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ON THE STRUCTURE FUNCTION 
OF A G-STRUCTURE 

IVAN KOLAfc—IVETA VADOVlCOVA 

The first author deduced in [3] that the structure function of a generalized 
G -structure can be naturally defined in terms of the difference tensor of 
a semi-holonomic 2-jet. This approach leads to an original direct construction of 
the structure function of a classical (i.e. first order) G-structure. Since this problem 
is a matter of considerable interest to geometers, we now develop a complete 
version of the first order case including a detailed comparison with the classical 
constructions. Our approach underlines the fact that the structure function vanishes 
if and only if there exists the holonomic prolongation of the G-structure in 
question. (This result was recently derived in another way by A. Trautman, [6].) 
Then we deduce that every flat G-structure has the holonomic prolongation. The 
converse assertion is not true in general, which gives a clear interpretation of the 
fact that the vanishing of the structure function is only a necessary condition for 
flatness. Our consideration is in the category C00. 

1. Semi-holonomic 2-jets 

We first recall the basic facts from the theory of semi-holonomic 2-jets, [1]. 
Given two manifolds M, N, we denote by J1(M, N) the space of all first order jets 
of M into N and by a: JX(M, N)-*M or j3: J*(M, N)^>N the source or target 
projection, respectively. Consider a local map <p of a neighbourhood of a point 
xeM into Jl(My N) satisfying ac(p = id and 

(i) <p(x)=m*<p\ 
The 1-jet A =/l<p of such a map is said to be a semi-holonomic 2-jet of M into N 
with source aA = x and target j3A = (iq)(x). The space of all these jets is denoted by 
J2(M, N). The canonical coordinates ul on Hw and vp on Hn induce the additional 
coordinates vf = dvp/Sui on J1(Rm,Rn). If vp=fp(u\ ..., um) = fp(u) and vf = 
fp(u) is the coordinate expression of cp, then (1) implies fp(x) = (dfp/dui)(x). 
Hence vfi=(3vf/3ui) are the additional coordinates on J2(Rm, Rn). There is 
a canonical inclusion J2(M, N) c= P(M, N) of holonomic 2-jets into 
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semi-holonomic ones defined by 1?/^1'i(1i/)- In coordinates, a holonomic 2-jet is 
characterized by the property that its second order coordinates are symmetric in 
the subscripts. 

The composition of semi-holonomic 2-jets is defined as follows. Consider 
A G J2(M, N), A = j\cp and B e J2(N, Q), B = j\xp satisfying j3A = aB. Then the 
composition of first order jets tp((5q)(u)) cp(u) is a local map of M into Jl(M, Q) 
of the type required in the definition of a semi-holonomic 2-jet and we set 

(2) BcA:=jl[H>U3cp(u))c(p(u)]eJ2(M, Q). 

If A and B are holonomic, one gets the usual composition of holonomic 2-jets. If in 
the coordinates A = (yp, vp, vp

l}, xl) and B = (za, wa, wa
pq, yp), then (2) implies 

(3) BcA = (za, wa
pv

p, w^vh^+wlv^x1). 

This composition is associative. Hence the set Lm of all invertible semi-holonomic 
2-jets of Rm into Rm with source 0 and target 0 is a Lie group. By (3), its 
composition law in the coordinates a), a)k, detaJ-^O is expressed by 

(4) (b), b)k)c(a\, a)k) = (bkal b\ma\ar
k
n+ b\a\k). 

The subset L2
mczLm of all holonomic 2-jets is a Lie subgroup. 

For every A eJ2(M, N), the first author [2] introduced the difference tensor 
A ( A ) e TyN(x)A2T*M, x = aA, y = ftA, see also [4]. If vp are the second order 
coordinates of A, then the coordinates of A(A) are vp

tj], where the square bracket 
denotes antisymmetrization. Hence A is holonomic if and only if A(A) = 0. 

The space H2M of all invertible semi-holonomic 2-jets of Rm into M with source 
0 is a principal fibre bundle over M with the structure group Lm, the action of Lm 

on H2M being defined by the composition of jets, m = dimM . The coordinates on 
H2Rm are ul, u), u\k, det u\+ 0. The classical second order frame bundle H2M of M 
(i.e. the subspace H2Mc=H2M of all holonomic 2-jets) is a reduction of H2M to 
UczL2

m . 
Consider further the first jet prolongation JlHlM of the fibred manifold 

HlM-±M of all first order frames on M. We introduce a map /: JlHlM^>H2M as 
follows. Denote by tu: Rm^>Rm the translation x^x + u. Having XeJlHlM, 
X = jls, s(x) = j0q), cp: Rm^>M, we construct the composition 
s(<p(u)) jl

u(tu
l)eJ1(Rm, M) and set 

(5) i(X): = jo[s(cp(u)) cjl(tZ1)] e H2M. 

The coordinates on WRm being ul, u\, detuj-£0, we introduce the additional 
coordinates on JlHlRm by u)k = du)/duk. If X = (ul, u), u)k)eJlHlRm, then we 
deduce from (5) that the coordinates of i(X)eH2Rm are ul, u), and 

(6) u)k=u)iul
k. 

As u) is a regular matrix, we have proved 
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Proposition 1. i: JlHxM-+H2Mis a fibred manifold isomorphism overHlM. 

2. Prolongations of groups 

By (4) the restriction of the group composition to the kernel of the jet projection 
/3i: L„—> Lm is the vector addition, so that we have an exact sequence of groups 

(7) 0-+Rm®Rm*®Rm*-*L2
m-?lLm-+0. 

There is a splitting X: Lm-*LmczLm, aj»—>(aj, 0). (Geometrically, every 
a = (a\) e Lm determines a linear transformation lina: ul = a\u' and we set X(a) = 
jl (Una).) Hence Lm can be expressed as a semi-direct product of Lm and Ker/?i. 
For every AeLm, we have a = PiAeLm and Ai : = A(a)_1oA eKer/?i. We shall 
write A = ( a , Ai), which determines a decomposition Lm = 
Lmx(Rm®Rm*®Rm*). If a = (a\) and Ai = (5j, a\k), then 

(8) A=(a\,0)c(6\,a\k) = (a\,a\a\k). 

For any a = (a\)eLm and A = (a\k)e Rm®Rm*®Rm*, we set 

(9) ad(a)(A) = (a\al
mna

man
k), 

where a\ means the inverse matrix to a\. 

Lemma 1. In the decomposition (8) the multiplication in Lm is expressed by 

(10) (b, Bl)c(a, A1) = (ba, ad(a~1)B1 + Ai). 

Proof. According to (4), (b), b\b\k)c(a\, a\a\k) = (bkaf, b\bl
mna?an

k + bma?a\k) = 
(bka), bi

pa1(al
qbmna

man
k + a\k)), 

QED. 

Let G be any Lie group, whose multiplication will be denoted by a dot. Then the 
space TmG of all 1-jets of Rm into G with source 0 is also a Lie group with the 
composition law 

(11) (jo(p(u)) • (jloip(u)):=jl(q)(u) • ip(u)). 

The target projection /?: TmG^>G is a group homomorphism. Let g be the Lie 
algebra of G. 

Lemma 2. We have an exact sequence of groups 

( 1 2 ) 0-^g(x)llm*-->Ti IG--lG-^0. 

Proof. The kernel of (3 is the set of all 1-jets of Rm into G with source 0 and the 
target at the unit of G. As a set, this is equal to Hom(Hm , g) = g(x)-Rm*. Using the 
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basic facts on the Lie groups, one finds easily that the group composition in 
g®Rm* coincides with the vector addition, QED. 

In particular, if G = Lm and the additional coordinates on TmLm are a\k=(da\l 
/3wk)(0), then the multiplication in TmLm is given by 

(13) (bj, b\k) • (fl{, a\k) = (fttaf, b\ka\ + b\a\k). 

On the other hand, we introduce a map v: TmLm-^Lm as follows. Having 
A 6 TmLm, A =JIY(U), Y(0) = y£iHu), we set 

(14) v(A): =/i[;S(tV(«))cy(ii)cjl(r:1)]. 

If A has some coordinates aj, ajk in TmLm, then v(A) has the same coordinates in 
Lm. Comparing (4) and (13), we find that v is not a group homomorphism. 
Nevertheless, (14) and (2) imply 

Lemma 3. If G is a subgroup in Lm, then v(TmG) is a subgroup in Lm. 
The latter group will be denoted by G and called the semi-holonomic prolonga

tion of G. 

Lemma 4. We have an exact sequence of groups 

(15) 0--->g(x)Km*->G--+G->0 

Proof. By (4) and (13) the composition laws in TmLm and Lm coincide on Ker/3 
and Ker/3i, so that (15) is a consequence of (12). 

Since the coordinates in TmLm coincide with those in Lm, there holds A(G) <= G. 
Then Lemma 1 gives 

Proposition 2. We have G = G X (g(x)Km*) with composition law (10). 
The intersection G' : = GnLm will be called the (holonomic) prolongation of G. 

Obviously, (aj ,0)eG' for each a\eG, so that |3i: G'-^G is surjective. Let 
p(<g) = (g®Rm*)r\(Rm®Rm*ORm*) be the Spencer prolongation of g. By 
Proposition 2 we obtain immediately 

Proposition 3. We have G' = Gxp(g) with composition law (10). 

3. The structure function 

Consider a G-structure P c H'M. Hence J 'P c PWM. If X e J1? and A e VmG 
are as in (5) and (14), then 

i(X) v(A) = jA[S(<p(V(u))) y(u) yKOle iOTP). 

Conversely, for any other XePP, X = j\s, s(x) = j0(p, there exists exactly one 
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A eTmG satisfying i(X) v ( A ) = / ( X ) . Indeed, the equation scju = s determines 
a local map of M into G and A =}lii(y(u)). Thus, we have proved 

Proposition 4. /(J1?) is a reduction of H2M to GczL2
m. 

For every B e H 2M we can construct its difference tensor A(B) e TxM®A2Rm*, 
x = /3B, further, b = fabe HlM can be interpreted as a linear map b: Rm-*TXM. 
Then A(B) : = b~lA(B)eRm(g)A2Rm*. If in coordinates B = (xl, b), b\k), then 
A(B) = ^ [ ; M . 

Definition 1. The structure function r(b) of a G-structure P at b eP is the set 
A(/(X)) for all XePP, @X=b. 

Since gczRm®Rm*, there is g®Rm*czRm(g)Rm*®Rm* and ?l(g(x)Km*)cz 
K W (X)A 2 1? W * , where 91 means the antisymetrization with respect to Rm*®Rm*. 
The space H°>2(g)= Rm®A2Rm*/<n(g(g)Rm*) is the Spencer cohomology class of 
bidegree (0,2) of g. 

Proposition 5. r(b) belongs to H0,2(g) for every be P. 
Proof. By Proposition 4 any other i(Y)ei(J1P), (}Y=b, is of the form 

/(X)oA, Aeg®Rm*. If A = (6\, a\k) and i(X) = (xl, u), u\k), then /(X)oA = 
(*'", u\, u\k+uia\k) and A( / (X)oA)= u\u[ik]-\-a[jk\, QED. 

In coordinates, one verifies easily that our structure function coincides with the 
classical one, see, e.g., [5]. We remark that our method leads to a simple derivation 
of the classical transformation law of the structure function. The space 2l(g(x)Hw*) 
being invariant with respect to the action (9) of G, [5], we have an induced action Q 
of G on the factor space H02(g). 

Proposition 6. There holds g(g~1)r(b) = T(bg) for all g eG and be P. 
Proof. By (6), if (ul, u\, u\k) are coordinates of i(X), then the coordinates of X 

are (ul, u\, u\iiik). Take an element a\ e G and construct the image X' of X by the 
right translation determined by a\. Then the coordinates of X' are 
(ul, ukaf, umiuka

m) and the second order coordinates of Z(X') are u\ma\am. Hence 
A(i(X')) = aPu?ul

[mn]a
mak, which proves our assertion. 

4. Prolongability and flatness 

Definition 2. A G-structure P is called prolongable if the intersection of i(PP) 
and H2M is non-empty over every b eP. 

If P is prolongable, then the intersection P': = i(J1P)nH2M is said to be the 
(holonomic) prolongation of P. 

Proposition 7. If Pis prolongable, then P' is a reduction oflPM toG' cz Lm. 
Proof. This follows from Proposition 4 and from the fact that the composition 

of two holonomic 2-jets is holonomic. 
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Proposition 8. A G-structure P is prolongable if and only if its structure function 
vanishes. 

Proof. By definition, P is prolongable if and only if for every beP there exists 
an X e JlP, pX = b, such that i(X) e H2M. This is equivalent to A(/(X)) = 0, which 
is the same as r(b) = 0eHO2(g). 

We recall that a G-structure on M is said to be flat if it is locally isomorphic to 
the standard flat G-structure RmxGczH1Rm. The well-known fact that the 
structure function of a flat G-structure vanishes can be rededuced as follows. If we 
take a constant section s: u'V->(w', a}) of Rm X G, we have j\s = (xi, a-, 0) and 
i(jl

Ks)eH2M. This implies 

Proposition 9. Every flat G-structure is prolongable. 
The converse assertion is not true in general. This clarifies in a conceptual way 

the relation between the vanishing of the structure function and the flatness of 
a G-structure. 
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C T p y K r y p H A H oyHKUHH G -CTpyKrypb i 

Ivan Kolaf—Iveta V a d o v i c o v a 

Pe3K>Me 

Pa6oTa nocBfliueHa nocTpoeHHio crpyKTypHOH CJ^VHKHHH G-CTpyKTypw c noMoim>K> pa3HocTHoro 

TeH30pa nOJiyrOJIOMOHHOTO 2-fl>KeTa H HCCJIeAOBaHHIO HeKOTOptlX eH CBOHCTB. nOKa3aHO, HTO CTpyK-

TypHaH (J)yHKHHH oGpawaeTCH B Hyjib Torna H TOJII>KO Torjia, KorAa cymecrByeT rojioHOMHoe npo^oji-

>KeHHe H3yHaeMOH G-CTpyKTypbl. . 
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