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PRODUCT OF DOMINATED VECTOR MEASURES

-

MILOSLAV DUCHON

This paper is concerned with vector measures whose values lie in a Banach
algebra and we deal with some properties of such measures in product spaces. In [5]
and [11] the problem of a product of vector measures is investigated using no
vector integral ; it is shown there that a sufficient condition for the existence of the
bilinear product of vector measures is that one of the factor measures be dominated
[6, 11] with respect to the range space of the other measure. A natural question
arises: If both vector measures are dominated, is their product also dominated ?
Using the bilinear vector integral of Bartle [1] we shall show that if both vector
measures take their values in the same Banach algebra and if they are both
dominated, then their product — as a vector measure with values in the same
Banach algebra — is also dominated. Theorems of the Fubini-type are also
established.

1. Let X be a Banach algebra. Let (S, &) and (T, ) be measurable spaces (¥
and J being o-algebras) and let m: ¥— X and n: 7— X be (o-additive) vector
measures. If p: ¥— X is a finitely additive set function we define the semivariation
of p with respect to X to be the set function

IpllxA)=sup [Sxpa)], aes,

where the sup is taken over all finite disjoint families A; with A, in & and LrJA,- =A

i=1
and all x;e X with ||x]|=1, i=1, ..., r. ||p|lx is a non-negative, monotone and
subadditive set function [1, 3].
Let p: $— X be additive. We say that p is dominated with respect to X if there
exists a non-negative finite measure 4 such that

Jim |lpllx(A)=0, Ae.

The following lemma is important [6, Th. 2 or 11, Lemma 5],

Lemma 1. Let m: $— X be dominated. Then || x(S) < .
Also the following lemma will be useful [6, Th. 5].
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Lemma 2. If m: ¥— X is dominated, then there exists a non-negative finite
measure u on & such that

lm||x(A)—0 ifandonlyif u(A)—0.

2. We shall now consider the product of vector measures. Let ¥ 6 :J denote the
algebra generated by the measurable rectangles of S X T, i.e. the algebra generated
by sets of the form A X B, Ae ¥, Be J. Let ¥X J be the o-algebra generated by
FO6T.If m: - X and n: — X are finitely additive set functions, the product
m X n with respect to X is the set function defined on measurable rectangles A X B
by the formula

mXn(AXB)=m(A)n(B).

If De &6 7, then D can be represented in the form D = U A, X B;, where A, € ¥,
- T o=t :
B; € J and A, X B; are pairwise disjoint, and m X n can be extended to ¥ 6 J by
setting m X n(D)= Y m(A,)n(B,). This definition does not depend upon the
i=1

representation D and the extension (still denoted by m X n) is finitely additive on
& 6 J. However, m X n may fail to be countably additive on ¥ & J even though
both m and n are countably additive ([10], [11]). A sufficient condition for the
countably additivity of m X n is as follows.

Theorem 3. Let m: $— X and n: I — X be vector measures with n dominated
with respect to X. Then the product m X n (with respect to X) is countably additive
on ¥ 6 J and has a unique countably additive extension defined on ¥ x J (still
denoted by m X n). "

The proof of Theorem 3 is given in [11, Th. 6, cf. also 5, Th. 2].

3. In the following we shall use the general bilinear vector integral in the sense of
Bartle [1]. We shall obtain an explicit expression for the product analogous to the
case of scalar measures.

For every G € $X I define the function g°: T— X by the formula

g°(=m(G"). (G'={s:(s,)eG}).

Denote by ¢, the characteristic function of the set F. If G=E X Fe ¥X 7, then
.qEXF:: m(E)ce.

If n is dominated with respect to X, then we have ||7||x(T)< by Lemma 1. In
such a case the function GE*F is n-simple [1, p. 339] and there holds

J’ g=¥qn =m(E)n(F)=m X n(E X F),

294



where we take the bilinear integral in the sense of Bartle [1]. Further we have

= ()=m(G") = J; cexd(s, t) dm(s),

. and mXn(EXF)= J; {L Cexis, t) dm(s)} dn(r) =J; g dn.

If G and H are disjoint sets in X 7, then g°*"=g°+g" and if G, is
a monotone sequence of the sets in X J and G=lim G,, then from the
properties of the vector measure m it follows that g~ converges to g°. Observe
that since the measure m is bounded on S, for every G € ¥ X 7 the function g€ is
bounded on T.

If G= U E, X F; is a disjoint representation of G with E; X F, € ¥X 7, then
. i=1

g°()=m(G)= [ cols, 0 dm(s),

and the function g€ is n-simple [1, p. 339] and we have

m X n(G)=gm(E)n(E) = L {L cs(s, t) dm(s)} dn(r)= '

= j g°(2) dn(s).

Let R denote the class of all sets Ce X J such that g€ is defined on T, is
n-measurable, n-integrable [1, p. 347] and there holds

an(C)=I gdn.
T

The class & contains the algebra ¥ 6 7, ¥ 6 I <= R. If C, is a monotone sequence

of sets from &, then | JC €. For g% is a sequence of n-measurable and
i=1

n-integrable functions converging to g€, where C=|J G, hence g€ is n-measura-

i=1
ble [1, p. 347]. For all te T we have ||gS(?)||=M<x, r=1,2, ..., thus g€ is
n-integrable [1, Th. 3]; according to bounded convergence theorem [1, p. 345] we
have

[ 5@ an=tim [ 4%() anco.

If Ce R, then SX T— Ce®R, since g7 = g**"— g°. By lemma on monotone
~ classes we have =X J. We have thus proved the following.
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Theorem 4. Let m: ¥— X and n: 7 — X be vector measures with n dominated
with respect to X. For every G € ¥ X J the function g¢

4°()=m(G')= [ cols. 1) dm(s)

is defined on T, n-measurable, n-integrable and we have

mXn(G) =f m(G') dn(t),
T
ie.
mxn(@)= [ [ cats, 1y dmis)} an(o).
T N
For simplicity we shall take X to be commutative. In such a case we have the
following result.

Theorem 5. Let m: ¥— X and n: 9 — X be vector measures both dominated
with respect to X. Then for every Ge ¥ X J the functions

ho(9)=n(G) = | cals, 1) dn(o),

g°()=m(G')= j cols. 1) dm(s)

are defined on the spaces S and T, respectively, m-measurable and m-integrable,
n-measurable and n-integrable, respectively, and we have

mxn(G)=f n(G.) dm(s)=J m(G') dn(?).
i.e.

mx n(G)=J; {L co(s, t; dn(t)} dm(s)=

- L U co(s, 1) dm(s)} dn().

The main result of this paper is contained in the next theorem. It asserts that if
both vector measures m and n are dominated with respect to X, then their product
m X n is also dominated (and only in this case) with respect to X.

Theorem 6. Let m: ¥— X and n: 9 — X be vector measures both dominated
with respect to X by u and v, respectively. Then the product mxn: ¥xX J— X is
dominated with respect to X by u X v.

Proof. Let e and d be such two positive numbers that u(E)<d, E € & implies
lm||x(E)<e and v(F)<d, Fe J implies ||n||x(F)<e. We shall show that
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uxv(G)<qg, Ge¥FxdT

implies
lm x n||x(G)=e(||mlx(S) + ||n||x(T))-
Put
A={s:v(G,)<d,seS).
Then

d’>uxv(G) =j v(G,) du(s)éj v(G,) du(s)=
_ Zdu(S-A),
hence u(S—A)<d and thus ||m||x(§-A)<e.

Letx,eX,i=1,...,r, ||lx||=1, be arbitrary. Take arbitrary partition G=J G.,
i=1
G, e ¥X J with G; disjoint. For every s €S we have by Lemma 1

’Zx,-n(G,«)s =|n|l (G = Inllx(T) <.

The function

s—»ix,-n((Gi),)

i=1

is m-measurable by Theorem 4 and since it is bounded on S, it is m-integrable [1,
Th. 3] and we have

L [ix’” ((G,),)] dm(s)

i=1

r

=sup
sSEA

xn((G))|-Iml(4)=

=[Imllx(A) sup [Inll(G) = lmlIx(S)e,
seA

since for se A we have v(G,)<d and thus ||ﬂ||x(G,)<e. Further

| San(G.) ames)

—-A i=1

= sup
seS—A

i=1

Sxn((G),)|Imlx(s - 4)=

<<

Sup I7llx(G)lImllx(S = A)=lln|l(T)e.

Now using Theorem 4 we have

=

i=1

|Sxm (G| = [ [, n(G) ames)
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r

= <

+ xn((G,),dm(s)

f [Zx.n((G.-)x)] dm(s) 2
ée”m”x(S)+ e”””x(T)-

Since G; are arbitrary, it follows that
llm x nllx(G)=e(llmll«($) + l|nl<(T)).

4. In the following Lemma 7 and Theorem 8 we shall suppose that
[lm X n||x-zero sets and u X v-zero sets coincide. We shall use the following fact.

Lemma 7. Let Z be an ||m X n||x-zero set in ¥ X T (or equivalently a u X v-zero
set). Then there exists an ||m||x-zero set (a u-zero set) M such that for all s ¢ M we
have ||n||x(Z,)=0 (or equivalently v(Z,)=0).

This result is well known for scalar measures and since for the dominated
measure m (n) we may suppose (Lemma 2) that ||m]|x-zero sets and u-zero sets
(Iln]|x-zero sets and v-zero sets) coincide, our lemma holds for dominated
measures.

Let m and n be dominated and suppose that f is an m X n-integrable function on
S x T and let g differ from f only on an ||m X n||x-zero set, say Z. By Lemma 7
there exists an ||m||x-zero set M in ¥ such that for all s ¢ M the maps £, and g,
differ only on an ||n||x-zero set. Thus f, is n-integrable if and only if g, is
n-integrable and if this is the case, the integrals with respect to n will be equal. We
shall use this fact.

We shall prove now the Fubini-type theorem for bounded functions integrable in
the sense of Bartle [1].

Theorem 8. Let m: ¥— X and n: 9 — X be dominated vector measures. Let f be
a bounded m X n-measurable (hence m X n-integrable) function on S X T to X.
Then for ||m||x-almost all s € S, the map f, is n-integrable, the map given by

s—>j f.dm

for ||m||x-almost all s (and defined arbitrarily for other s) is m-integrable and we
have

Proof. We can find a bounded sequence f, of m X n-simple functions which
converges to f [|m X n||x-almost everywhere on S X T and for every G € ¥ X 7 it is
true

demxn—f f,dmXxn—-0, roow,
G G

in the norm of X [1].
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We let Z be an ||m X n||x-zero set in & x 7 such that £, converges pointwise of f
outside Z. We let M be an || m||x-zero set in ¥ such that for all s ¢ M we have

' ”””x(Zs)=O- |

If s € M, it follows that f, , converges pointwise to f, on the complement of Z,. For
every s€S, f, . is an n-simple function on T, and for x € X, the formula

(xCaxs)s = XCa(S)Cs

shows that for each r, the map
(738 S d P90

is an m-simple function on § with values in the space of n-simple functions on 7.
If s é M, then f.,(¢) converges to f,(¢) for ||n||x-almost all te T. We conclude
that f, is n-measurable and n-integrable and

f 'f,‘,dn converges to J f.dn
F i : F )

for all s¢M and all Fe J [1, p. 345].
Finally we note that the map

h,:s—»f f...dn
T . .

is an m-simple function on § with values in X.
For all s é M, the sequence 4, converges to the map #,

hs)= [ fan,

hence # is m-measurable [1, p. 346] and m-integrable [1, Th. 3]. Further, [1,
Th. 7],

L L f...dn dm(s) converges to. L L f.dn dm(s).

Since f, is an m X n-simple function and by Theorem 4 we have

J; J;fr,,dn dm(s?=LxTﬁden,

our result follows. - _

We can prove another Fubini-type theorem. Let m: ¥— X and n: I— X be
vector measures dominated by x and v, respectively. Let f: SX T—X be
a u X v-measurable function, i.e. f is a limit u X v-almost everywhere (hence
|| x n||x-almost everywhere) of a sequence f of uXv-simple (hence

299



m X n-simple) functions. If, moreover, f is bounded, then f is m X n-integrable [1,
Th. 3]. We have then the following.

Theorem 9. Let f: S X T— X be a bounded u X v-measurable function. Then f Is
an m X n-integrable function for m and n dominated. Further, for ||m||x -almost all

s €S, the map f, is n-integrable, the map given by

s—»f f.dn

for ||m||x-almost all s (and defined arbitrarily for other s) is m-integrable and we

have

fmfd'ﬂXn=fs Lﬁdn dm(s).

The proof of this theorem is the same as that of Theorem 8. Note that the
assumption made at the beginning of the section is now unnecessary.

5. Concluding remarks. In the paper [9] there are considered the product,
Fubini-type theorem and convolution for vector measures with finite variation
defined on Borel sets of locally compact Hausdorff spaces. For a compact
semigroup the similar questions are treated in [7, 8]. The paper [2] generalizes the
theorem of Fubini in the context of integration theory presented in the book of
N. Dinculeanu [3]. The Fubini-type theorem for vector measures which are
indefinite Pettis integrals is established in the paper [10].

Another approach to the problem of the product of vector measures and to the
Fubini theorem for operator valued measures is possible in the context of

integration theory developed in the paper [4].
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MPON3BEIEHWE NOMUHHWPOBAHLBIX BEKTOPHBIX MEP
Munocnas {yxoHb
Pesome

Mycts X — anre6pa Banaxa. BekTopHast Mepa m onpeneneHHas Ha 0-anre6pe & co 3HaueHusIMH B X
Ha3bIBaeTCsS JOMUHHUPOBAHON OTHOCHTENBHO X, €CJIM CYLIECTBYET HEOTPHLUATEILHAS KOHEYHasA Mepa U
Ha & Takas, 4TO

JJim {lml(A)=_lim sup [|Z xm(A)[=0, AeZ, '
rae sup 6epeTCﬂ Uil BCEX KOHCYHBIX HEMEPECEKAKUHUXCA CEMENCTB
Ae¥ nu UA=A, xeX, |xl=1, i=1,..,r.

I'naBHbIM Pe3yNbTaTOM CTAThH ABISETCH CIAEAYIOLIasl TeOpeMa.

Teopema. [Tycts m: ¥— X u n: I — X BEKTOpHEIE MEPBI JOMHHHPOBAHHBIE OTHOCHTENBHO X C [4 H
v, cooTBeTcTBeHHO. Torga npom3ssegeHHe

mxnIXT-X

 CyLIeCcTBYyeT H JOMHHHDOBAHO OTHOCHTE/IbHO Xc uxv.

Jloka3aHbl TaKXe HEKOTOpble 0600L1eHNs TeopeMbl PYOGHHH NN BEKTOPHBIX (PYHKIHMIA H BEKTOPHBIX
Mep.
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