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ON A THEOREM OF L. LEFTON

MICHAL FECKAN

ABSTRACT. In the paper there is proved the theorem of L. Lefton by using the
method of Lyapunov-Schmidt. This theorem concerns to the existence of small
solutions for ordinary differential equations.

1. Introduction

Recently L. Lefton [1] has investigated small solutions of the houndary
value problem

Ly=Ly+y'=f
M (y) = My(y) =0,
where L, the linear part of £, is of the form Ly = y" +p(ar)-y' +q(z)-y, p, ¢
are integrable on [a, b], f is small and
Mi(y) = aay(a) + azy(b) + azy'(a) + aay' (D),
My (y) = Piy(a) + fay(b) + Aay'(a) + Bay'(D),
a, and f3; real.
The operator L is defined on the domain
BC ={ye C'la, b] | y' is absolutely continuous on [a, b],
My(y) = My(y) =0, y" € L'[a, b]}.
Lefton assumed that L has an one-dimensional kernel spanned by ¢ . He pointed
out that as a consequence of [2, Lemuna 3.2] it follows that if ¢* ¢ Im L (the
range of L), then 0 is an isolated solution of Ly = 0 and thus Ly = f has

a small solution for f small. He studied the case @3 € Im L and proved the
following
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b
THEOREM ([1]). Suppose Lw = ¢* with wly, (ie. [w pdt = 0), but

Ly = w-¢? has no solution in BC'. Then Ly = f has at least one solution for
each f € L'[a, b] small.

The purpose of this paper is to give a simple proof of this theoremn. We shall
use only the Lyapunov-Schmidt method.

2. Results

Let a=0, b=1 and Y = BC, X = L'0,1]. Then L:Y — X . We know
that Ker L = spany and by a proof of Lemma 1.1 in [1] there is ¢ € C°[0, 1]

1
such that h € Im L if and only if [h-gdt =0. Thus Im L is a closed subspace
0

of L'[0, 1]. We shall assume Im L # L'[0, 1]. Hence we consider the case g # 0.
Of course, in the Theorem of the Introduction this assumption is satisfied. Our
lemmas and theorems will possess structures similar to this theorem and so the
condition ¢ # 0 is necessary. Note that Im L # L'[0, 1] if and only if M; and
M, are linearly independent boundary value conditions.

We solve the equation Ly = —y* + f for f € X small.

Putting

X =X, dspanyg, Xy =ImL

Y=Y dKerL, Y] = Ker Py

Il

Q: X >ImL, P: X —spang, Q+P=1d

pz:<

our equation has the form

1

g(t) --T(t)dt)/(/yz(t)dt> g

1

wv-unat) [( [owa)-o
J

o\_. 0\_

i) Lyt =-Q(y1 +c )+ fi

2.1
ii) 0=—P(yi +c-¢)°+ fa, @1

where y; €Y, ceR, fie Xy, fo=d-g,deR.
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We modify (2.1) on the following form, since by [1, Proposition 1.2] the
operator L: Y, — Im L is invertible

) oy =L (-Qw +c )+ h)

y , (2.2)
i) 0= Py +e P+ fo,

where y; € C°[0, 1], Poy; =0, c€R, fi € X;, fp =d-g, d € R. Note that
Z = {y € C°0, 1], Poy =0} is a Banach space with the supremum norm ||-||.

Applying the implicit function theorem we can solve y; in (2.2) i) for ¢, f;
small and we have y;(c, f1). Indeed, consider the operator G(y, ¢, fi) =y, —
L7 (=Q(y1 +c-9)*+ f1) defined on a neighbourhood of 0 € ZxRx X, . Then G
is C!-smooth and the linearization Gy, (0, 0, 0) = Id: Z — Z is invertible. We
put this solution into the equation (2.2) i1) and obtain the bifurcation function

Fle, i) = P(yi(c, fi) +c- )

Now we seek small solutions of F(c, fi) = f2.Since c€ R, fi € X;, f, e ImP
and dimIm P = 1, we can consider F as a map defined on a neighbourhood of
0 € R x X; into R. We shall study the singularity of F(c, 0) at ¢ =0.

LEMMA 2.1. If ¢* ¢ ImL, then F(¢,0) =a-c® 4+ O(c*) with a # 0.
Proof. By (2.2) 1) it follows

yi(e, 0) = L7 (=Q(y1(c, 0) + ¢ 9)*) -

Further, for ¢ small y;(c, 0) is small as well, hence

lys (e, O UL QI (llya (e, Ol + lel - e )’
SHUZTHE- QN -4 - (llya (e, O + Il - llell*)
SILTH-NQN -4 llya (e, O - iy (e, 0)]] + O(c?)
S (llya(e, 0)]l + O(ch)) /2

and this gives y;(c, 0) = O(c?).
(We have used the inequality (a+b)* £ 4-(a® 4+ 8*) for a 20, b> .) Hence

F(c, 0) = P(y1(c, 0) + c- 4,9)3 =P’ 4+ 0(c*).
Using Py® # 0 we obtain the assertion.

197



MICHAL FECKAN

From Lemma 2.1 it follows that if ¢*® ¢ Im L, then 0 is an isolated solution
of Ly = 0. Indeed, the equation Ly = 0 is equivalent to F(¢, 0) =0, F(c, 0) =
a-c 4+ 0(c*), a # 0 and ¢ = 0 is an isolated solution of this equation. This
result was mentioned in the Introduction of this paper.

Let ¢3 € ImL, ie., Pp® =0 and Lw = ¢* for some w € Y;. Putting
Y1 =y2 — - w, ys € Z, we have from (2.2)

) yo—c w=L" (—Q((y2 —w)’ +3(y2 — Fw)? o

+3(y2 — Fw) -t ) =P+ f1)

i) 0=—P((y2 —w)’ +3(y2 — ’w)? - c- o +3(y2 — ’w) - * - ?) + fa,
1.e.,

i) y2 = L7 (=Qy3 — 3yic’w + 3y2c®w’ + 3yjep — byactpw + Byzc?p?

—®w® +3cw?p — 3cPwp?) + fi)
= L7 (=Q(y; + c-y2 - h(yz, ¢) = 3c°we® + O(c°) ) + f1)
i) 0 =Py} + ey hlya, o) — 3hup? +O()) + fo,
(2.3)

where by, ¢) = —3ypct + Byag — 63w + 3ep?

Applying the implicit function theorem we can solve y, from the first equa-
tion (2.3) 1) for ¢, fi small and putting this solution y(c, f1) into

—P(yy + ¢ yp - h(yz, ¢) = 3" we? + 0(c%))
we obtain as in the above procedure the bifurcation function
Gles fi) = =P(ysle, f) +c-males fi) - hlya(es fi), €) = 3cPw0p? + O(c)) .
By (2.3) i) it follows that
ya(e, 0) = L7 (=Q(y3(c, 0) + ¢ ya(e. 0) - h(yz(c. 0), ¢) = 3c®wp® + O(c%))).

Further, for ¢ small y,(c,0) is small as well and in the same way as in the proof
of Lemma 2.1 we have

Hg/z(('. 0)” < ( ”!/2(<‘. ())“ + O(c™)) /2 for ¢ small.
Henee y(c, 0) = O(c®) and we have for w-@? ¢ ImL, ie., Puw- et #0
G(e,0)=b-+ 0. b#0.

(We consider G as a map defined on a neighbourhood of 0 € R x .\'; into R.
since c€ R, e Xy, Gy )YeImP. dimlmP? =1.)

Summing up we obtain
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LEMMA 2.2. If o> €eImL, Lw =¢*, we Y, and w-¢? ¢ ImL, then the
bifurcation function has the form

G(c,0)=0b-c®+0(c%), b#0.

By Lemma 2.2 for d, f; small the equation G(e¢, f1) +d- g = 0 has always
at least one solution near ¢ = 0 and hence we obtain the proof of the above
theorem from [1].

Lefton also discussed the case when w-@? € ImL,ie., Lv =w-p*, v e Y;.
But we can repeat the above procedure. We have transformed (2.2) into (2.3)
putting y; = y2 — ¢* - w. Now we put in (2.3) y, = y3 +3-c®v, y3 € Z and it
is easy to see that (2.3) has the form

) ys =L (=Q(y3 + ey g(ys, o) +3c"(w? -+ 3v-9")) + O(c*) + fi)

i) 0 =—P(y3 +c-ys-g(ys, ) +3c"(w? -0 +3v-¢") + O(")) + f2,
(2.4)
where ¢(y3, ¢) has a similar form as the mapping h(yz, c).

We can solve (2.4) 1) in y3 = y3(c, fi) for ¢, fi small by the implicit function
theorem and again we obtain the bifurcation function

H(c, fi) = P(y3(c, fi) +c-usle, fi)-g(ys(e, fi), c)
+ 3¢ (w?p + 3vp?) + 0(c%)) .

In the same way as in the proof of Lemma 2.1 it follows from (2.4) 1) that

ys(c, 0) = O(c") for ¢ small.

Hence

H(c,0)=3-c" - P(w?p + 3vp?) + O(c?) for ¢ small.

LEMMA 2.3. If wp? = Lv, v € Y, and w?p + 3vp? ¢ Im L, then the bifur-
cation function H has the form

H(c,0)=d-c"+0(c®), d#0.

We consider H as a map defined on a neighbourhood of 0 € R x X, into R.

Applying Lemma 2.3 we can solve H(c, f1) = d-g for fi;, d small near
¢ = 0. Hence we have
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THEOREM 2.4. Under the conditions of Lemma 2.3 the equation Ly = f has
at least one small solution for each f small.

Now, if w?p +3vp? € Im L, then we can proceed in the above procedure. Of
course, our method has sense only if this procedure stops after a finite number

of steps and this holds only if F(c, 0) is not flat at ¢ =0, i.e., 66—,—F(0, 0)#0
‘c

for some i. It seems that the example from [1] presents the case when F(c, 0)

is flat at ¢ = 0.

We also see that F(e, 0) had the forms
F(c,0)=a-c+0(ct"), a#0,

where 1 =3 or 1 = 5 or ¢« = 7. This property did not hold by chance, but
it follows from the following fact: The map L is equivariant by the group Z,,
since £(—y) = —Ly and we can easily derive that F(c, 0) has this property as
well, thus

F(—¢, 0) = —F(c, 0)
for ¢ small. Hence there generally holds
F(c,0) =a-c?t 4+ 0O(c¥*?) a#0

when F' is not flat and in this case the equation Ly = f has at least one

small solution for each f small.

Finally, we can consider similarly the problem
Ly+y*™*' = f
Mi(y) = Ma(y) = 0.
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