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ON THE INTERSECTION GRAPH 
OF A COMMUIATTVE DISTRIBUITVE GROOPOID 

BED&ICH PONDfiLfCEK 

Let F be some family of sets. By the intersection graph of F we mean the 
undirected graph whose set of vertices is F and in which two distinct vertices are 
joined by an edge if and only if they have a non-empty intersection. Some authors 
studied the case when F is the family of all proper subalgebras of a given algebra. 
This study was begun by J. Bosak [1]. It is known for example that the intersection 
graph of every semigroup (commutative semigroup) with more than two (three) 
elements is connected and its diameter does not exceed three (two). See [2] and 
[3]-

The purpose of this paper is to discuss the connectedness of the intersection 
graph of a commutative distributive groupoid. 

A groupoid P is called 
— commutative if ab = ba for all a, b eP; 
— distributive if a.bc = ab.ac and bc.a=ba.ca for all a, b, ceP; 
— idempotent if aa = a for every aeP and 
— abelian if ab.cd = ac.bd for all a, b, c, deP. 

The intersection graph of the family of all proper subgroupoids of a groupoid P is 
denoted by G(P). If G(P) is a connected graph, then by 8(P) we denote its 
diameter. 

By the symbol [A], where A is a non-empty subset of a groupoid P, we denote 
a subgroupod of P generated by A. The set of all idempotents of a groupoid P is 
denoted by E(P). 

Theorem 1. The graph G(P) of a distributive groupoid P is non-empty if and 
only if card P S 2 . Moreover, 

1. 8(P)^3 if and only if for any two idempotents a, bofPwith [a, b] = P there 
exists ceP such that 

[a,c]±P±[c,b]. 

2. 6(P)^2 if and only if [a, b]j=P for any two idempotents a, b of P. 
3. 6(P) S 1 if and only if P contains just one idempotent. 
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4. <5 (P) = 0 if and only if P is isomorphic to the semigroup with zero multiplica -
tion and containing just two elements. 

Proof. Let P be a distributive groupoid. It follows from Proposition 1.1 of [4] 
that the set E(P) of all idempotents of P is a subgroupoid of P and 

(1) a. be, ab .ceE(P) for al a,b,ceP. 

It is clear that G(P) is empty if and only if P = E(P) and card P = 1. 
Now we shall suppose that card PIS2. 
1. Suppose that <5(P)^3. Let a, beE(P) and [a, b] = P. Then {a}, {b} are 

proper subgroupoids of P and so there exist proper subgroupoids A , B of P such 
that aeA, b eB a n d A n B ^ 0 . We can choose c eAnB. Then we have [a, c]czA 
and [c, b]czB. Hence [a, c] +P± [c, b]. 

Now, we assume that for any a, b of E(P) with [a, b] = P there exists ceP such 
that [a, c]±P±[c, b]. Let A , B be two proper subgroupoids of P. Then we can 
choose u e A and v eB. It follows from (1) that a = uu.ueA and b = vv .v eB 
are idemponts of P. If [a, b]±P, then we put C = D = [a, b]. If [a, b] = P, then 
there exists ceP such that C = [a,c]±P and D = [c, b]^P. This gives in both 
cases AnC±0, CnD±0, DnB±0 and so <5(P)S3. 

2. This can bes proved analogously to the proof in 1. 
3. Suppose that 6 ( P ) ^ 1 . Let a, beE(P). Then {a}, {b} are proper sub­

groupoids of P and so {a}n{b} =£0. Hence we have a =b. 
Let card E(P) = 1. If A , B are proper subgroupoids of P, then according to (1), 

we have JO:.x = yy .y for all x eA andy eB. Hence AnB^0. Thus 5(P)t^l. 
4. This follows from (1). 

Corollary 1. i / a distributive groupoid P is uncountable, then its graph G(P) is 
connected and 6(P)^2. 

Proof. It is clear that [a, b]^P for all a, b eP. 

Corollary 2. / / a distributive groupoid P is not idempotent, then its graph G(P) 
is connected and <5(P)S2. 

Proof. Evidently [a, b]czE(P) for all a, beE(P). 
Now we shall study commutative distributive groupoids. For the sake of brevity, 

the commutative idempotent abelian groupoids will be called CIA-groupoids. It is 
known that every CIA-groupoid is distributive. 

A commutative semigroup S( + ) is called uniquely 2-divisible if the mapping 
cp(x) = x+x is a permutation of 5. In this case, the inverse permutation q>~1 is 

denoted by q)~l(x) = - x. Throughout 0. will denote the set of all numbers of the 

form 2~nm, where m, n are integers and m ^ 1, n ^ 0 . Denote 2~nmx = q)~n(mx) 
for every xeS, where lx = x and mx = (m - l)x + x for m ^ 2 . It is easy to see that 
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(2) a(x +y) = ax + ay, (a+(5)x = ax+(3x 

for all a, (3 eQ and xi y eS. 
In [4] the following has been proved: 

Lemma 1. A groupoid P(.) is a CIA-groupoid if and only if there exists 
a uniquely 2-divisible commutative semigroup S( + ) such that PczS and xy = 

- (x + y) for all x y e P. 

<& will denote throughout the set of all integers. Let m be an odd positive integer. 
By c€m( +) we denote a cyclic group of the order m generated by e. It is clear that 
c€m( + ) is uniquely 2-divisible. According to Lemma 1, we obtain that ^m( .) is 

1 
a CIA-groupoid, where xy =-j (x +y) for all x, y e (#m. For a , « e l we put 

c€m(a,u) = {a + ku;kec€}. 

It is clear that A=c€m(a, u) for some a, u e c€m if and only if A is a class of some 
congruence on the group c€m( + ) . 

Lemma 2. Let A beasubgroupoidof^mt)- If a, b eA, then ^ m (a , b —a)czA. 
Proof. Let a, be A. Put u = b—a. First, we shall prove the following im­

plication : 
If x, x + ueA, then x+2ueA. 
Let x,x + ueA. Put %={nec€; n^2 and JC + nu e A }. It is clear that 2me<M 

and so 3if=£0. We shall show that for any neffi, where n>2, there exists k e ffi 
such that k<n. 

1 1 
If n is odd, then we have - ( n + l )<rz and x+-(n + l)u = 

= (x + u) (x+nu)eA. If n is even, then we have -n<n and x+-nu = 

= x(x +nu)eA. 
This implies that 2e<M and so x + 2u e A. 
By the induction we can prove that a+nueA for all positive integers n and so 

%n(a,b-a)<=A. 

Lemma 3. A subset A of ^m is a subgroupoid of ^m (.) / / and only if A is a class 
of some congruence on c€m( + ) . 

Proof. Let A be a class of some congruence on ^ m ( + ). Then A=c€m(a,u) for 
some a,uec€m. Let x , y e ^ m ( a , u). Then x = a + ru and y=a+su for some 

r, s e c€>. If r + s is even, then xy = a +- (r + s)u ec€m(a, u). If r +s is odd, then 

xy = a +- (r + s + m)u e ^m(a, u). Thus A is a subgroupoid of <£m(.). 
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Let A be a subgroupoid of ^ ( O - Let e be a generator of c€m( + ) . By W we 
denote the set of all positive integers such that for any n of M there exists xeA 
such that x + neeA. Since A =t 0, we have meffi and so $f =£ 0. Put k = min W. 
Then there exists aeA such that b =a + ueA, where u=ke. It follows from 
Lemma 2 that ^ m (a , w)czA. 

Now we shall show that A<z\%m(a,u). Let xeA. Since e is a generator of 
^m( + ), we have x = a + le for some positive integer /. It is well known that there 
exist s,re^ such that l=sk + r and 0 S r < k . Then x = a+su + re, where a+su 
e c€m(a,u)czA.\lQ<r, then r e %t, which is a contradiction. Therefore r = 0 and 
so x = a +su e ^m (a , u). Consequently A = ^>m(a, u). 

Lemma 4. Every subgroupoid (factor groupoid) of ^m(.) is isomorphic to ^k (.) 
for some odd positive integer k. 

Theorem 2. Let m be an odd integer §^3. 
1. Ifmisprime, then thegraph G(^m( .)) is composed of m isolated vertices. 
2. If m is at least the second power of a prime number p, then the graph 

G(^m( . )) has p components whose diameters are equal to two. 
3. If m is no power of a prime number, then the graph G(^m( . )) is connected 

andd(<€m(.)) = 3. 

Proof. 1 and 2. This follows from Lemma 3. 
3. Let p and q be two different prime numbers such that p \ m and q\m. Let x, 

y e « m . Then ^>m(x, pe) + ^m + <€»>&, qe\ <em(x> Pe) n <€m(y, qe) ± 0 and so by 
Lemma 3 and Theorem 1 we have 8(c€m(.))^3. 

It is clear that there exist r, s e^ such that rp-sq = \. Put a =sqe and b=rpe. 
It follows from Lemma 2 that c€m = c€m(a, e)cz[a, b] and so according to 
Theorem 1, we have 8(c€m(.)) = 3. 

Lemma 5. Let P be a commutative distributive groupoid with card P =: 3. If for 
any elements a, b eP there holds the following implication: 

(3) aP = P = Pb ^>[a,b]±P, 

then 6(P(^3. 

Proof. According to Corollary 2, we can suppose that a commutative distribu­
tive groupoid P is idempotent. Let a,beP and [a, b] = P. It follows from 
Proposition 1.5 of [4] that P is a CIA-groupoid. By hypothesis (3) we have the 
following possibilities: 

Case 1. aP± P± Pb. It is clear that xP is a subgroupoid of a distributive groupoid 
P for any xeP. Then we have [a, ab]<^aP±P and [ab, b]czPb^P. 

Case 2. aP = P^Pb. Then there exists u eP such that b =au. Any u e[a, b] 
can be written in the form u =xxx2...xn, where x{ e {., a, b). Put z = bv, where 

60 



v =yiy2..-yn and y, =. if xt = ., yt = a if xt = b and yr=b if *, =a. According to 
Lemma 1 there exists a uniquely 2-divisible commutative semigroup S( + ) such 

that PaS and xy = - (x + y) for all x, y e P. By the induction and by (2) we can 

show that u = aa+(3b and v=/3a + ab, where a, (3e2, and a + j8 = 1. Then we 
have b = 2_1(1 + a)a + 2~x$b and z = 2~x$a + 2_1(1 + a)b. Using (2) we obtain 
thataz=2"2(2 + j8)a + 2"2(l + a)6 = 2~x$a + (2"2(l + a)a + 2~2pb) + 2~lab 
= 2~l(ia + 2~lb + 2_1afe = z. If [a,z] = P, then cardP.^2, which is 
a contradiction. Hence [a, z]z£P. Evidently [z, b]czPb=£P. 

Case 3. aP^hP = Pb. Analogously. 
The rest of the proof of Lemma 5 follows from Theorem 1. 

Lemma 6. Let P be a commutative distributive groupoid. If there exist a,beP 
such that aP = P = Pb and P = [a, b], then P is isomorphic to ^m(.) for some odd 
positive integer m. 

Proof. Let P = [a, b] and aP = P = Pb. It follows from Proposition 1.1 of [4] 
and from Proposition 1.5 of [4] that P is a CIA-groupoid. By Lemma 1 there exists 
a uniquely 2-divisible commutative semigroup S( + ) such that P(.) is a sub-

groupoid of S(.), where xy =- (x +y) for all x, y eS. 

We first show that there exists an odd integer k=\3 such that ka = kb. Since 
aP = P = Pb, there exist u,veP such that a = b(b.au) and b = a(a.bv). It follows 
from P = [a,b] that a = aa+fib, b = Ya + sb, where a, (3, y, ee.2 and a+fi 

= 1 = y + £, a<-<(i and e < - < y . Then rj = l + y - a = l+ /3 -ee«2 and so, 

by (2), we have r\a = a+Ya—aa = Ya+fib = b+fib—eb = rjb. This implies 
that ka = kb for some odd integer k^3. 

Let n be a positive integer such that 2""1 < k < 2n. Define a mapping / of <gk into S 
by 

/(re) = 2~nra + 2~n(^n - r)b, 

where r = 1, 2, ..., k and e is a generator of the cyclic group ^k( + ). It is easy to 
show that / is a homomorphism of <#*(.) into S(.). 

If we put w = ke and z=(2" —k)e, then f(w) = b and f(z) = a. Let A be 
a subgroupoid of %(.) generated by w, z. Then /(A) = [a, b] = P and the 
restriction g=f/A is a homomorphism of A onto P. This implies that P is 
isomorphic to some factor groupoid of A. It follows from Lemma 4 that P is 
isomorphic to the groupoid ^m(.) for some odd positive integer m. 

Theorem 3. Let P be a commutative distributive groupoid with card P^ 3. If 
P is not isomorphic to the groupoid ^m(.), where m is a power of an odd prime 
number, then the graph G(P) is connected and l^6(P)^3. Moreover, 
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1. If 6(P) = 3, then P is idempotent and is generated by two elements. 
2. // <5(P) = 2, then P is not generated by two idempotents and contains two 

idempotents at least. 
3. If 6(P) = 1, then P contains just one idempotent. 
The p r o o f follows from Theorem 1, Theorem 2, Lemma 5 and Lemma 6. 

N o t e . A commutative distributive groupoid P with card P = 2 is either 
a semigroup with the zero multiplication and S(P) = 0 or a semilattice and its graph 
G(P) is composed of two isolated vertices. 
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О ГРАФЕ ПЕРЕСЕЧЕНИЙ КОММУТАТИВНОГО 

ДИСТРИБУТИВНОГО ГРУППОИДА 

Бедржих П о н д е л и ч е к 

Р е з ю м е 

Коммутативный группод Р называется дистрибутивным, если а .Ьс = аЬ .ас для а, Ь, с еР. 

Пусть С(Р) — граф, вершинами которого являются все собственные подгруппоиды группои­

да Р и в котором две вершины соединены ребром тогда и только тогда, если соответствующ­

ие подгруппоиды имеют непустое пересечение. В статье изучается связность графа 

пересечений С(Р) коммутативного дистрибутивного группоида Р. 

Пусть Ст( + ) — аддитивная группа вычетов по модулю т. Если т — нечетное число, то 

символом Ст(.) мы обозначим группоид Ст, где х .у = (х +у)12 для всех х, у еСт. В этой 

работе доказана следующая теорема: 

Если коммутативный дистрибутивний группоид Р содержит хотя бы три элемента и отличает­

ся от группоида Ст(.), где т является степенью нечетного простого числа, то граф С(Р) 

связный и для его диаметра б(Р) имеем 1^д(Р)^3. 

При этом: 

1. Если д(Р) = 3, то всякий элемент группоида Р является идемпотентом и группоид 

Р порожден двумя элементами. 

2. Если 6(Р) = 2, то группоид Р не является порожденным двумя идемпотентами и содержит 

хотя бы два идемпотента. 

3 . Если б(Р) = 1, то группоид Р содержит только один идемпотент. 

62 


		webmaster@dml.cz
	2012-07-31T21:57:51+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




