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A NOTE ON IMPERFECT MONOMIAL CURVES IN P°

EDUARD BODA — STEFAN SOLCAN

One of the most interesting problems in algebraic geometry started with
Kronecker’s result in 1882 is the following: What is the smallest number of
(homogeneous) equations defining an algebraic set in an affine (or projective)
n-space. Lately several authors have obtained strong results in the affine case and
particular ones also in the projective case. For more detail see, e.g., [12].

There are papers dealing with curves in a 3-dimensional projective space P
over a field k. In 1979 R. Hartshorne (see [6]) published a short but very nice
proof of the fact that every curve C, given parametrically by (s%, s/ ~'¢, st¢?~ 1, t%)
in P} is a set-theoretic complete intersection for d > 4 and the characteristics
char(k) = p > 0. Bresinsky, Stiickrad and Renschuch proved in [4] the same for
the curves C(d, b, a) given parametrically by (s, s/ %, s°¢? =, %) in P} with g.c.d.
(d, b, a) = 1 (also in the case of finite characteristics of k). More complicated is
the situation in the case of char(k) = 0. Stiickrad and Vogel showed in [12] that
the above mentioned curve C(d, b, a) is a set-theoretic complete intersection for
any characteristics, if C(d, b, a) is arithmetically Cohen-Macaulay. Note that a
curve C is arithmetically Cohen-Macaulay iff the local ring of the vertex of the
affine cone over C is Cohen-Macaulay.

During his stay in Bratislava W. Vogel posed the question: Is there an
irreducible arithmetically non-Cohen-Macaulay (equivalently: imperfect) curve
in P}, char(k) = 0, which is a set-theoretic complete intersection?

Using a proposition with an algebraic formulation of the problem we are
investigating some classes of curves in P, with char(k) = 0. We get sufficient
conditions for these curves to be a set-theoretic complete intersection.

The notation in this paper is the standard one, for the basic facts and
definitions (systems of parameters, multiplicity e,, regular and Cohen-Macaulay
local rings, ...) see, e.g., [14]. We denote by L,(M) the length of an A-module
M and by ht(a) the height of the ideal q, see, e.g., [7]. Dim(A) means the
Krull-dimension of the ring A. The notion of a “set-theoretic complete intersec-
tion” is explained in Proposition 1.

With respect to the above mentioned results we will assume in the following
that char(k) = 0.
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First of all we formulate two conditions to abbreviate our explanation:
1. Let (A.m) be a local ring with the maximal ideal m. We say that the condition
(E) in A holds if for every ideal a in A there is

dim(A/a) + ht(a) = dim(A). (E)

2. Let (A, m) be alocal ring and p a prime ideal of A with dim(A/p) = r. We say
that the multiplicity condition (M) for p holds when there exist r elements x,

.... X, of m such that x = {x,, ..., x,} is a system of parameters for A/p and
the_ following condition is true
eo(p, x), A) = eq((p, X)/p, A/P) . ey(p . Ay, A,). M)

Proposition 1. Let (A, m) be a local ring with an infinite residue field A/m in
which the condition (E) holds. Let p be a prime ideal of A. When (M) for p is
true, then p is the set-theoretic complete intersection, i.e. there are s = ht(p)
elements a,. ..., a, of p such that rad((q,, ..., a,)) = p.

For the proof of proposition 1 see [1] Proposition 2 or [10].

The following lemma shows that Proposition 1 is useless for defining primes
of curves in P, which are imperfect, i.e. arithmetically non-Cohen-Macaulay.

Lemma 2. Let (A, m) be a regular local ring with A/m infinite and p is a prime
ideal of A. If (M) for p holds, then A/p is Cohen-Macaulay.

Proof. Let (M) be true for p. Put q = (p, x), where x = {x,, ..., x,} is a

system of parameters for A/p. By virtue of (M) there is then eyq,A) = -
= e(a/p, A/p).e(p . A, Ap).
We will count e,(q/p,A/p). Set A/p=A and § =q.A = (%,,..., x,). For the
system of parameters {X,, ..., X,} in A we set by = (0).A and b, = U(b,_,) + -
+ (%) for 0 <k < r. The symbol U(a) denotes the intersection of all primary
ideals q; belonging to a such that dim(A/q;) = dim(A/a). Then e,(q, A) = L(A/b)),
see [2]. Counting in A we get by= U, b, = U(b;_,) + (x;), 0 <k <r. Put
b, = q*. Because of p = q < q* (see [2]), we have

ey(d A) = L(A/q*. A) = L(A/q*). a

The regularity of A implies ey(p . A,, A,) = | and together with the condition (M)

we get e,(q, A) = ey(§,A). With trivial L(A/q) < ey(q,A) (see, e.g., [5], p. 255)

there then holds L(A/q) < L(A/q*). On the other hand, we have from q < q* that
L(A/q) = L(A/q*) and q = q*. Then we get

e(d, A) = LA/g), 2

i.e.in A thereis anideal § = (%, ..., X,) generated by a system of parameters such
that (2) holds. This means that A = A/p is Cohen-Macaulay (see, e.g., [14]) as
required.
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Asin our case R = k[X,, X,, X;, X3]x, x.x2. x5 i regular, we formulate an easy
modification of Proposition 1.

Proposition 3. Let R = k[X,, X, X, X3]xo.1.x,.x; and p be a prime ideal in
R, dim(R/P) = 2. Assume there are elements q,, a, of R and Fep such that
a = {a,,a,} is a system of parameters for R/p and

el((F, a)/(F),R’) = e|((p, a)/p,R/p).e(p". R, R}),

where R’ = R/(F) and p’ = p.R’; then there eists an element Gep such that
p = rad((F, G)), i.e. p is a set-theoretic complete intersection.

In order to describe the way how to find such an element F in some special
cases we need the following lemma.

Lemma 4. Let q= (X'l'9xlx29 x;) < k[X|9X2](Xl.X2) =A, nz 2. Then
elq,A) = 2n.

Proof. Put q'=(X]+ X3, X,X,). Then q" is a reduction of q and
e(q’, A) = Ey(q, A), see [8]. Since q” is an ideal generated by a system of par-
ameters in a regular local ring, the claim follows from the fact that
eo(q’, A) = L(A/q’) by counting the length. In fact ¢" = (X]*', X3+, X,X,) <-
cq cq and L(A/q")=2n+ 1, L(A/q) = 2n — 1, thus ¢yq,A) = L(A/q) =
= 2n.

Note that Grébner in [5], p. 256 counted ey (q, A) for the above q in the case
n = 3, but his calculations cannot be used for n > 3.

Let R be as in Proposition 3 and C, the curve in P} given parametncally by
(5", "~ 't, s, ") with the defining ideal p = (F, ..., E), F, = X, X; — X,X,,
E=X"2X,- X", E=X;" X2 - X1"X,, ..., F,_, =X X572 - X313
F, = X' — X,X5 % see [9], p. 320. It is known that C, is nonsingular for every
nand it is arithmetically Cohen-Macaulay for n = 3, arithmetically non-Cohen-
Macaulay Buchsbaum for #» = 4 and arithmeticaly non-Buchsbaum whenever
n>5, see, e.g., [13]. Put q = (p, X, X3) = (Xo, X5, X771, X, X5, X537 "). From
Lemma 4 it follows that e,(q, R) = 2. (n — 1). Let us count ¢,(q/p, R/p) as in the
proof of Lemma 2. We use the so-called U-process and we get
ea/p,R/p) = L(Ra*) =2.(n - 2).

Now we formulate the main result.

Theorem 5. Let C,, p, q be as above, n > 4. If there exists a form Fe-
ep”~" — p"~!, which is superficial of degree n — 2 with respect to q, then C,
is a set-theoretic complete intersection.

Remarks.

1. The symbol p® denotes the ith symbolic power of p, i.e. p? =p".R,nR.
2. We say that an element F of a local ring (A, m) is superficial of degree s with
respect to the m-primary ideal q if Feq’ — q°*! and there exists a positive
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integer ¢ such that (q": F) n q° = q" * for all n > > 0. For more facts about
superficial elements see [14].

Proof of Theorem 5. The assumptions for F imply e(q.R,R)) =
2.(n—1).(n—2)and ep.R,,R,) = n — 1, R = R/(F). The assertion now foll-
ows from Proposition 3.

We finish this paper by an example which shows that the idea of Theorem 5
is useful also for the arithmetically Buchsbaum curves. Note that the Buch-
sbaum property is a simple generalization of the Cohen-Macaulay one, see [11].

Example. In [3], Theorem 3, there is a characterization of arithmeti-
cally non-Cohen-Macaulay Buchsbaum curves over an algebraically closed
field k. Curves are given parametrically by (s*, s+ 12"~ ', &~ £+ ¢*") with the
defining ideal p=(XX;—X/X,, X¥Xr-!-XPI+l X X - XX,
X+ — X 1X2). As before we put q = (p, X,, X3) = Xo, Xs, X, X,, X3 H1,
X3 *1). Then we get e,(q, R) = 2.(2n + 1) by virtue of Lemma 4. For q/p we get
e(q/p, R/p) = 4n = 2.2n. Comparing with the curve C, from Theorem 5 we see
that the only difference is in the degree of the required superficial element F.
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3AMEUYAHHNSA O HECOBEPIIEHHBIX MOHOMMAIJIMHBIX KPUBBIX B P}
Dnyapa bons — llrepan Conuan

Pe3somMme

B pa6oTe MCCNIeayIOTCS HEKOTOPbIE KJIACChI HEMPUBOAMMBIX HECOBEPLIEHHBIX MOHOMMAIbHbIX
KpHBbIX TpocTpancTea P}, char (k) = 0, paccMaTpuBas HX KaK TEOPETHKO-MHOXECTBEHHOE MOJTHOE
nepeceyenue. JlokasbiBaeTcs, 4To eciu a1a kpuBoil C ¢ obiumm HyneM (s, 597 ' 1, 517~ !, 14) cymect-
ByeT ofHOpOaHbIi MHorownes Fepld ™" — pé~!, koTophlil ABASETCS MOBEPXHOCTHBIM JJIEMEHTOM
nopsnxa d — 2 oTHocUTeNIbHO Haeana (Pc, Xo, X3), To C — TEOpETHKO- MHOXECTBEHHOE TOJIHOE
npepeceyeHHe.
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