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SOLUTION WITH PERIODIC SECOND DERIVATIVE
OF A CERTAIN THIRD ORDER
DIFFERENTIAL EQUATION

JAN ANDRES

1. There are not so many results concerning the higher kind oscillations
problems. As far as we know, although the second kind periodic solutions (in
Minorsky’s terminology) have been partly investigated especially by M. Farkas
[1—3] (see also the references included), the solutions with the periodic second
derivative (and not necessarily the first) have not yet been studied.

With respect to this the present note should have been originally devoted to
the problem inserted in the title for the equation

) x" 4+ ax" + g(t,x") + h(x) = p(1),

where a is a constant, the functions A(x), p(t) e ¢'(R') and the function g(z, y) -
€ %'(R? is bounded. But as we will show, the -periodicity of the function g(z, y),
ie. gt + 6, x'(t + 0)) = g(t,x'(¢)), implies the special degenerate type of the
restoring term A(x), namely 4(x) = cx (c-const.), and consequently our problem
is simplified into the one for

) x" +ax" + g, x") + cx = p(1).
We call a periodic solution of the third kind (PS3.K) such a solution x(¢) of the

respective equation that

) x(2) = xo(f) + ;’—"9 ?+ 2&9 t,  x(t+ O =x,(0)

is satisfied with suitable constants 6, ®,, ®,. Similarly for o, =0 or o, =0 =

= w, x(#) will be explicitly called a periodic solution of the second or the first
kind (PS2.K or PS1.K), respectively.

Note 1. It is obvious that requiring the existence of PS3.K of (0) with (2) and
a bounded g(t, y), we will assume
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(3 g+ 6,y)=g(t,y) =gty + w),
@) h(x + a(1)) — h(x) = p(t + 6) — p(1),
where o(t) = w,(t + 6/2) + w,.

Consequence 1. Taking into account (3), (4), the necessary condition for the
existence of PS3.K of (0) with @, # 0 is for the function h(x) to be linear and hence

5) p(t+ 6) = p(t) + at + B,
where a=cw, f=a2+ cw,.
Indeed, from (4) it follows for any fixed 7, R' that
h(x + o(ty)) — h(x) = p(ty + 6) — p(t,) ... const.

Oh(x + () _ dh(x)
Qx T odx

or

which implies that

dhx) _

or h(x)=cx+d
dx
with suitable constants ¢, d.

Note 2. Just in the same way there can be verified the necessary condition for
the existence of PS2.K of (0) under w: = o, and

(39 glt+0,y)=g(y),
namely h(x) = cx + hy(x), where hy(x + @) = hy(x).

Consequence 2. Taking into account (3') and the monotone function h(x), the
necessary condition for the existence of PS2.K of (0) is for the function h(x) to be
linear and hence

(5) p(t+ 0) =p(t) + co.

Consequence 3. The problem of the existence of PS2.K of (1) with (5) is
equivalent to the one of PS1.K of the equation

(1o) X" + ax" + gy(1,x’) + cx = py(1),

where
8o(t,¥) = g(t,y + @/6) and p,(t + O) = p,(1).

Althoug we have got already some earlier results (cf..[4], [5]) dealing with the
existence of PS1.K of (1) or (1,), we will improve them in the line with our
investigation in section 3 as well.
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2. Consider (1) satisfying (3), (5) with respect to the problem of the existence of
PS3.K, i.e. x(¢) with (2), resp.

) x(t+ 0) = x(t) + ot + 6/2) + o,

or for y=1and k > 1...a fixed real:

x(u) — x(0) — p(uw,6/2 + w,),
x'(ué) - x'(0) = fo,,
x"(uf) — x"(0)=0.

Solving the problem (1) N (2,), we employ modified Poincaré’s (or Levinson’s,
resp. T-) operator:

2)

(x(u; Xo) — x(0) = p(ue,0)2 + @y), x'(u6; Xp) — x'(0) — pay,,
X! (16; Xo) — x"(0)(u)~' for pe (0,1,
(x'(0), x"(0), —ax"(0) — g(0,x"(0)) — cx(0) + p(0)) for =0,

where x(1; X,) = x(t; xo, X0, X0) = x(; x(0), x"(0), x"(0)) is the solution x(z) of (1)
satisfying Cauchy’s initial values:

xX20)=x9 j=0,1,2.
It is clear that the problem (1) N (2)) is sollvable if and only if T;(X,) = (0, 0,
0):=0.

Lemma 1. The problem (1) N (2,) is solvable provided all solutions of (1) N (2,)
are a priori bounded, uniformly with respect to ue(0,1), when ¢ # 0.

Proof. We will proceed here by a technique similar to that developed in
[6]. The employed degree arguments can be found, e.g., in [7].

If the following relation is satisfied for X,ecl I\ I, where I = R*is an open set
symmetrical with respect to the origin 0:

(6) ‘ T.(Xo) # 0,

uniformly with respect to ge (0,1), then evidently instead of T;(X,) # 0 we can
require

Q) Iy(Xo) # 0,

or, resp., since the topological degree d[T;(X,) — To(— X,), c11,0] is for
X,ecl I\ I always different from zero, it is enough to require besides (6) instead
of (7) only that

LX) — (1 = WT(-X)#0  ve(0,1),
resp. for |(p(0)—g(0,0))/c| # |x,| > R... a great enough number even only
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p©) —2(0,0) = cx, , p(0) —£(0,0) + ex,
Ip(0) — £(0,0) — x|~ |p(0) — g(0,0) + ¢xol

which is certainly trivially fulfilled.

Since (6) may, however, be substituted for a suitable /under the condition
of a priori boundedness of all solutions of (1) N (2,), uniformly with respect to
ne(0, 1), the proof is complete.

Denoting
/X for |x| < R
8) x*: =
N\ Rsgnx for |x| > R,
) G:= max |g(t,y)], P:= max |p(7)],
1€40,6) te(0,8)
ye0, @)
we can give

Lemma 2. All solutions of (1) (2,) are a priori bounded, uniformly with
respect to ue(0, 1), provided

(10) 0#|c <63,
Proof. Let x(¢) be a fixed solution of
(1*) x" 4+ ax" + g(t,x") + cx* = p()

satisfying (2,) for some ue (0, 1).
Substituting x(¢) into (1*) and multiplying (1*) by x”(f) we obtain after
integration the identity

uo o
j X"t dt = J (@) — g(t, X' () + ex* (X" (1) dt

and from it by means of the Schwarz inequality and (8), (9) the relation

ué
J x"}(r)dt
0

Since such a point ¢, € <0, 8> surely exists that

<P+ ([ 0w
holds, from (11) it follows that

(12) Ix"(0)] < |8(P + G + |cR]) + |@,/Q: = D:(R).
242
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Sii .ilarly there certainly holds the inequality
(13) max [x' ()] < o] + |/ +0D(R): = Dy(R).

At last, after integration (1*), we obtain for |x(?)] > R, > R with respect to (2,),
(8) — (10) the inequality

uo
|ucOR,| < ICJ‘ [ x*(0)|de| < |paoy| + |ub(P + G)|,
- 0

leading for R, > (law,| + | (P + G))/|cd: = R,
to a contradiction.
This time

min [x(f)] < R
te<0, 6)
and with respect to (11) — (13) also

max [x(H)] < R, + |6D,(R)| < R + 2|0w,| + || + |#P(P + G + |cR]): =
i = Ry + Ry(R;s + |cR])
is valid, which implies for |c| < R;': = |§73, i.e. (10), (for more detail see, e.g.,
[8]) the existence of such a positive constant ¢ that

(14) max |x()] < Dyt = R > (R; + RRs)/e

is satisfied. Hence from (12) — (14) there follows the existence of such a constant
D: = 3max(D,, D,, D,), uniformly with respect to ue(0, 1), that

max (x| + Ix'() + Ix"()) < D.
1e<0.6

Q.e. d.

As a direct consequence of the preceding two lemmas we can give the following
principal result.

Theorem 1. The equation (1) admits under (3), (5) and (10) a periodic solution
of the third kind.

3. Since PS2.K or PS1.K is evidently a special case of PS3.K, Theorem 1 may
certainly be extended to the above types of solutions; nevertheless, condition
(10) should not be too restrictive, as it can be practically omitted like in the
following
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Theorem 2. The equation (1) possesses under (3'), (5), resp. (3"), and
p(t + 6) = p(¢) a periodic solution of the second kind, resp. the first kind, provided
¢ # 0 only.

Proof. Since (11) can be obviously rewritten here for R = oo and a fixed
PS1.K x(?) as

<|0(P+G),

ué
I xm2 ( t) d t
0

the relations (12) — (14) are satisfied without any modification, but indepen-
dently of R in (12), (13). Hence all the foregoing arguments hold for any ¢ # 0
without any loss of generality and therefore the assertion of our theorem follows
directly from Lemma 1, Lemma 2 and Consequence 3. This completes the proof.

4. Example. The equation
x" 4+ ax" — Aarctgx’ + cx = p(?) + (1 — A)sin2nx’/w,)

has for ¢ # = A according to Theorem 1 and Theorem 2 PS3.K and PS2.K or
PS1.K assuming only (5) together with |c| < |6~ and (5’) or p(t + 6) = p(¢),
respectively; while for ¢ = 0, A = 1 and p(¢ + 6) = p(¢) it admits simple continua
of PS1.K or PS2.K with respect to Consequence 3 and the assertion from [9].
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PEHIEHUE C MEPUOJUYECKOV BTOPOYI ITPOU3BOHON OTHOI'O
ANOOEPEHIIMAJIBHOIO YPABHEHUA TPETBEI'O INOPAJKA

Jan Andres

Pe3omMe

B paGote narorcs JOCTaTOYHBIE YCIOBHS CYIIECTBOBAHMS NEPHOAMYECKUX peilicHHE Tpe-
Thero poja, T.€. pellicHuii, BTopas NMpU3BOAHAs KOTOPBIX NepuoanyHa, ypasHenus (1) Ha oc-
HOBaHHMH KCTOJIL30BAHUSA TEOPUHM TOMOJIOTNYECKOM CTENEHH OTOOPaXKEeHHS.

OTta 3ajaya peiaema, cciaM kodguuueHT ¢ # 0 u3 (1) B TpeTheil cTeneHu NOCTATOYHO Maj B
CpaBHEHHMHM € 6-IepHoAOM BTOPOIi NPHU3BOAHON pEIEHHUS.

IToka3biBaeTcs TOXe, 4TO AJis ;MOo60ro ¢ # 0 CynecTByIOT NepHOJUYECKHE TPAEKTOPHH BTOPOTO
H TNEPBOro POJOB NMPH 3KCTPEMAJIbHO CNaObIX YCIOBHSX.

245



		webmaster@dml.cz
	2012-08-01T03:43:45+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




