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STRONG SHIFT EQUIVALENCE IN SEMIGROUPS

K. H. KIM — F. W. ROUSH!

(Communicated by Tibor Katrindk)

ABSTRACT. We show the property that shift equivalence equals strong shift
equivalence in a semigroup (the Williams conjecture) is related to regularity.

1. Introduction

The purpose of this article is to describe a concept, strong shift equivalence,
which has connections both to symbolic dynamics and to the theory of semi-
groups (it can also be generalized to categories).

DEFINITION 1. In a semigroup strong shift equivalence is the transitive closure
of the binary relation rs is equivalent to sr.

Shift equivalence of a, b is the relation for some r, s such that ra = br,
as = sb, sr =a™, rs=b" for some n € Z*.

Example 1. Inany group, both strong shift equivalence and shift equiv-

alence amount to conjugacy.

One checks that shift equivalence is an equivalence relation and that it is
implied by strong shift equivalence. These concepts first appeared in the paper
(W] of R. F. Williams, which classified certain dynamical systems up to
conjugacy.

Dynamical systems are concerned with the evolution of isolated systems over
time, and symbolic dynamics specializes to dynamical systems represented as
sequences from a finite set of states.
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DEFINITION 2. A dynamical system is a topological space X' and a continuous
mapping f: X — X.

The full n-shift is the set n” of biinfinite sequences from 1.2.....n indexed
on 7, where n = {1,2,...,n}. It is topologized as a product of discrete topolc-
gies. The continuous mapping is given by shifting coordinates by 1.

For a (0,1)-matrix A, the subshift of finite type associated with -1 is the
subsystem of all sequences a; such that the (a;,a;y1)-entry of A is | for all
(it is identified with biinfinite walks in the graph of A).

For a nonnegative matrix A, we associate a subshift by taking the edge crapa
of its multigraph.

Symbolic dynamics is the theory of subsystems of full shifts as dynamical
systems.

Example 2. The shift associated with

is the set of all biinfinite sequences of (1,2) such that no subsequence (2.2)
occurs (since the (2,2)-entry is 0).

The problem of classifying subshifts of finite type was reduced to an algebraic
(matrix) problem by the following result.

THEOREM 0. ([W]) Two subshifts of finite type are conjugate if and only if the
corresponding matrices are strong shift equivalent over 7.5 (through rectangular
matrices).

So in symbolic dynamics, the semigroup for which strong shift equivalence
is mainly to be described is the union of M, (Z*), where M, (7% ) is included
in M, 1(Z") by direct sum with 0. However. more general classes of subshifts
(in particular, sofic subshifts, images of one subshift of finite tvpe in another)
involve strong shift equivalence over other semigroups [KR1].

DEFINITION 3. The Williams conjecture for a semigroup is the assertion that
shift equivalence equals strong shift equivalence.

Example 3. For groups, this always holds.
For matrices over Z* . this is probably the most important unsolved probh-
lem in svinbolic dyvnamics in the restricted case when the matrices involved are

primitive, that is, some powers of them are positive. Tn [KR31 it was proved
false without this restriction.
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2. Results for semigroups
For simplicity, we will usunally deal with finite semigroups.

DEFINITION 4. In a semigroup S, the £-(R-) class of an element x is the
set ol all elements generating the same left (right) ideal as x. Elements in the
same L-(R-)class are said to be L£-(R-) equivalent. The relation H is LNR
and D is the composition £o R (which is proved equal to Ro L).

DEFINITION 5. An element 2 of a semigroup S is regular if and only if
Ly for some y in S A semigroup is regular if and only if all its elements
are regular.

Ioxample 4. The semigroup of transformations on n is regular but the
semigroup of binary relations on it is not regular for n > 3.

If a D-class contains one regular element, then all are regular [CP; Theo-
rem 2.0 and every £ and R-class contains an idempotent. An H-class is a
croup if and only if it contains an idempotent [CP; Theorem 2.16].

DEFINITION 6. Two elements @, y in a semigroup S are ( Vagner-Thicrrin)

R

mecrse iand only iy = and yry = y.

DEFINITION 7. In a semigroup S, clements a, b are semiconjugate if they
beiong 1o the same regular D-class and within that D-class there are elements
g such that wy = ¢, ye =b. where r ¢ R,, x € L, and y€ L,. y € 'Ry,

PROPOSITION 1. Let DD be a reqular D -class. Two elements of D are scmi-
conjugale if and only if
(1Y they lic in H -classes which are groups:
{2V under arbitrary standard isomorphisms of thesce groups they map lo
conjuqgate clements.
Scinconjugacy is an cequivalence relation. Semiconjugacy implics strong shifl

cquiralenec,

Proof. Let a. b be semiconjngate by s, r. Let [, (L
Fo L Ry elass comaming . According to [CP. Theorem 2.1
i

.. ) be the
T H, I,

i
i

1o, Ii; M, 7L the symmetrical relation holds. and the H-classes
e e TRORI e
Pive standana =omorphisnis between these two groups ave given by f ()
vy oand gLy sy for amy sy o the H-class of s [CPC Theoreny 2,200

wiiere 1 b the tque inverse i the H-class of ¢ [CP: Theoren: 2018

i
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If e, is the idempotent in the H-class of a, then rje, = r; by [CDP:
Lemma 2.14], and symmetrically for e, and s;. Then rye, lies in R,. L, .
so by [CP], r1H., = r1H, = H, and symmetrically.

Therefore, if we choose a different element in H,, then we can write that
element as riag for some ag in H,. Its inverse in the H-class of s; by compu-
tation is a;'s; . Hence, the new standard isomorphism differs from the first one

€q

by conjugation by ag.

We can choose a standard isomorphism mapping a to b by using r and
s1 = a~'s;.these lie in the correct H-classes. Since s;r = ¢,, s; must be the
unique inverse of r in its H-class. Also raa='s =1rs = b.

Conversely, let a, b satisfy the conditions (1) and (2) above. We may assume
a maps for a suitable r, s; onto b and conversely. Let s = as;. Then sr = «.
rs = b. The definition of the standard isomorphisms implies s; is in R,. L.
and 7 isin Ry, L,. Then s isin the same H-class as s; by [C'P; Theorem 2.1%].
[t follows that a, b are semiconjugate. The last two statements follow from the
first two. 0

The next result generalizes a result we stated previously in the case of Boolean
matrices [KR2].

PROPOSITION 2. Let S be a semigroup in which every element has som:
power which lies in an H -class that is a group (e.g., a finite semigroup).

Then any element a is shift equivalent to an element ae lying in a group with
idempotent e. Two elements a, b of any semigroup S which lie in H-clusscs
which are groups with idempotents e, [ are shift equivalent if and only if a and
b are semiconjugate.

Proof. Let a™ lie in an H-class Hy which is a group with idempotent « .
Then all powers of a” lie in Hy. It follows that all powers a" . k greater than or
equal to n, are L-equivalent and R-equivalent using powers of «. and therefore
also lie in Hy. Then r = s = a' gives a shift equivalence from « to ac since a.
¢ commute with a” .

So a, b are shift equivalent if and only il ae and bf are shift equivalent. A\
semiconjugacy gives a strong shift equivalence, and therefore a shift equivalence
Conversely, let 7, s give a shift equivalence. We may multiply r. s by anyv power
of ae, bf on appropriate sides to get a new shift equivalence (involving higher
powers of ae, bf).

Then we may assume that

(¥) ae divides r on the right and divides s on the left, and bf divides «
on the right and r on the left.

<t
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Then the relations that rs = (ae)™, sr = (bf)™ together with (%) imply that
r and ae generate the same right ideal (so are R-equivalent) and r and bf are
L-equivalent and s and bf are R-equivalent and s and ae are R-equivalent.
So all these elements lie in a D-class which is regular since it has H-classes
which are groups. Then (ae)!~™r and s give a semiconjugacy from ae to bf .

O

DEFINITION 8. An element z of a semigroup S is prime if and only if when-
ever .r = yz, either y or z has a 2-sided inverse u, e.g., uy = yu = e, where ¢
s a 2-sided identity.

PROPOSITION 3. [n any semigroup having a prime irreqular element and in
which some power of every element lies in an H-class which is a group, the
Williams congjecture is false.

Proof. Such an element a is not strong shift equivalent to anything but
conjugates of itself by invertible elements since its conjugates only factor in terms
ol invertibles.

But it is shift equivalent to some power of itself which lies in an H-class
containing an idempotent, and is therefore regular, and cannot be a conjugate
of the original. O

DEFINITION 9. A semigroup satisfies the order condition for right (left) ideals
il given any right (left) ideals Z, J and element x, it is not possible that both
T is a proper subset of J and zZ =7 (Zx = J).

IExample 5. Any finite semigroup satisfies this, as does the multiplicative
semigroup of a finite dimensional algebra.

LEMMA 4. Under the order condition for left ideals, if a Ra?, then they are
H -cquivalent, and their D -class is a group.

Proof. Let a>u = a. so a. a® have the same right ideals. The left ideal
of «® is a subset of the left ideal of a. If we have equality, then a? H a, and we
are done by [CP].

If not. then the left ideal Sa” is a proper subset of Sa and (Sa*)u = Sa.
which contradicts the order condition. O

PROPOSITION 5. [n any regular semigroup having the order condition for left
tdeals and the descending chain condition for right ideals, the Williams conjecture

s true.

Proof. A semiconjugacy is a strong shift equivalence by Proposition 1.
By Proposition 2, it will suffice to show that any element a is strong shift
cquivalent to an element lying in an H-class which is a group since for the latter
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shift equivalence implies semiconjugacy. If a, a® generated the same right ideals,
they would be in the same H-class by Lemma 4, and this would be a group.

Suppose the right ideals are different. Let a’ be an inverse of a. Write a = ea,
where e = aa’ is an idempotent in R,. Then ae will be an element strong shift
equivalent to a which lies in the R-class of a?. Its right ideal is the right ideal
of a?, which is a proper subset of the previous right ideal. So we get a to be
strong shift equivalent to an element with smaller right ideal. By the descending
chain condition, this process must terminate, and then a, a? lie in the same
R -class. O

DEFINITION 10. A lifted shift equivalence invariant for a semigroup S consists
of an epimorphism S; to S and an equivalence relation E on S; which (1)
contains shift equivalence on Sj, (2) contains the congruence induced by the
epimorphism.

THEOREM 6. FEvery lifted shift equivalence invariant gives an invariant of
strong shift equivalence on a semigroup S and the set of all lifted shift equiva-
lence invariants describe strong shift equivalence in S uniquely. The Williams
conjecture holds for free semigroups.

Proof. Let v be a lifted shift equivalence invariant, for homomorphism
h: S, — S.In S, let a, b be one step strong shift equivalent. Then a = rs,
b= sr. Then S; choose r;, s; mapping to r, s let a3 =151, by = s1r1. Then
in v, ay is equivalent to b;, hence a is equivalent to b in the induced relation.
By transitivity, if a, b are strong shift equivalent, then they are equivalent in
the induced relation.

Take S; to be a free semigroup with generators corresponding to the elements
of S. We then form the universal lifted shift equivalence invariant, by taking
shift equivalence in S;. In the free semigroup, rs = a™, sr = b" for any r, s,
a, b and positive integer n imply that a™ and b" are cyclic rearrangements
of one another (7, s must be subwords of them). This implies a, b are cyclic
rearrangements of one another.

So in S;, the Williams conjecture is true. So the smallest equivalence relation
generated by shift equivalence in S; and the congruence for the mapping into
S is contained in strong shift equivalences in S'. O

Example 6. For Boolean matrices, the Boolean trace is a strong shift
equivalence invariant which is not a shift equivalence invariant.

It is obtained in this way from the homomorphism from matrices over Z*
into Boolean matrices, using the equivalence class of the ordinary trace on Z*
under the mapping.
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3. Conclusion

Semigroup theoretic properties are quite relevant to the question of truth of

the Williams conjecture. However, it is known to be true for the semigroup which
is the union of M, (Z), more generally for the union on M, (A), where A is an
algebraic number ring [BH]. which has a more complex type than the above. It
is known to be false over Z* without the primitivity restriction [KR3]. It is also
false for the semiring of Boolean matrices but is true for Boolean matrices of
trace 1 [KR2].
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