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- ON THE INTERSECTION GRAPH
OF A COMMUTATIVE DISTRIBUIIVE GROUPOID

BEDRICH PQNDELICEK

Let F be some family of sets. By the intersection graph of F we mean the
undirected graph whose set of vertices is F and in which two distinct vertices are
joined by an edge if and only if they have a non-empty intersection. Some authors
studied the case when F is the family of all proper subalgebras of a given algebra.
This study was begun by J. Bosak [1]. It is known for example that the intersection
graph of every semigroup (commutative semigroup) with more than two (three)
elements is connected and its diameter does not exceed three (two). See [2] and
31 ,

The purpose of this paper is to discuss the connectedness of the intersection
graph of a commutative distributive groupoid.

A groupoid P is called
— commutative if ab =ba for all a, beP;

— distributive if a.bc =ab .ac and bc.a=ba.ca for all a, b, ceP;
— idempotent if aa =a for every a e P and
— abelian if ab.cd =ac.bd for all a, b, c, d eP.

The intersection graph of the family of all proper subgroupoids of a groupoid P is
denoted by G(P). If G(P) is a connected graph, then by 6(P) we denote its
diameter.

By the symbol [A ], where A is a non-empty subset of a groupoid P, we denote
a subgroupod of P generated by A. The set of all idempotents of a groupoid P is
denoted by E(P).

Theorem 1. The graph G(P) of a distributive groupoid P is non-empty if and
only if card P=2. Moreover,

1. 6(P)=3 if and only if for any two idempotents a, b of P with [a, b]= P there
exists ¢ € P such that

[a, c]#P#][c, b].

2. 8(P)=2 if and only if [a, b]# P for any two iden;potents a,b of P.
3. 6(P)=1 if and only if P contains just one idempotent.
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4. 6(P)=0 if and only if P is isomorphic to the semigroup with zero multiplica-
tion and containing just two elements.

Proof. Let P be a distributive groupoid. It follows from Proposition 1.1 of [4]
that the set E(P) of all idempotents of P is a subgroupoid of P and

)] a.bc, ab.ceE(P) foral a,b,ceP.

It is clear that G(P) is empty if and only if P=E(P) and card P=1.

Now we shall suppose that card P =2.

1. Suppose that 6(P)=3. Let a, be E(P) and [a, b]=P. Then {a}, {b} are
proper subgroupoids of P and so there exist proper subgroupoids A, B of P such
thatae A, b € B and AnB+##. We can choose ¢ € A nB. Then we have [a, c]= A
and [c, b]=B. Hence [a, c]#P#|c, b].

Now, we assume that for any a, b of E(P) with [a, b] = P there exists ¢ € P such
that [a, c]# P#|c, b]. Let A, B be two proper subgroupoids of P. Then we can
choose u € A and v € B. It follows from (1) that a=uu.ue€ A and b=vv.veB
are idemponts of P. If [a, b]# P, then we put C=D =][a, b]. If [a, b] =P, then
there exists ¢ € P such that C=[a, c]# P and D =[c, b]# P. This gives in both
cases ANC#@, CnD+#@, DNnB+#0 and so 6(P)=3.

2. This can bes proved analogously to the proof in 1.

3. Suppose that 6(P)=1. Let a, b €e E(P). Then {a}, {b} are proper sub-
groupoids of P and so {a}n{b}#@. Hence we have a =b.

Let card E(P)=1.If A, B are proper subgroupoids of P, then according to (1),
we have xx.x = yy.yforallx e A andy € B. Hence AnB# (. Thus §(P)=1.

4. This follows from (1).

Corollary 1. If a distributive groupoid P is uncountable, then its graph G(P) is
connected and 6(P)=2.
Proof. It is clear that [a, b]# P for all a, b € P.

Corollary 2. If a distributive groupoid P is not idempotent, then its graph G(P)
is connected and 6 (P)=2.

Proof. Evidently [a, b]c E(P) for all a, b € E(P).

Now we shall study commutative distributive groupoids. For the sake of brevity,
the commutative idempotent abelian groupoids will be called CIA-groupoids. It is
known that every CIA-groupoid is distributive.

A commutative semigroup S(+) is called uniquely 2-divisible if the mapping
@(x)=x+x is a permutation of S. In this case, the inverse permutation ¢ ' is

denoted by ¢ '(x) =%x. Throughout 2 will denote the set of all numbers of the

form 27"m, where m, n are integers and m =1, n =0. Denote 2™"mx = @~ "(mx)
for every x € S, where 1x = x and mx = (m — 1)x + x for m =2. It is easy to see that
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) a(x+y)=ax+ay, (a+B)x=ax+px

forall a, Be2 and x, y €S.
In [4] the following has been proved:

Lemmal. A groupoid P(.) is a CIA-groupoid if and only if there exists
a uniquely 2-divisible commutative semigroup S(+) such that PcS and xy =

%(x+y) for all x y € P.

€ will denote throughout the set of all integers. Let m be an odd positive integer.
By €..(+) we denote a cyclic group of the order m generated by e. It is clear that
%.,.(+) is uniquely 2-divisible. According to Lemma 1, we obtain that €,.(.) is

a CIA-groupoid, where xy =% (x+y) for all x, y€%,. For a, ue%, we put

G.(a, u)={a+ku;keb}.

It is clear that A =¥€..(a, u) for some a, u € €, if and only if A is a class of some
congruence on the group €,.(+).

Lemma 2. Let A be a subgroupoid of 6,.(.). Ifa, b€ A, then 6,.(a, b —a)cA.

Proof. Let a, be A. Put u=>b —a. First, we shall prove the following im-
plication:

If x, x+ueA, then x+2ucA.

Letx,x+ueA.Put #={ne€;n=2and x+nueA}.lItisclear that 2me ¥
and so ¥+ (. We shall show that for any n € 7, where n >2, there exists k € ¥
such that k <n. ‘

If n is odd, then we have %(n+1)<n and x+%(n+1)u=

= (x+u) (x+nu)eA. If n is even, then we have %n<n and x+%nu=

=x(x +nu)eA.

This implies that 2e€ # and so x +2ueA.

By the induction we can prove that a + nu € A for all positive integers n and so
€.(a,b—a)cA.

Lemma 3. A subset A of 6, is a subgroupoid of €,,(.) if and only if A is a class
of some congruence on 6,,(+).

Proof. Let A be a class of some congruence on 46,,(+ ). Then A = %,,.(a, u) for
some a,u€%,. Let x,ye€%6,(a,u). Then x=a+ru and y=a+su for some

r,se%.If r+siseven,thenxy = a +% (r+s)ue<%.(a, u). If r+s is odd, then
xy =a +% (r + s + mue$,.(a, u). Thus A is a subgroupoid of €..(.).
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- Let A be a subgroupoid of €,.(.). Let ¢ be a generator of 6,.(+). By # we
denote the set of all positive integers such that for any n of  there exists x e A
such that x + ne e A. Since A+ @, we have m € ¥ and so ¥#@. Put k =min .
Then there exists ae A such that b=a+ueA, where u=ke. It follows from
Lemma 2 that 6,.(a, u)cA.

Now we shall show that A =%€.(a, it). Let x € A. Since e is a generator of
€..(+), we have x =a + le for some positive integer /. It is well known that there
exist s, r € € such that [ =sk +r and 0=r <k. Then x =a + su + re, where a + su
€ €6.(a, u)cA.If 0<r, then r € ¥, which is a contradiction. Therefore r =0 and
sox=a+su € 6,.(a,u). Consequently A = %,.(a, u).

Lemma 4. Every subgroupoid (factor groupoid) of 6,,(.) is isomorphic to %6, (.)
for some odd positive integer k.

Theorem 2. Let m be an odd integer 3.

1. If mis prime, then the graph G(%..(.)) is composed of m isolated vertices.

2. If m is at least the second power of a prime number p, then the graph
G(%..(.)) has p components whose diameters are equal to two.

3. If m is no power of a prime number, then the graph G(%..(.)) is connected
and 6(%6..(.))=3.

Proof. 1 and 2. This follows from Lemma 3.

3. Let p and q be two different prime numbers such that p |m and q | m. Let x,
y € €... Then 6,.(x, pe) # €. * 6.(y, qe), €.(x, pe) N 6,.(y, ge) ¥ ¥ and so by
Lemma 3 and Theorem 1 we have 8(%,..(.))=3.

It is clear that there exist r, s € € such that rp —sq = 1. Put a =sqe and b =rpe.
It follows from Lemma?2 that ¥,.=%.(a,e)<|[a, b] and so according to
Theorem 1, we have 6(%,.(.)) =3.

Lemma 5. Let P be a commutative distributive groupoid with card P =3. If for
any elements a, b € P there holds the following implication :

3) aP=P=Pb = [a, b]#P,
then 6 (P(=3.

Proof. According to Corollary 2, we can suppose that a commutative distribu-
tive groupoid P is idempotent. Let a,beP and [a, b]=P. It follows from
Proposition 1.5 of [4] that P is a CIA-groupoid. By hypothesis (3) we have the
following possibilities :

Case 1. aP+# P+ Pb. It is clear that xP is a subgroupoid of a distributive groupoid
P for any x € P. Then we have [a, ab]caP# P and [ab, b]=Pb+#P.

Case 2. aP =P+ Pb. Then there exists u € P such that b =au. Any u €|a, b]
can be written in the form u =xx,...x,, where x;€{., a, b}. Put z =bv, where
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v=y,y2...y. and y,=. if x;=., y;=a if x;=b and y,=b if x; =a. According to
Lemma 1 there exists a uniquely 2-divisible commutative semigroup S(+) such

that P S and xy =% (x +y) for all x, y € P. By the induction and by (2) we can

show that u=aa +fb and v =fa + ab, where a, €2 and a+=1. Then we
have b=2"'(1+a)a + 27'fb and z=2""fa + 27'(1+ a)b. Using (2) we obtain
that az=2"%(2+B)a + 27*(1+a)b = 27'Ba + (272(1+a)a + 2726b) + 2 'ab
= 2"8a + 27 + 27'ab = z. If [a,z]=P, then card P=2, which is
a contradiction. Hence [a, z]# P. Evidently [z, b]= Pb+P.

Case 3. aP+# P=Pb. Analogously.

The rest of the proof of Lemma S follows from Theorem 1.

Lemma 6. Let P be a commutative distributive groupoid. If there exist a, b € P
such that aP =P = Pb and P =[a, b], then P is isomorphic to €,(.) for some odd
positive integer m.

Proof. Let P=[a, b] and aP =P = Pb. It follows from Proposition 1.1 of [4]
and from Proposition 1.5 of [4] that P is a CIA-groupoid. By Lemma 1 there exists
a uniquely 2-divisible commutative semigroup S(+) suchthat P(.) is a sub-

groupoid of S(.), where xy =% (x+y)forall x,yeS.

We first show that there exists an odd integer k=3 such that ka =kb. Since
aP =P = Pb, there exist u, v € P such that a =b(b .au) and b = a(a . bv). It follows
from P=[a, b] that a=aa + b, b=ya+¢€b, where a, 3, v, €€2 and a+8
=1=vy+e¢, a<%<ﬁ and s<%<y. Thenn=1+y—a = 1+ —€€2 and so,
by (2), we have na = a+ya—aa = ya+fb = b+pb—eb = nb. This implies
that ka = kb for some odd integer k =3.

Let n be a positive integer such that 2"~ <k <2". Define a mapping f of ¢, into S
by

f(re)=2""ra+27"(2" —r)b,

where r=1, 2, ..., k and e is a generator of the cyclic group 6,(+). It is easy to
show that f is a homomorphism of %.(.) into S(.). )

If we put w=ke and z=(2"—k)e, then f(w)=>b and f(z)=a. Let A be
a subgroupoid of %.(.) generated by w, z. Then f(A) = [a,b]=P and the
restriction g =f/A is a homomorphism of A onto P. This implies that P is
isomorphic to some factor groupoid of A. It follows from Lemma 4 that P is
isomorphic to the groupoid €,.(.) for some odd positive integer m.

Theorem 3. Let P be a commutative distributive groupoid with card P=3. If
P is not isomorphic to the groupoid €6.(.), where m is a power of an odd prime
number, then the graph G(P) is connected and 1=08(P)=3. Moreover,

61



1. If §(P)=3, then P is idempotent and is generated by two elements.

2. If 6(P)=2, then P is not generated by two idempotents and contains two
idempotents at least.

3. If 5(P)=1, then P contains just one idempotent.

The proof follows from Theorem 1, Theorem 2, Lemma 5 and Lemma 6.

Note. A commutative distributive groupoid P with card P=2 is either
a semigroup with the zero multiplication and é (P) = 0 or a semilattice and its graph
G(P) is composed of two isolated vertices.
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O TPA®E NEPECEYEHUU KOMMYTATHBHOI'O
IVUCTPUBYTHUBHOI'O I'PYIIIIONUIA

Benpxux I[ToHgennuek
Pe3iome

KoMMyTaTuBHbI# rpynnop P na3biBaeTcsi {UCTPUOYTHBHBIM, €M a .bc = ab.ac ansi a, b, c € P.
Iycts G (P) — rpad, BeplinHaMKU KOTOPOTO SIBJSIIOTCS BCE COOCTBEHHBIE MOATPYNNOMAbI TPYNINOK-
na P u B KOTOPOM [1B€ BEPLUMHbI COEJMHEHBI peOPOM TOr/Aa M TOJBKO TOT/a, ECJM COOTBETCTBYOL-
We TMOATPYNNOMAbI MMEIOT HEMycToe mnepeceyeHue. B craTbe M3yyaeTcs CBA3HOCTL rpada
nepecevyenunit G (P) KOMMYyTaTUBHOrO AUCTPUOYTHBHOrO rpynnouna P.

Mycrs C,,(+) — agauTvBHas rpynna BbIYETOB MO Moaynto m. Ecnu m — HeueTHoe 4HCIO, TO
cumBosioM C,,(.) Mbl 0603HaunM rpynmoun C,,, rae x.y = (x +y)/2 nas Bcex x, y € C,.. B aroit
paboTe nokasaHa ciefyiollas Teopema:

Ecin KoMMyTaTHBHBIA AHCTPHOYTHBHUH rpynIoHn P cogepXHT xoTa 6bI TP 3/IEMEHTA H OTAHYACT -
cs OT rpynmouga C..(\), rae m ABNFAETCA CTENEHBIO HEYETHOIO npocroro uwcna, To rpa¢p G(P)
cBsA3HBIA M Ang ero auamertpa &(P) umeem 1=6(P)=3.

IIpu atom:

1. Ecin 6(P)=3, TO BCcskuii 3jeMeHT rpynnouga P sBiseTcs HAEMIOTEHTOM M TIPYNIIOHA
P nopoxpeH AByMs 3JIEMEHTaMH.

2. Ecmu 6(P) =2, To rpynnmong P He ABASETCS MOPOXAEHHbIM ABYMSA HREMIIOTEHTAMH H COAEPKHT
XOTs ObI ABa MAEMITOTEHTA.

3. Ecin 6(P)=1, 1o rpynnoug P coORepXHT TOJIbKO OQHH HZEMIIOTEHT.
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