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ON A THEOREM OF L. LEFTON 

M1CHAL FECKAN 

ABSTRACT. In the paper there is proved the theorem of L. Lefton by using (he 
method of Lyapunov-Schmidt. This theorem concerns to the existence of small 
solutions for ordinary differential equations. 

1. I n t r o d u c t i o n 

Recently L . L e f t o n [1] has investigated small solutions of tin1 boundary 
value problem 

Cy = Ly + ?/ = / 

M 1 (y) = M, (y ) = 0 , 

where L , the linear par t of C , is of the form Ly = y" + p(.r) • y' + q(x) • y , />, g 
are integrable on [a, b], / is small and 

Mi(y) = axy(a) + a2y(b) + c\3y'(a) + aAy'(b), 

M 2 (y ) = lhy(o) + fi2y(h) + fhy'(a) + fU]/(h), 

a . and /i t real. 

The opera tor £ is defined on the domain 

BC — {y E C [a, 6] | y' is absolutely continuous on [O, b], 

M,(y) = M2(y) = 0, y " e l ' [ « , i ] } . 

Lefton assumed tha t L has an one-dimensional kernel spanned by ip . He pointed 
out tha t as a consequence of [2, Lemma 3.2] it follows tha t if ip* £ [ m L ( the 
range of L ), then 0 is an isolated solution of Cy = 0 and thus Cy = / has 
a small solution for / small. He studied the case ip* E Im L and proved the 
following 

A MS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 34C20, 34B15. 
K e y w o r d s : Boundary value problems, Small systems. 
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6 

T H E O R E M ([1]). Suppose Lw = ip* with w±if, (i.e. Jw - <p dt = 0 ) , but 
a 

Ly = w - (f2 has no solution in BC . Then Cy = f has at least one solution for 
each f G Ll[a, b] small. 

T h e purpose of this paper is to give a simple proof of this theorem. We shall 
use only the Lyapunov-Schmidt method. 

2 . R e s u l t s 

Let a = 0 , 6 - 1 and Y = BC, X = Lj[0, 1]. Then L: Y -> X . We know 

tha t K e r L = span*/? and by a proof of Lemma 1.1 in [1] there is g £ C°[0, 1] 
l 

such tha t h G Im L if and only if f h • g dt = 0 . Thus Im L is a closed subspace 
o 

of L1 [0, 1] . We shall assume Im L / L1 [0, 1]. Hence we consider the case g ^ 0 . 

Of course, in the Theorem of the Introduction this assumption is satisfied. Our 

lemmas and theorems will possess s tructures similar to this theorem and so the 

condit ion g ^ 0 is necessary. Note tha t I m L ^ Ll[0, 1] if and only if M\ and 

71L2 are linearly independent boundary value conditions. 

We solve the equation Ly = — y3 + / for / E X small. 

P u t t i n g 

Â  = Ari ff) span g , X\ = Im L 

Y = Y\ © Ker L , Y\ = Ker P 0 

Q: X -> I m L , P : X -> spanG , Q + P = Id 

i i 

Px=^jg(t)-x(t) ctt) Д У ^(ť) dť) • 5 
0 0 

1 1 

P°У=(J ^) • 1/(0 dí) / ( / V2(*) dí) • v 
0 0 

our equat ion has the form 

i) Lyi = - Q ( y , + c • yf + / . 

ii) 0 - - P ( y , + c • iff + / 2 , 

where yx £ F , , c G R , / , £ Xi , / 2 = <! • <7, d <E R • 
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We modify (2.1) on the following form, since by [1, Proposi t ion 1.2] the 

opera tor L: Y\ —-> Im L is invertible 

i) yi=L-l(-Q(y] +c-<p)3 + fl) 

ii) 0=-P(y, + c-<p?+f2y 

where y, G C°[0, 1] , P0y\ = 0 , c G R , / , G X , , / 2 = d • y , rf G R . Note tha t 

Z = { y G G°[0, 1], P 0 y = 0} is a Banach space with the supremum norm || • || . 

Applying the implicit function theorem we can solve y, in (2.2) i) for c, / , 

small and we have y\(c, / , ) . Indeed, consider the operator G(y\, c, / , ) = y, — 

L~l (~Q(y\ +c-vf+f\) defined on a neighbourhood of 0 G Z x R x Xx . Then G 

is C 1 - smooth and the linearization G y i ( 0 , 0, 0) = Id: Z —> Z is invertible. We 

pu t this solution into the equation (2.2) ii) and obtain the bifurcation function 

F ( c , / 1 ) = P ( y 1 ( c , / , ) + c . v , ) 3 . 

Now we seek small solutions of P ( c , / , ) = f2 . Since c G K , / , G X\ , / 2 G I m P 
and dim Im P = 1, we can consider F as a map defined on a neighbourhood of 
0 G R x Xi into R . We shall s tudy the singularity of F(c, 0) at c = 0 . 

L E M M A 2 . 1 . I/ (^3 £ I m L , Men F(c, 0) = a • c3 + 0 ( c 4 ) with a ^ 0 . 

P r o o f . By (2.2) i) it follows 

y i ( c , 0 ) = L-,(-Q(yHc, 0) + c ^ ) 3 ) . 

Fur ther , for c small yi(c , 0) is small as well, hence 

IMco)|| ^iizri-UQHiMc,o)|| + |c|-|M|)3 

ML-l\\-\\Q\\-4-(\\y>(c,0)\\3 + \c\3-y\\3) 

^IIX^H-IIOII- 4- | |y , (c ,0) | | 2 . | |(yi(c,0)| | + O(c3) 

^ ( | | y i ( c , 0 ) | | + O(c3))/2 

and this gives yi(c, 0) = 0(c3). 
(We have used the inequality (a + 6)3 ^ 4 • (a3 + 63) for a _ 0, 6 > Q.) Hence 

P(c, 0) = P(yi(c, 0) + c • v>)3 = c3 • Pv?3 + 0 ( c 4 ) . 

Using P(f3 / 0 we obta in the assertion . 
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From L e m m a 2.1 it follows tha t if >3 ^ I m L , then 0 is an isolated solution 

of Cy = 0 . Indeed, the equation Cy — 0 is equivalent to F(c, 0) = 0, F(c, 0) = 

a • c 3 + 0(c4), a ф 0 and c = 0 is an isolated solution of this equat ion. This 

result was ment ioned in the Introduct ion of this parjer. 

Let >3 Є I m L , i.e., P э3 = 0 and Lw — >3 for some w Є Y\ . P u t t i n g 

У\ — У2 — c3 • w , y2 Є Z , we have from (2.2) 

i) y 2 - c 3 • w = L~l ( - Q ( ( y 2 - c3w)3 + 3(y2 - c 3ir !) 2 - c чp 

+ 3 ( y 2 - c 3 г v ) . c 2 ^ 2 ) - c 3 . ( ^ 3 + / 1 ) 

ii) 0 - -P((y2 - c3wf + 3(y 2 - c3wf .c-tp + 3(y 2 - c3w) • c 2 • (^2) + f2 , 

i.e., 

i) y2 = L"1 ( - Q ( y з - Зy2c3iD + Зy2c
вw2 + Ъy\c > - 6y2c

4 ?w + З y 2 c V 2 

- c V 3 + Зc7w2<p - Зг5шv?2) + / i ) 

= L " 1 ( - Q ( y 3 + c • y2 • Һ(У2, c) - З c 5 u V + 0(c6)) + f\) 

ii) 0 = - P ( y 3 + c . y 2 . / г ( y 2 , c ) - З c 5 г ^ 2 + 0 ( c 6 ) ) + / 2 , 

(2.3) 

where h(y2, c) = — Зy2c
2г/' + Зy2(^ — 6c3 >w + Зc ?2 . 

Apply ing the implicit function theorem we can solve у2 from the first equa-

tion (2.3) i) for c, f\ small and put t ing this solution y2(c, f\) into 

-Г(yl + г • y2 • h(y2, c) - З c 5 u V

2 + 0{c6)) 

we o h t a i n as in the above procedure the Ьifurcation function 

G(c, /, ) = -P(iA(c f\) + c-y2(c, /-) . h(y2(c, f \ ) , c) - З c V + 0(c6)) . 

By (2.3) i) it follows t h a t 

y2(c^ 0) = L-Ҷ-Q(у3(c, 0) + c-y2(c, 0) - b(у2(O, 0), c) - З c 5 u V

2 + 0 ( c 6 ) ) ) . 

Fur ther , for c small у 2 (c ,0) is small as well and in the same way as in the proof 

of L(Tiima. 2.1 we have 

\\У2(<\ 0 ) | | = ( | | у 2 (e, 0) | | + 0 ( c 5 ) ) / 2 for c smal l . 

Hence y2(c, 0) = 0(cъ) and we have foг <г • >2 £ I m L , i.e., Pw • ?2 ф 0 

G(г, 0) = /)-c 5 + 0 ( c G ) , bфO. 

(Wc consider C7 as a m a p deŕined on a neighbourhood of 0 Є K x Л~i into R , 

since e Є E , /i Є Л"i , G(-,-) Є I m ľ , d i m І m P = 1.) 

S u m m i n g up we obtain 
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L Б M M A 2 .2 . If ҷ>3 Є ImL, Lw = ҷ>3 , w Є Y\ and w • ҷ>2 £ Im L, theУi the 

bгfurcation function has the form 

G(c, 0) = b-c5 + O ( c 6 ) , 6 / 0 . 

By L e m m a 2.2 for Oî, / ] small the equation G(c, / i ) + d • g = 0 has always 

at least one solution neaг c = 0 and hence we obţain the proof of the above 
theoгem from [1]. 

Lefton also discussed the case when w • ҷ>2 Є Im L, i.e., Lv = w • ҷ>2 , v Є Y\ . 

But we can repeat the above procedure. We have transformed (2.2) into (2.3) 

p u t t i n g y\ — y2 — c 3 • w . Now we put in (2.3) yг — Уз + 3 • c5U, y3 Є Z a n d it 

is easy to see t h a t (2.3) has the form 

i) y3 = L'1 (-Q(y3

3 +c-y3- g(y3, c) + Зc7(w2 .^, + Зv >2))+ 0(c ) + / , ) 

ii) 0 = -P(yl +cy3- g(y3, c) + Зc 7 (u. 2 • <p + Зv • џo2) + 0(c*)) + f2 , 

(2-4) 

where y(yз, c) has a similar form as the mapping /г(y2, c). 

We can solve (2.4) i) in y3 = Уз(c, f\) for c, f\ small by the implicit function 

theorem a n d again we obtain the bifurcation function 

tf(c, / , ) = P(yl(c, f\) + c • y3(c, f\) . ÿ ţ y з í c / , ) , c) 

+ Зc 7 (гDV + З V ) + 0 ( c 8 ) ) . 

In t h e same way as in the proof of L e m m a 2.1 it follows from (2.4) i) t h a t 

yз(c, 0) = 0(c7) for c smal l . 

Hence 

tf(c, 0) = 3 • c • P(гDV + З t V 2 ) + ö ( c 8 ) for c smal l . 

L E M M A 2 . 3 . If wҷ>2 = Lv, v Є Y\ and w2ҷ> + Зг;(,O2 ^ I m L . Й e n ť/ie bг/гxr-

cation function H has the form 

tf(c, 0) = d - c 7 + O ( c 8 ) , d ^ O . 

łVe consider H as a map defined on a neighbourhood of 0 Є R x X\ into R . 

Applying L e m m a 2.3 we can solve tf(c, f\) = d • g for f\ , d small near 

c = 0 . Hence we have 
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THEOREM 2.4. Under the conditionз of Lernma 2.3 the equation Cy = f haз 
at leaзt one зmall зolution for each f зmall. 

Now, if w2ҷ> + Зv э2 Є I m L , then we can proceed in the above procedure. Of 
conrse, our method has sense only if this procedure stops after a finite number 

дг 

of steps and this holds only if F(c, 0) is not flat at c = 0, i.e., ——F(0, 0) ф 0 

for some i. It seems that the example from [1] presents the case when F(c, 0) 
is flat at c = 0. 

We also see that F(c, 0) had the forms 

F(c, 0) = a-c г + 0(c H ~ 1 ) , a ^ 0 , 
where i = 3 or i = 5 or г' = 7. This property did not hold by chance, but 

it follows from the following fact: The map C is equivariant by the group Z2 , 
since C(—y) = —Cy and we can easily derive that F(c, 0) has this property as 
well, tlшs 

F(-c, 0) = -F(c, 0) 

for c small. Hence there generally holds 

F(c, 0) = a • c 2 ł '+ 1 + 0(c2l+2) a^0 

when F is not flat and in this case the equation Cy = f has at least one 
small solution for each / small. 

Finally, we can consider similarly the problem 

LУ±y2^=f 
Mx(y) = M2(y) = 0. 
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