.) A
subset C' C A is called a polar in A if there exists B C A such that C = B+.
Set B++ = (B+). Obviously, B C A is a polar in A if and only if B = B++.
If we denote by P(A) the set of all polars in A, then by [2; Theorem 23] (and
also as a consequence of [20; Theorem 1]), P(A) C Z(A). By [20; Corollary
of Theorem 2], any polar in A is the polar of an ideal of A. Hence by [29;
Lemma 7], the polars in A are exactly the pseudocomplements of elements of
the Brouwerian lattice Z(A). Therefore by Glivenko’s theorem (see e.g. [1]) the
set P(A) of all polars of an arbitrary MV -algebra ordered by set inclusion is a
complete Boolean algebra. (See also [23; Theorem 10].)

Remark. If A is a general DRI-monoid, then for any B C A, the polar B+
of B is defined by B- = {z € A: (z*x0)A(a*0) = 0}. For DRI-monoids
corresponding to MV -algebras this definition is equivalent to the one above.

Both polars and prime ideals in MV -algebras are not only special cases
of ideals, but also there are closer connections between them. Some of these
connections are shown in [2], [8] and [11]. Using the theory of DRI-monoids, we
shall now describe this situation in further results.

Let A be a DRI-monoid. If I is a prime ideal in A, then I is called a minimal
prime tdeal in A if it is a minimal element in the set of all prime ideals in A
ordered by set inclusion. By [20], every prime ideal contains a minimal prime
ideal. One can prove ([21; Theorem 3]) that every ideal in A is the intersection
of prime ideals, and in particular, every polar P in A is, by [10; Corollary 2.5],
the intersection of minimal prime ideals not containing P+ .

Let 0 # a € A. Denote by val(a) the set of all ideals in A maximal with
respect to the property of not containing the element . It is obvious that
val(a) # 0. If I € val(a), then I is called a value of a. Every value of any
element 0 # a € A is by [21] a prime ideal in A.

Now we can prove the following theorem.

THEOREM 6. Let A be a representable DRI-monoid and {0} # I € Z(A).
Then the following conditions are equivalent.

1. I is linearly ordered.

2. If0<acl.then at =1+.

3. It is a prime ideal.

4. I+ is a minimal prime ideal.

5. I+t is a mazimal linearly ordered ideal in A.
6. I+L is a minimal polar.
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7. I is a mazimal polar.
8. Every 0 < a € I has ezactly one value.

Proof. Z(A) is a Brouwerian lattice, and by [17; Lemma 2.1], the equiva-
lence of conditions 3, 4, 6, and 7 is valid in any of such lattices.

1 = 2: It is easy to verify that if A is a representable DRI-monoid,
I€Z(A) and z € A, then z € I if and only if z %0 € I. Now let I € Z(A) be
linearly ordered and 0 < a € I. Let z € a* \ I*. Then a A (z *0) = 0 and, at
the same time, there exists 0 < b € I such that bA (z x0) > 0. Let us denote
y=bA (zx0). Obviously y € I. Moreover 0 < aAy < aA (z*0) =0, hence
a Ay = 0. Therefore, if a < y, then a Ay = a, and thus a =0, and if a > y,
then y = 0, a contradiction. Hence at = I'+.

2 = 3: Forevery 0 <a€l,letat =1 . Let r,y€ A, Ay =0.1If
z ¢ I+, then there exists 0 < b € I such that z Ab = 0, and thus for any
0<a€lwehavez, =rAa>0and z, €I.Let y¢ I*-. Then y ¢ z, and
hence z =z, Ay > 0. Evidently z <z, z <y, therefore z = 0, a contradiction.
This means that z € I+ or y € I+.

3 = 1: Let I'* be a prime ideal in A. Let us suppose that a,b € I and
aAb=0.Then a € I+ or b€ I+, and hence a = 0 or b= 0. Therefore by [10;
Proposition 3.7], we get that I is linearly ordered.

1 = 5: Let I be linearly ordered. Then by 3, I1t++ = It is a prime ideal
in A, and thus the polar I'+L is linearly ordered. Let J € Z(4), J D I*+ and
let J be linearly ordered. Then by 3, J+ is prime. Moreover J 2 I+ implies
JL+ C I, hence by 4 we get J* =TI+, and so J =I++.

5 => 1: Let I1+ be a (maximal) linearly ordered idealin A. Then I C I++
implies that I is also linearly ordered.

3 = 8: Let us suppose that I+ is prime. Let 0 < a € I and U,V €
val(a). Hence (since, by [21; Theorem 1], U and V are prime ideals) a* C U
and at C V, therefore also I+ C U and I+ C V. Thus by Proposition 4, U
and V are comparable, and so U = V.

8 = 1: Let us suppose that I is not linearly ordered. Then by [10; Propo-
sition 3.7), there exist 0 < a,b € I such that a Ab=0. Then a € b+, b € a*,
but b ¢ b, a ¢ at. I is an ideal, hence a Vb € I. Since b+ € Z(A), (by [21;
Theorem 2]) there exists P € val(b) such that b+ C P. Obviously aV b ¢ P,
hence there exists P, € val(aVb) with P C P,. Then P, is a proper prime ideal
in A, and because, by [22; Lemma 1], for arbitrary 0 < z,y € A and proper
prime ideal Q in A, zVy ¢ Q ifand only if z ¢ Q or y ¢ Q, we obtain b ¢ P,.

Similarly there exists P, € val(aVb) such that a ¢ P,. Since P, # P,, aVb
has two different values. 0

7
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Remark. In the paper [25], the class ZRN was studied of all algebraic distribu-
tive lattices L such that the join-subsemilattice Con(L) of compact elements
of L is a sublattice of L and the lattice Con(L) is relatively normal. Structure
properties of the lattices of ZRA have been further developed in [9]. (Recall
that a distributive lattice is called relatively normal if the set of all its prime
ideals is a root-system under set-inclusion.) By [25; Corollary 3.2], an algebraic
distributive lattice L such that Con(L) is a sublattice of L belongs to the class
IRAN if and only if the meet-prime elements of L form a root-system.

By [29; Theorems 1, 6, Lemma 4], for an arbitrary DRI-monoid A, the lat-
tice Z(A) of ideals of A is a complete algebraic Brouwerian lattice in which
the compact elements are exactly the principal ideals. Moreover, by [19; Propo-
sitions 2, 3], the principal ideals of an arbitrary DRI-monoid A form a sub-
lattice of Z(A) and, by our Proposition 4, the prime ideals of representable
DRI-monoids form a root-system. Hence for any representable DRI-monoid A
we have that Z(A) belongs to the class ZRN . We say that {0} # I € Z(A) is
a linear element in Z(A) if the set {K € Z(A) : K C I} is a chain. Therefore
some of results of [25] can also be applied in our situation. For example, by [25;
Proposition 5.2], we obtain that conditions 1 -8 of Theorem 6 are also equivalent
to each of the following conditions ({0} # I € Z(A)):

9. I is a linear element in I(A).
10. I*t is a mazimal linear element in T(A).

Since ideals (prime ideals, polars, respectively) in any MV -algebra and in
the induced DRI-monoid coincide, we get as an immediate consequence:

COROLLARY 7. If A is an MV -algebra and {0} # I € I(A), then conditions
1-10 from Theorem 6 and the preceding Remark are equivalent.

Remark. The equivalence of 1 and 4 for MV -algebras is also proved in [11;
Theorem 4.14].

Now we can prove a generalization of [8; Theorem 3.3].

THEOREM 8. Let A be a representable DRI -monoid and I a prime ideal in A.
Then I*++ = A or I++ =1.

Proof. Let I+ # {0} and let x € I*+ \ I. Then also z 0 € I*++ \I.If
y € I+, then (z x0) A (y*0) = 0, hence, because z+0 ¢ I, we get y*0 € I,
and thus y € I. Since I+ is the complement of I+ in P(A), I* NI+t = {0}.
and so we also have - NI = {0}. therefore y = 0. That means I+ = {0},
a contradiction. Thus I++ =1T. O

8
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COROLLARY 9. Let A be a representable DRI-monoid and I a prime ideal
in A such that I+ # {0}. Then

a) It is a mazimal proper linearly ordered ideal in A.
b) I is a minimal prime ideal in A.

Proof.

a) By Theorem 8, I = I'+. We have I+ € Z(A) and I* # {0}, hence
(I*)t = I+ =T is a prime ideal, thus by Theorem 6, I+ is linearly ordered.
Moreover (I+)LtL = [ therefore, again by Theorem 6, It is maximal among
linearly ordered ideals in A.

b) By Theorem 6 it is now obvious that I = (I+)* is a maximal prime ideal.

O

Remark.

a) We have shown that if I is a prime ideal in A, then either It+ = A or
I is minimal prime.

b) Using the same arguments as before Corollary 7, one can reformulate The-
orem 8 and Corollary 9 for prime ideals in MV -algebras. Then [8; Theorem 3.4]
is a special case of Corollary 9a).

Now we shall study annihilators in DRI-monoids and MV -algebras, which
generalize the polars of those algebras. (Annihilators in normal autometrized
l-algebras were introduced in [4].)

DEFINITION.
a) If A isa DRI-monoid and a,b € A, then the set

(a,b)={zx€A: (a*x0)A(z*0) <n(bx0) for some n € N}
is called a relative annihilator of the element a with respect to the element b.

b) A subset B C A is called a relative annihilator in A if B = (a,b) for
some a,b € A.

Remark.

a) If a is an element in a DRI-monoid A, then, by [29], the principal ideal
I(a) is

I(a)={z€A: zx0<n(ax0) for some n € N} .

Thercfore for any a,b€ A, (a,b) = {z € A: (ax0)A (z*0)eI(b)}.

b) For any a € A, the polar a* is a relative annihilator in A because
a* = (a,0). In particular, A = 0+ is a relative annihilator in A.

c¢) Since each DRI-monoid A is a normal autometrized [-algebra. by [4;
Theorem 1], we have that every relative annihilator in A is an ideal of A.

d) As is shown in [4], the relative annihilators in a (representable)
DRI-monoid need not form a complete lattice with respect to set inclusion,
so we will use the following concept.
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DEFINITION. If A is a DRI-monoid and B C A, then B is called an anni-
hilator in A if B = (\{B, : v € I'} for a system of relative annihilators B,
(yeTl)in A.

The set of all annihilators in A will be denoted by Ann(A).

THEOREM 10. Let A be a DRI-monoid. Then P(A) C Ann(A) C Z(A) and
Ann(A) is a complete lattice with respect to set inclusion which is a complete
inf-subsemilattice of the lattice Z(A).

Proof. By the definition of an annihilator and parts b) and ¢) of the pre-
ceding remark it is obvious, firstly that (Ann(A), g) is a complete lattice with
least element {0} and greatest element A in which infima coincide with inter-
sections, and secondly that Ann(A) C Z(A).

If Be€P(A),then B= (] ¢t = () {c0), therefore B € Ann(4). O

ceEBL ceBL
Let us denote by A(M) the least annihilator in A containing M C A. In
particular, set A(c) = A({c}) for any c€ A.

The following theorem shows some further connections between ideals and
annihilators.

THEOREM 11.
a) If A is a DRI-monoid, then every principal ideal of A belongs to Ann(A).

b) If A is representable and I is a prime ideal in A such that I+ # {0}.
then I € Ann(A).

Proof.

a) By [4; Theorem 4], A(c) = A(I(c)) = I(c) for any ¢ € A, hence
I(c) € Ann(A).

b) By Theorem 10 it is obvious that I C A(I) C I++. If A is representable,
then by Theorem 8, I = I++, and thus I = A(I). O

COROLLARY 12. Theorems 10 and 11 are true for arbitrary MV -algebra A.
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