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SOLUTION WITH PERIODIC SECOND DERIVATIVE 
OF A CERTAIN THIRD ORDER 

DIFFERENTIAL EQUATION 

JAN ANDRES 

1. There are not so many results concerning the higher kind oscillations 
problems. As far as we know, although the second kind periodic solutions (in 
Minorsky's terminology) have been partly investigated especially by M. Farkas 
[1—3] (see also the references included), the solutions with the periodic second 
derivative (and not necessarily the first) have not yet been studied. 

With respect to this the present note should have been originally devoted to 
the problem inserted in the title for the equation 

(0) x'" + ax" + g(t, x') 4- h(x) = p(t), 

where a is a constant, the functions h(x),p(t)e^](R]) and the function g(t,y)e-
e^](R2) is bounded. But as we will show, the ^-periodicity of the function g(t, y), 
i.e. g(t + 0, x'(t + 0)) = g(t,x '(t)), implies the special degenerate type of the 
restoring term h(x), namely h(x) = cx (c-const.), and consequently our problem 
is simplified into the one for 

(1) x'" + ax" + g(t, x') + cx = p(t). 

We call aperiodic solution of the third kind (PS3.K) such a solution x(t) of the 
respective equation that 

(2) x(t) = x0(t) + ^t2 + ^ t , x0(t + 0) = xo(t) 

is satisfied with suitable constants 0, cou o^. Similarly for cox = 0 or ©, = 0 = 
= co2 x(t) will be explicitly called a periodic solution of the second or the first 
kind (PS2.K or PS1.K), respectively. 

Note 1. It is obvious that requiring the existence ofPS3.K of(0) with (2) and 
a bounded g(t,y), we will assume 

239 



(3) g(t +09y)= g(t9 y) = g(t, y + cox), 

(4) h(x + <o(t)) - h(x) = p(t + 0) - p(t), 

wAere co(t) = o)x(t + 0/2) + cfy. 

Consequence 1. Taking into account (3), (4), the necessary condition for the 
existence of PS3.K of(0) with cox # 0 is for the function h(x) to be linear and hence 

(5) p(t+0)~p(t) + at + p9 

where a = ccox, (3 = a#/2 + ccy2. 

Indeed, from (4) it follows for any fixed t0e R1 that 

h(x + <y(t0)) - h(x) = p(/0 + 0) - p(t0)... const. 

6h(x + co(t0)) dh(x) 
or = , 

dx dx 
which implies that 

dh(x) . , X , 
—^-^ = c or h(x) ~ ex + d 

dx 
with suitable constants c, d. 

Note 2. /wsf in t/ze same way there can be verified the necessary condition for 
the existence ofPS2.K cf(0) under a>: = a)-, and 

(3') s ( t+0 ,y )=g ( ' ,y ) , 

namely h(x) = ex + h0(x), vv/jere /z0(x + a>) = A0(x). 

Consequence 2. Taking into account (3') and f/*e monotone function h(x)9 the 
necessary condition for the existence cfPS2.K of(0) is for the function h(x) to be 
linear and hence 

(5') p(t+ 0)=p(t) + cco. 

Consequence 3. The problem of the existence of PS2.K of(l) with (5') is 
equivalent to the one ofPSl.K of the equation 

Oo) *'" + *x" + go(t, *') + ex = p0(t), 

vvAere 
£o(',y) = g(t,y + (o/O) andp0(t + 0) = p0(t). 

Althoug we have got already some earlier results (cf. [4], [5]) dealing with the 
existence of PS1.K of (1) or (10), we will improve them in the line with our 
investigation in section 3 as well. 
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2. Consider (I) satisfying (3), (5) with respect to the problem of the existence of 
PS3.K, i.e. x(t) with (2), resp. 

(2') x(t + 0) s x(t) + cox(t + 0/2) + o^ 

or for /i = 1 and k > 1... a fixed real: 

(2J 
x(fi0) - x(0) - //*(//<», 0/2 + a^), 
x'(M0) ~ x'(0) = iřto,, 
x"(M0)~x"(O) = O. 

Solving the problem (1) n (2,), we employ modified Poincares (or Levinson's, 
resp. T-) operator: 

TÄ): 
(x(fi0; X0) - x(0) = itQta^O/2 + a>2),x'(p0;Xo) - x'(0) - ^<o,, 

x"(n0,Xo) - x"(Q){n0)-' for /ie(0,1>, 
(x'(0),x"(0), -ax"(0) - g(0, x'(0)) - cx(0) + p(0)) for /. = 0, 

where x(t; X0) = jc(t; JC0, JC0, X%) = x(t; x(0), x'(0), x"(0)) is the solution x(t) of (1) 
satisfying Cauchy's initial values: 

^ ( 0 ) = xj? j = 0,1,2. 

It is clear that the problem (1) n (2X) is sollvable if and only if TX(X0) = (0, 0, 
O): = 0. 

Lemma 1. The problem (\)n(2x) is solvable provided all solutions of(\)n (2^ 
are a priori bounded, uniformly with respect to //e(0,l), when c # 0. 

Proof. We will proceed here by a technique similar to that developed in 
[6]. The employed degree arguments can be found, e.g., in [7]. 

If the following relation is satisfied for A^ecl /\/, where / c: R3 is an open set 
symmetrical with respect to the origin 0: 

(6) W#0, 
uniformly with respect to //e (0,1), then evidently instead of TX(X0) # 0 we can 
require 

(7) T0(X0)*0, 

or, resp., since the topological degree d[T0(X0) — T0(— X0), cl/,0] is for 
X0eclI\Ialways different from zero, it is enough to require besides (6) instead 
of (7) only that 

T0(X0) - (1 - v)25(- X0) # 0 ve(0, 1), 

resp. for |(p(0)—g(0,0))/c| # |JC0| > R... a great enough number even only 
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p(0) - g(0,0) - cx0 ^ p(0) - g(0,0) + cx0 

\p(0) - #(0,0) - cx0| |p(0) - g(0,0) + cx0| 

which is certainly trivially fulfilled. 
Since (6) may, however, be substituted for a suitable I under the condition 

of a priori boundedness of all solutions of (1) n (2^), uniformly with respect to 
|/e(0, 1), the proof is complete. 
Denoting 

/ x for |x | < R 
(8) x*: = 

\i?sgnx f o r | x | > i ? , 

(9) 

we can give 

G: = max |g(t,y)|, P\ = max |p(t)|, 
/e<O,0> te<O,0> 

Lemma 2. All solutions of (\)n(2^ are a priori bounded, uniformly with 
respect to fie(0,1), provided 

no) o*ic i<ir 3 . 
P r o o f Let x(t) be a fixed solution of 

(1 *) x'" + ax" + g(t, x') + cx* = p(t) 

satisfying (2^ for some //e(0,1). 
Substituting x(t) into (1*) and multiplying (1*) by x"'(t) we obtain after 

integration the identity 

x'"2(t)dt = (p(t) - g(t, x'(t)) + cx*(t))x'"(t)dt 
o Jo 

and from it by means of the Schwarz inequality and (8), (9) the relation 
»/i0 

(H) 

»ЏV 

«)dr <.\0\(P+G + \cR\Y 

Since such a point tx e <0, 6} surely exists that 

l*"(0l < li 
\Jt, 

+ \ \x'"(s)\ds + Víěí((^(0dt) 

holds, from (11) it follows that 

(12) \x"(t)\ < |0|(B + G + \cR\) + \oJ0i: = Da(R). 
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Sii ilarly there certainly holds the inequality 

(13) max |x'(t)| < \co,\ + 1 /̂01 + \0D2(R)\: = DX(R). 
te<0,ff> 

At last, after integration (1*), we obtain for |x(t)| > /?, > R with respect to (2^), 
(8) — (10) the inequality 

\x*(t)\dt\<\na(0x\ + \Lie(P + G)\, 
o 

leading for Rx > (\acox\ + \G\(P + G))/\cQ: = R2 

to a contradiction. 
This time 

min |x(t)| < R 
fe<O,0> 

and with respect to (11) — (13) also 

max |x(t)| <R2 + \9D{(R)\ <R + 2|6>^| + H + \6\3(P + G + \cR\): = 
/e<0,^> 

: = R3 + R4(R5 + \cR\) 

is valid, which implies for |c| < R4
]: = |0|~3, i.e. (10), (for more detail see, e.g., 

[8]) the existence of such a positive constant e that 

(14) max |x(t)| <D0: = R> (R3 + R4R5)/e 
te<O,0> 

is satisfied. Hence from (12) — (14) there follows the existence of such a constant 
D: = 3max(Z)0, Z>,, Z>2), uniformly with respect to //e(0,1), that 

max (\x(t)\ + \x'(t)\ + \x"(t)\) <D. 
'e<0,»> 

Q. e. d. 

As a direct consequence of the preceding two lemmas we can give the following 
principal result. 

Theorem 1. The equation (1) admits under (3), (5) and (10) a periodic solution 
of the third kind. 

3. Since PS2.K or PS1.K is evidently a special case of PS3.K, Theorem 1 may 
certainly be extended to the above types of solutions; nevertheless, condition 
(10) should not be too restrictive, as it can be practically omitted like in the 
following 
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Theorem 2. The equation (1) possesses under (3'), (5'), resp. (3'), and 
p(t + 6) = p(t) aperiodic solution of the second kind, resp. the first kind, provided 
c # 0 on/y. 

Proof. Since (11) can be obviously rewritten here for R = oo and a fixed 
PSl.Kx( t)a8 

»/i0 

í x'"\t)át 
IJo 

<lv+(?), 
the relations (12) — (14) are satisfied without any modification, but indepen­
dently of R in (12), (13). Hence all the foregoing arguments hold for any c -̂  0 
without any loss of generality and therefore the assertion of our theorem follows 
directly from Lemma 1, Lemma 2 and Consequence 3. This completes the proof. 

4. Example . The equation 

x"' + ax" - Aarctgx' + ex = p(t) + (1 - A) sin (2fl%7a>,) 

has for c # = A according to Theorem 1 and Theorem 2 PS3.K and PS2.K or 
PS1.K assuming only (5) together with \c\ < |0|"3 and (5') or p(t + 6) = p(t), 
respectively; while for c = 0, A = 1 and/?(t + 0) = p(t) it admits simple continua 
of PS1.K or PS2.K with respect to Consequence 3 and the assertion from [9]. 
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РЕШЕНИЕ С ПЕРИОДИЧЕСКОЙ ВТОРОЙ ПРОИЗВОДНОЙ ОДНОГО 
ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ТРЕТЬЕГО ПОРЯДКА 

^ап Апс1ге$ 

Резюме 

В работе даются достаточные условия существования периодических решений тре­
тьего рода, т.е. решений, вторая призводная которых периодична, уравнения (1) на ос­
новании использования теории топологической степени отображения. 

Эта задача решаема, если коэфициент с ф 0 из (1) в третьей степени достаточно мал в 
сравнении с ^-периодом второй призводной решения. 

Показывается тоже, что для любого с Ф 0 существуют периодические траектории второго 
и первого родов при экстремально слабых условиях. 
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