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Math. Slovaca 40, 1990, No. 1, 87—99 

ON THE EXISTENCE OF CONJUGATE POINTS 
FOR LINEAR DIFFERENTIAL SYSTEMS 

ONDREJ DOSLY 

1. Introduction 

The principal aim of the paper is to study sufficient conditions for the 
existence of conjugate points of solutions of linear differential systems 

y' = B(x)z, z'= -C{x)y9 (1.1) 

where B, C are symmetric n x n matrices (i. e. BT = B9 C
T = C) of real-valued 

continuous functions and B is nonnegative definite. 
A similar problem has been recently studied for various differential equa­

tions. For example, the differential equation 

y"+p(x)y = 0, (1.2) 

p(x) being a real-valued continuous function, is conjugate on R = (— oo, oo) 
(i.e. there exists a nontrivial solution of (1.2) vanishing in two distinct points 
of R) if 

í liminf p(x)dx>0, (1.3) 
/ - . - o o J , 
z-* oo 

see T ip l e r [19]. The self-adjoint differential equation of the fourth order 

( r ( x ) y T - p ( x ) y = 0, (1.4) 

where r(x),p(x) are real-valued functions, r(x)eC2(R), r(x) > 0, p(x)eC°(R), 
is conjugate on R (i. e. there exist x,, x2 e R and a nontrivial solution y(x) of (1.4) 
for which y(xx) = y'(xi) = 0 = y(x2) —y'(x2)) if either 

/•oo /»0 t*z 

(i) x2r-,(x) dx = oc, x2r-1(x) dx = oo and liminf p(x) dx > 0 
JO J -oo ^ - ° ° it 

z-> oo 

or 

87 



poo rO 

(ii) r~!(x) dx = oo , r"1 (x) dx = oo and there exists x0eR such that 
Jo J - o o 

liminf p(x)(x — x0)
2dx > 0, see [13]. 

/--oo J, 
z-+ 00 

In this paper we shall show that similar conditions are also sufficient for the 
existence of conjugate points relative to (1.1). In addition, we shall also discuss 
a certain duality between integral criteria for oscillation at infinity and integral 
criteria for the existence of conjugate points relative to (1.1) and the differential 
system y" + P(x)y = 0, where P(x) is a symmetric matrix of real-valued con­
tinuous functions. 

The principal method we use is the variation principle of Courant applied to 
the quadratic functional corresponding to (1.1). 

Matrix notation is used. E and 0 denote the identity and the zero matrix of 
any dimension. If we need to emphasize that E and 0 are k x k matrices, we shall 
denote them Ek and 0^. If A is a symmetric matrix, lx(A) < l2(A) < ... < ln(A) 
denote the eigenvalues of A ordered by size. 

1. Preliminary results 

First recall some properties of solutions of differential equation (1.2). Let this 
equation be disconjugate on an interval / = (a, b), i. e. there exist no two distinct 
points of /which are conjugate relative to (1.2). Then there exists a unique (up 
to a multiple by a nonzero real constant) solution y^(x) of (1.2) such that 
lim yb(x)/y(x) = 0 for every solutiony(x) of (1.2) which is linearly independent 

x-*b — 

oiyb(x). The solution y^(x) is said to be the principal solution at b. The principal 
solution of (1.2) at a is defined analogously, see, e.g. [7, p. 350]. The equation 
(1.2) whose principal solutions at a and b are linearly dependent, i.e. 
ya(x) = k.yb(x), k # 0, is said to be special on /, see [5, p. 22]. 

The result of Tipler [17] can be seen in the following way. The equation 

y" = 0 (2.1) 

is disconjugate and special on R (y_oo(x) = 1 = y^ (x)) and consider equation 
(1.2) as a perturbation of (2.1). Then every perturbation of (2.1) by a function 
p(x) which is positive on the average on R (i. e. (1.3) holds) makes the perturbed 
equation possess a nontrivial solution having at least two distinct zeros. Using 
the tranformation theory of self-adjoint linear differential equations of the 
second order, see, e.g., [1], one can reformulate the Tipler result in the following 
way: 



Consider two equations 

(r(x)y'y+Pi(x)y = 09 i=l,2, (2.2)s 

r(x) > 0 on I = (a9 b). Let equation (2.2)t be disconjugate and special on / and 
denote by y0(x) the only (up to a multiple by a nonzero real constant) solution 
of (2.2), which is nonzero on / (i. e. y0(x) = y„(x) = y*(x)). If 

lim inf y0

2(x) (p2(x) - px (x)) dx > 0, 
f- j + J, 
z-*b — 

then equation (2.2)2 is conjugate on /. 
Now, let us turn to the differential system (1.1) and recall some of its 

properties. Simultaneously with (1.1) we shall consider the matrix system 

Y' = B(x)Z, Z'=-C(x)Y, (1.1) 
м 

where F, Z are n x n matrices 
Let (Yi9 Z,), / = 1, 2, be solutions of (1.1)^; then 

YT(x) Z2(x) - ZT(x) Y2(x) = K9 (2.3) 

where K is a constant n x n matrix. A solution (Y9 Z) of (\.\)M is said to be 
self-conjugate if YT(x) Z(x) — ZT(x) Y(x) = 0. The system (1.1) or (1.\)M is said 
to be identically normal on an interval /whenever the only solution (y, z) of (1.1) 
for which y(x) = 0 on any nondegenerate subinterval of lis, the trivial solution 
(y, z) = (0, 0). Two distinct points xX9 x2eR are conjugate relative to (1.1) if 
there exists a nontrivial solution (y, z) of (1.1) such t h a t y ^ ) = 0 = y(x2). The 
system (1.1) is said to be disconjugate on /if there exist no two distinct points 
of / which are conjugate relative to (1.1). Two solutions (Yi9 Zt)9 i = 1, 2, of 
(1.1)A/ are said to be linearly independent if every solution (Y9 Z) of (\.\)M can 
be expressed in the form (Y9 Z) = (YXM + Y2N9 ZXM + Z2N)9 where M9 N are 
constant n x n matrices. If the solutions (Yi9 Zt) are self-conjugate, one can 
show, see, e.g. [16, p. 308], that these solutions are linearly independent if and 
only if the constant matrix YT(x)Z2(x) — Z, r(x) Y2(x) is nonsingular. 

Let the system (\.\)M be disconjugate and identically normal on /. There 
exists a unique (up to a right multiple by a constant nonsingular n x n matrix) 
self-conjugate solution (Yb9 Zb) of (1.1)^ such that Yb(x) is nonsingular and 
lim Y~{(x) Yb(x) = 0 for every self-conjugate solution (Y9 Z) of (1.1)M which 
- • JC b — 

is linearly independent on (}£, Zb). The solution (Yb9 Zb) is said to be the 

principal solution of(\.\)Matb. For this solution we have lim /, ( Y~l(s). 

. B(s) YT~ ' (s) ds ) = oo. The principal solution of (1.1)^ at a is defined analo-
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gously, see, e.g., [16, p. 341]. System (1.1) or (IA)M is said to be k-general on I 
if the rank of the matrix 

Ya(x) Yb(x) 
Za(x) Zb(x) 

equals n + k for every xel, see [6]. One can show that (1.1) is k-general on / i f 
and only if the rank of the constant matrix YT(x) Zb(x) — ZT(x) Yb(x) equals k. 

3. Conjugate points 

In this section we use the variation principle of Courant (see, e.g., [18, p. 208] 
or [16, p. 337]) in order to prove a sufficient condition for the existence of 
conjugate points relative to the system (1.1). Before proving this result we make 
one auxiliary statement. 

Lemma 1. Let the differential system 

y' = B(x)z, z ' = 0 (3.1) 

B(s) ds) = oo for some be k-general on I = (a, b), k e {0,..., n}, and let lim /, 
x->b — 

(and hence for every) eel. Then there exists an (n — k)~dimensional linear space 

Vn_k cz Rn such that lim uTB(s)uds = OO for every 0 # ue Vn_k. 
* - « + Jx 

Proof. Since lim IA B(s) ds) = oo, (Yb, Zb) = (E, 0) is the principal 
x - b -

solution of (1.3) at b. This system is k-general on 7, hence the rank of the matrix 
K = Ya

TZb — Zj Yb equals k and without loss of generality we can suppose that 
K = diag{£fc, O,..^}, i.e., Za = K= diagj/^, 0„_J . Write the matrix B(x) in the 
form 

o , . _ M W B2(x)\ 
B{x)-\BT(x) B3(X))> 

where Bx, B2, B3 are k x k, k x (n — k), and (n — k) x (n — k) matrices, respec­

tively. Hence, Y'a = B(x) Za - (fr Q ) , thus 

( j .S.^d^ + D, D2 

B2
r(s)ds + Di D4 
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where Di9i = 1, ...,4, are constant matrices. The fact that the principal solution 
(Ya, Za) is self-conjugate gives Dx = Dj7', D2 = 0 and the nonsingularity of Ya(x) 
implies that D4 is also nonsingular. Moreover, there is no loss of generality in 
assuming D4 = En^k and D3 = 0. Let 

( rx \ 
Eк j B2(s)ds 

o ľадJ' Z = V° £-' 
'o* o 

Then (Y9 Z) is a self-conjugate solution of (3.1) and Yj'Z — Z„Yis nonsingular, 
hence the solutions (Ya9 Za)9 (Y9 Z) are linearly independent. 
It implies lim Y~x(x) Ya(x) = 0, i.e. 

x-+ a + 

Uk | J C B 2 (_) \~ 1 / | *B 1 (5) + D1 0 

x-«+ I f* I I r* 

\o j I^y yj B2
r(5) + D3 E„_^ 

'i?t -£*-(_)(£ B3(_)) X/jJB , (-) + />, o 

/+V-(f-)T- o>r 
= 0, i.e. lim ( | _53(s) J = 0, hence lim / / ( J B3(s) J ^ = 

= 0 and thus hm /- ( £3C?)) = °° • Taking K„_^ = Un{ek + ]9 . . . 9 e n } 9 { e ; } ; = 1 

being the canonical base of Rn
9 we have the required statement. 

Theorem 1. Let the system (3.1) be k-general on I = (a, b), 0 < k < n — 1, 

lim /, ( _9(s)ds } = oo and let there exist a]9 bx el such that the matrix C(x) 

is nonnegative definite for xe(a9ax)u (b1, b). If there exists a(k + \)-dimensional 
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linear space Vk+X c= Rn such that 

liminf wTC(x) wdx > 0 
' - ? + Jt 
z-+b-

for every 0 # w e J^ + j , then there exists a pair of conjugate points relative to (1.1). 
Proof. We shall construct a pair of vector functions (w(x), v(x)) such 

that u(x) has compact support in (a, b) and the quadratic functional correspond­
ing to (1.1) 

•b 
.77 J 0J Г (*)B(X) У I(u, v; a, b) = (vт(x) B(x) u (л:) — иҶх) C(л-) м(х))dл:, 

w' = B(x)v on 7, 

is negative. Then one can find by means of the Courant variation principle a 
solution (y, z) of (1.1) such that y(x) vanishes in two distinct points of (a, b). 
This technique is similar to that used in [13] and [15]. 

Denote 

din •jliminf zTC(s)zds 
*Wi l '-«+ J, 

c = min 
Z T 2 = - 1 Дf-*A 

and let s > 0. There exist x2, x3e/ such that C(x) is nonnegative definite for 

f'2 

xe(a, x2) u (x3, b) and zTC(x)zdx > c — £, for every unit vector zeVk + X9 

J/, 
whenever t, < x2, t2 > x3. According to Lemma 1 there exists an (n — k)-dimen-

fx2 

sional linear space Vn_k cz Rn such that lim wTB(x)wdx = oo for every 
x-+a+Jx 

0#vvG^_ f c , hence by the Courant-Fischer min-max principle, see, e.g., 

[3,p. 137], lim 4+j( B(s)ds) = oo, j= 1, ...,n — k. Choose x,G (a, x2) such 

that 4 + i (£ -8 (x) dx) = 1 and let Wj,, j = 1,... n — k, be the unit eigenvectors 

corresponding to 4 + /( £ 2?(x)dx). At least one of the vectors w, belongs to 
rx2 

Vk + U denote this vector by w0 and the corresponding eigenvalue of e I B(x) dx 
J*i 

by d0. 

92 



= 0 Further, since lim /,( i?(8)ds) = co, we have lim /„(( B(s) ds\ ) 

and hence there exists x4 e (x3, b) such that w0 ( B(x) dx) w0 = e. Note that 

the identical normality of (1.1) implies that for every t], t2e/, tx < t2, the matrix 

B(x)dx is nonsingular. In fact, since B(x) is nonnegative definite, 

B(x) dxz0 = 0, z0 being a nonzero vector, implies z0 B(x) z0 = 0 on (t,, t2), i.e. 

I 
I. 
B(x)z0 = 0. Then (0, z0) is a solution of (1.1) on (f,, t2), which contradicts the 
identical normality of (1.1). 

Now, define a pair of functions 
(0, 0), xe(a, x,], 

(ed0*\ B(s)dsw0,ed0-
lw0),xe(xi,x2], 

(u, v) = { (w0, 0), xe(x2, x3], 

a X4 , »X4 v _ J s *X4 V _ J V 

B(*)djM B(x)dx\ w0, - M B(x)dx) w0 J, xe(x3 , x4], 

(0,0),xe(x4,b). 

Then u' = B(x)y on I, suppw(x) c: / and I(u, v; a, b) = I(u, v; JC, , x4) = 

i
x2 / fx4 \ - l fx4 / fx4 \—1 

5(x) dxw0 + w0
r ( 5(x) dx) B(x) dx ( 5(x) dx) W0 -

*x2 ^ x 3 p.v4 

— wr(x) C(x) w(x) dx — w0 C(x) dxw0 — uT(x) C(x) u(x) dx < 
JX] Jx2 Jx3 a x4 

B(x)dx 

- i 
i w0 — C + 6 < Sd0 + € — C + £ — C + 3£. 

Consequently, taking e sufficiently small ( < - ) , we have I(u, v;a,b)<0, which 

was to be proved. 
R e m a r k 1. Comparing the statement of Theorem 1 with the Tipler result 

for equation (1.2), we see that the assumption concerning the definiteness of 
C(x) near a and b has no analogy in the scalar case, but we were not successful 
in proving Theorem 1 without an assumption of a similar kind. In the next 
section we shall show that for certain special systems this assumption can be 
omitted. 
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R e m a r k 2. Similarly as in the scalar case consider the system (1.1) as a 
perturbation of (3.1). Theorem 1 states that under certain assumptions the 
perturberation of the k-general system by a symmetric matrix which is positive 
definite on the average on a (k + l)-dimensional linear space makes the 
perturbed system conjugate. In Theorem 1 we have only considered linear 
perturbations, but the used method can be also extended to nonlinear perturba­
tions, e.g., to the system 

r = B(X)Z9 zr = ~c(x, r, z), 

where C: R x R"x" x R"xn-+Rnxn is a symmetric matrix. For some ideas 
concerning this method see [15]. 

4. The system y" + P(x) y=0 

Consider the linear differential system of the second order 

y" = P(x)y = 09 (4.1) 

where P(x) is a symmetric n x n matrix of real-valued continuous functions. 
This system can be rewritten in the form (1.1) (y' = z, B(x) = E9 C(x) = P(x))9 

hence the definitions of conjugate points, disconjugacy, etc. for (1.1) hold also 
for system (4.1). 

Corollary 1. If there exists a unit vector veR" such that 

liminf 
/-» - X 
Z -» X 

vтP(x)vdx = c>0, (4.2) 

then there exists a pair of points which are conjugate relative to (4.1). 
Proof. Similarly as in the proof of Theorem 1 let x2, x3eR be such that 

' c 1 1 
f r P(x)i;dx > - , and let xj = x2 , x4 =- x3 + - . Define a function 

0, х є ( - o o , * , ] , 

Є(x - Xi)v, Xç(Xi, x2], 

y(x) = < v, xe(x2, x3], 

[1 - є(x - x4)] v, х є ( х 3 , х 4 ] , 

0, xs(x4, oo). 
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(*x2 

dд; + 

x4))2vTP(x)vdx = 2s — vTP(x)vdx, ^xe[x]9 x2], £2e[x3, x4^ where the 

second mean value theorem of integral calculus has been used for computing the 

We have 7(y; xu x4) = f (y r (x )y ' (x ) - yr(x)i>(x)y(x))dx = s2vTv 
JjC, 

rx4 px2 /»A'3 f x 4 

+ e2vTv\ dx-e2\ (x-xl)
2vTP(x)vdx- \ vTP(x)vdx- \ (1 - s ( x -

J.v3 Jx, Jx2 J-V3 

cl> 
"T 

1 of int 
*x2 »x4 

integrals s2(x — xx)
2vTP(x)vdx and (1 — e(x ~ x4))

2vTP(x)vdx. Now, 
J*j Jx3 

c 
taking e < - , we have I(y; x}, x2) < 0, hence there exists a pair of points which 

4 
are conjugate relative to (4.1). 

R e m a r k 3. Corollary 1 can be also proved as a consequence of the 
above mentioned result of Tipler and the theorem of Hartman [8, Th. 1.1], which 
states that (4.1) is conjugate on an interval I if the scalar equation 

y" + q(P(x))y = 0 

is conjugate on 7, where q is a superadditive, superhomogeneous positive and 
normalized functional on the linear space of the n x n symmetric matrices (in 
Corollary 1, q(P) = vTPv). Consequently, condition (4.2) can be replaced by the 
condition 

liminf q(P(x))dx = c > 0, 
r - - o o J , 
z -* oo 

where q is a functional with the above given properties. 
Now, we shall discuss the following problem. In [9] Lewis and Hinton 

conjectured that the system (4.1) is oscillatory at infinity (i.e. there exists an 
arbitrarily large pair of conjugate points relative to this system) if 

l i m / Y f P(,s)(b) = oo. (4.3) 

Kwong et al. [10] proved that the conjecture is true if n = 2, and Atkinson et al. 
[2] showed that this result is the consequence of the fact that (4.1) is oscillatory 

at infinity if at least (n — 1) eigenvalues of the matrix P(s)ds tend to infinity 

as x -> oo. Recently Byres et al. [4] and Kaper et al. [11] proved the conjecture 
for a general n without any additional assumptions. 
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There exists considerable duality between the integral criteria for the oscilla­
tion at infinity and the integral criteria for the existence of a pair of conjugate 
points for differential equations of various kinds. 

poo 

For example, equation (1.2) is oscillatory at infinity if p(x)dx = oo (see, e.g., 

[18, p. 45]), equation (1.4) is oscillatory at infinity if either 
poo poo 

i) r~l(x)dx = oo and (x — x0)
2p(x)dx = oo for some real x0 or 

/*oo 

ü) Í x2r ](x)dx = oo and p(x)dx = oo (see [13]). 

Comparing these criteria with the criteria for the existence of conjugate points 
relative to (1.2) and (1.4) given in Sec. 1, we see that it suffices to replace the 
condition requiring certain integrals to be positive by the conditions requiring 
these integrals to diverge. A similar duality can be found in the oscillation theory 
of partial elliptic differential equations, see [17]. These examples lead us to the 
following conjecture, which is dual to the conjecture of Hinton and Lewis. 

Conjecture. Let 

liminf/и 
Ґ-» - 0 
z -> oo 

P(x)àx > 0 

Then there exists a pair of points which are conjugate relative to (4.1). 
Concerning the system (1.1), the following statement is dual to Theorem 1. 

Theorem 2. Let(YR, ZR) be the principal solution of(3.1) at oo and suppose that 
the matrix C(x) is nonnegative definite for large x. If there exists an n-dimensional 
constant vector w such that 

Г w TYR

T(x) C(x) YR(x) w dx = oo , (4.3) 

then the system (1.1) is oscillatory at infinity. 
Proof. To show that there exists an arbitrarily large pair of conjugate 

points relative to (1.1) (i.e. that (1.1) is oscillatory at oo), it suffices to prove that 
for every x0eR there exists JC, > x0 and a pair of n-dimensional vector-valued 
functions (y(x), z(x)) with the properties: 

0 y(x)> z(x) a r e piecewise of the class C, and C°, respectively, 

») y(*o) = 0 = y ( * i ) , 
iii) y' = B(x)z for xe(x0, xx), 

[V( iv) I [zT(x)B(x)z(x)-yT(x)C(x)y(x)]dx<0. 
J . Ï 0 

The transformation 

y = YR(x) u, z = ZR(x) u+ YR
T~ '(x) v 
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tranforms the system (1.1) into the system 

«' = B(x), v' = C(x)u, 
where 

R(x)=YR-'(x)B(x)Y/-'(x), 

C(x)=YT(x)C(x)YR(x), 

see, e.g., [1]. 

+ wт 

Let x 0 e R be arbitrary. Denote f, = x0 + 1 and d= wTl B(x)dx) w + 

( B(x)dx) C(x)dx( R(x)dx) w. Since (4.4) holds, there 
\JXQ J Jx0 ^ J ^ O ' 

exists t2>tx such that wTC(x)wdx > 2d. Further, since (YR, ZR) is the 
J'. 

principal solution of (3.1), 

lim lA\ YR\s) B(s) YT~](s)ds ) = lim /,( | B(s)ds ) = co, 
X->Q0 \ J / 2 / x"«> \Jt2 ) 

we have lim vvM B(s)ds\ w = 0, i.e. there exists xx > t2 such that 
JC-+OO 

wT([ * B(s)ds\ <d. 

Now, define 

(0, 0), x < x 0 , 

( B(5)dj( B(x)dx) w, ( B(x)dx) w), xє[x0, tt], 

(u, v) = < (w, 0), xє[/,, t2], 

( B(s) ds ( B(x) dx) w, - ( B(x) dx) vv), x є [t2, x,], 

(0, 0), x > x,. 

We have [vT(x)B(x)v(x) - uT(x)C(x)u(x)] dx = vT(x)B(x)v(x)dx + 
J.v0 J.v0 

px\ rf\ ph 
+ vT(x) B(x) v(x) dx - uT(x) C(x) u(x) dx - wTC(x) w dx -

Jh J.vft Jtt 
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í uT(x) C(x) u(x) dx < wT M B(x)dx 
'2 

-1 

C(x) dx\w + 

Č(x)dxw < d + d- 2d < 0. u' = B(x) v + wT(\ B(x)dx\ w-2d-wT 

for xe[x0, x,] and u(x0) = 0 = u(xx). Hence y' = YRu + F^w' = BZRu + 
+ r ^ = BZRU + r ^ v ^ r / " ^ ^ - r/z^) = 5z,y(x0) = o = y(x,), 

y(x), z(x) are piecewise of the class C1 and C°, respectively (since so are u(x) and 

v(x)) and [ ' [z r(x) B(x) z(x) dx - yr(x) C(x) y(x)] dx = zT(x) y(x)\* + 

+ [vT(x)B(x) v(x) — uT(x) C(x)u(x)] dx < 0. This completes the proof. 
Jx0 

R e m a r k 4. Note that the condition concerning nonnegative definiteness 
of the matrix C(x) for large x can be omitted in some particular cases. For 
example, the Leighton-type oscillation criterion for the equation 
( - \y(p(x)y(n))(n) + q(x)y = 0 (which can be rewritten in the form (1.1) and 
C(x) is nonnegative definite iff q(x) < 0, see [1]) proved recently by Muller— 
Pfeiffer [14] is the special case of Theorem 2, but it needs no sign restriction on 
the function q(x). 
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О СУЩЕСТВОВАНИИ СОПРЯЖЕННЫХ ТОЧЕК 
ДЛЯ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ СИСТЕМ 

Опс1ге] Оо§1у 

Р е з ю м е 

В работе изучаются достаточные условия для существования сопряженных точек ре­
шений линейной дифференциальной системы у' = В(х)г, г' = — С(х)у\ кде В(х\ С(х) — 
квадратные симметрические матрицы порядка п. 

99 


		webmaster@dml.cz
	2012-08-01T05:55:39+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




