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ASYMPTOTIC BEHAVIOUR OF A CLASS
OF NONOSCILLATORY SOLUTIONS
OF DIFFERENTIAL EQUATIONS
WITH DEVIATING ARGUMENTS

CH. G. PHILOS

0. Introduction

The present paper is concerned with n-th order (n>1) differential equations
with deviating arguments, which involve the r-derivatives Dx (i=0, 1, ..., n) of
the unknown function x defined by

D(r())x=x, D(’i)x=r._(D('i—l)x)l
(i=1,...,n—1) and D"x=(D{""x),

where r; (i=1, ..., n — 1) are positive continuous functions on an interval [t, ®). A
real-valued function h is said to be n-times r-differentiable on an interval [T, ),
T=Zt, if D!h is defined on [T, ®), and h is said to be n-times continuously
r-differentiable on [T, ) if DA is continuous on [T, »). Note that in the special
case where r,=...=r,-;=1 the above notion of the r-differentiability specializes
from the one of the usual differentiability. Recently, there has been an increasing
interest in studying the oscillatory and asymptotic behaviour of differential
equations involving the r-derivatives of the unknown function in place of its usual
derivatives.

More precisely, the paper deals with the asymptotic behaviour of nonoscillatory
solutions of differential equations with deviating arguments of the form

(E) (D™x)(t) + F(t; x <go(t)),
(DPx)(gi(1)), -, (DVx)(g())) = b(2), tZto,

where: ro=1; | is an integer with 0=/=n-1;

(DPx)(g:(1)) = ((D¥x)[gu(1)], ..., (DPx)[gin (D)D),
i =(gins s gin,) (i=0,1, ..., D;

409



gu (k=1,...,N;; i=0,1,...,1) are continuous real-valued functions on the
interval [to, ) with

lim gu(t)=0 (k=1,..,N;i=0,1,..,1);

b is a continuous real-valued function on [t,, ©) and F is a continuous real-valued
function defined at least on [t,, ©) X (RYURY), where N=N,+ N, + ... + N, and
R,=(0, ), R=(—, 0). Without any further mention, we suppose that: For
every t = t,, the function |F(¢; -)| is increasing on RY and decreasing on R". For
real-valued functions defined on subsets of R™ monotonicity is considered with
respect to the order in R™ defined by the positive cone {Y=(y,, ..., yn)€ R":
y1=0, ..., yv=0}. Sufficient smoothness for the existence of solutions of (E) on an
infinite subinterval of [#, ) will be assumed. In what follows the term “solution”
is always used only for such solutions x(t) of (E) which are defined for all large .
The oscillatory character is considered in the usual sense, i.e. a continuous
real-valued function which is defined on an interval of the form [T, «) is called
oscillatory if the set of its zeros is unbounded above, and otherwise it is called
nonoscillatory.

For our purposes, for any integers i and A with0=i=A =n — 1, we introduce the
function R, which is defined on [t,, ) by

1, if i=A

Rﬂ0=[[mf 1 S| s 1
— cdseadsi, if i<A.
g4 ri+l(sl'+l) to ri+2(Si+2) [,( rA(s,\) ds. Sivz QSeer, M

0 )

In particular, for any integer A with 0SA=n—1, we put
Ri(t)=Ru(t), t=t,.

To obtain our results we need the following lemma from [1].

Lemma 0.1. Let A, 0<A=n —1, be an integer such that

= dt .
f s (=L b

Moreover, let h be a function whose A-th r-derivative D®p exists on an interval
[T! oo), Tgt(y.
If lim (D®h)(t) exists in R* — {0}, where R*=RuU{~c, ®} is the extended
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real line, then so does lim [h(t)/Ri(t)] and, moreover,
lim [h(8)/Ry(1)] = lim (D®h)(2).

The subject of this paper is the following : Let m be an integer with I=Sm=n—1.
Provided that

(Z[m]) r%ﬂo (i=1,...,m)

for the case m>0 and that the function |b| satisfies a smallness condition
depending on m (which holds by itself if b=0), we shall find a condition
(depending on m) for the function F, which ensures the eXistence of at least one
(nonoscillatory) solution x of the differential equation (E) with

x(t)

i (m) =li = —_
(*) !er“; (D™x)(t) !lﬂ Ro(D) LeR-{0}.
Next, we shall consider the differential equation (E) with b =0, i.e. the equation
(Eo) (DPx)(t) + F(t; x{go(1)), (D"x){g:i(1)), ...,

(Dx)(9:(1))) =0,

and we will suppose that the functions r; (i=1, ..., n —1) are such that
“ dt .
2) j Tt)-—m (i=1,...,n-1)

and that F has one of the sign properties

M {F(t: Y)Z0 forevery t=t, and YeRY
F(t;Y)=O0 forevery t=t, and YeR?,
an {F(t;Y)éO for every t=t, and YeRY
F(t; Y)=0 forevery t=t, and YeR".

Then we shall prove that the condition which is sufficient in order that the
differential equation (E,) have at least one (nonoscillatory) solution x satisfying ()
is also necessary. The results obtained extend previous ones due to the author,
Sficas and Staikos [2] and to the author and Staikos [3] concerning the special
case where | = 0. Notice that the methods used here pattern after that of [2] and [3].

1. Sufficient conditions

To obtain our first result (Theorem 1.1) we shall apply the fixed point technique
by using the following Schauder’s theorem (Schauder [4]).
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The Schauder theorem. Let E be a Banach space and X a nonempty, convex and
closed subset of E. Moreover, let S be a continuous mapping of X into itself. If SX
is relatively compact, then the mapping S has at least one fixed point (i.e. there
exists an x € X with x = Sx).

A set & of real-valued functions defined on the interval [T, =) is said to be
(cf. [5]) equiconvergent at o« if all functions in & are convergent in R at the point
and, moreover, for every £ > 0 there exists a T' = T such that, for all functions f in
Z,

If(t)— !Lrg f(s)|<e forevery t=T'.

Let now B([T, »)) be the Banach space of all continuous and bounded
real-valued functions on the interval [T, ®), endowed with the usual sup-norm || ||.
We need the following compactness criterion for subsets of B([T, »)), which is
a corollary of the Arzela—Ascoli theorem. For a proof of this criterion we refer to
Staikos [5].

Compactness criterion. Let ¥ be an equicontinuous and uniformly bounded
subset of the Banach space B([T, »)). If % is equiconvergent at o, it is also
relatively compact.

Theorem 1.1. Let m, [I=m=n —1, be an integer such that (X[m]) holds when
m>0, and:
(C[m]) For some nonzero constant ¢

[[71F(: cRoas(00(D), R 1o (010D, oy R (a1(D))] dt <

if m=n-1

Jm; i ; ) IF(S;CROm(QO(S)),Cle(gl(S)),...

rm#l(sm+l).” Sn 2 rn—l(sn-l) Sp—1

L.y CRim(gi(5)))] ds ds,-i...dspme1 < if m<n-—1.

(B[m]) There holds

f |b(t)| dt<oo if m=n—1

= 1 * 1 “ .
J r,,.H(S,,.H)m o m s lb(s)l ds ds,—;...dsm1 <0 If m<p—1.
Then for every real number L with Lc>0 and %<|L|<|c| there exists

a (nonoscillatory) solution x of the differential equation (E) with
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lim (D©x)(t) = (sgnL)” (i=0,1,....,m~1) when m>0

(P..(x)) llm(D(,""x)(t)—llm (3) L

lim (DPx)(t)=0 (j=m+1,...,n-1) whenm<n-1.

Proof. The substitution u = —x transforms (E) into the equation
(D‘"’u)(t) +F(t; u(go(1)),
(DPu)(gu(®)), ..., (DPu){(g(t))) = b(»),

where F(t; Y)=—F(t; -Y) and E(t)= —b(t). The transformed equation is sub-
ject to the assumptions of the theorem with —c in place of ¢. Thus we can confine
our discussion only to the case of positive c.

Let L be a (positive) number with %<L<c. By condition (B[m]) we choose

a To>t, such that ¢ — L >d, where

j |b(t)| dt if m=n-1
= To
d— Je 1 ® 1
To rm+l(sm+l). Sn—2 rn l(sn l) Sp—1

|b(s)| ds dsa-y...dSmer if m<n-—1.

Next, by taking into account condition (C[m]), we consider a T= T, so that

gu(t)=T, forevery t=T (k=1,...,Ni;i=0,1,...,1)
and

rJ:lF(t; CRO.n—l(go(t))’ CRI.n—l<gl(t))’ cees CRI.n—I(QI(t)))Idt§ c—L-d

if m=n-1

® 1 ” 1
J, oy i L P63 RanC0se). Rin(09)

..., cRim(9:(s)))|ds dsn-y...dSps1=Sc—L~-d if m<n-1.

Now, we consider the Banach space E of all real-valued functions with
continuous and bounded n-th r-derivative on the interval [T, ®), endowed with
the norm ||| ||| defined by

Nkl = {""" it m=0

mpl S [(DPR)(T))
1D ’h||+§o RoA(T)

We observe that the restriction of the function LR,, on [T, ) belongs in E, and so

if m>0.
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we consider the nonempty, convex and closed subset X of E, which contains all
function x € E with

[llx = LR.|||Sc—-L

namely

{Hx—Llléc—L if m=0

%)
(m) (DPx)(T) -
“Dr L”+ 2( RIM(T) L =C L 1f m>0'
Next, we shall prove that for any function x in x these holds
(D¥x)(t) )< B - -
‘ 0 —L|=c-L forall t==T (i=0,1, ..., m).

This is obvious for m = 0. Let us suppose that m >0 and let us consider an arbitrary
function x in X. Then we observe that

[(D{™x)(t)—L|<=c—L forall t=T.
Hence for every t=T we obtain

(m-1) t
(’;fm _l_:():()t) L= Rl G [(Dsm-”x)(r) + f rm}s) (Dx)(5) ds ~ LRy (0]

=m{<vf“"’x>m+ﬁ

(D™

0 im0

1

T [P = LR (T + [ 5 ((D2)(5) - L] s

~Rrn(T) [(Df"'_”x)(T)
R’"-l'm(t) Rm—l,'n(T)

and hence

1 NN
‘L]+Rm_.,m(t) L —5 (P 0) - L] ds

}(D(v"'_”x)(t)_L|§R,.._|,m(T) (D" x)(T)

Roi(2) R | RormlT) L’ *

R, 1.n(1) L () |(Px)(s)— L] ds

< Ru1.n(T) (D\("'_”x)ﬂ
m— IM(t) m L,,.(T)

L iDLl g | )

‘(D‘”' Px)(T) _

+||D™x - L||.
Ron(T) |+ I
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Thus,

(m-1)
M—L'éc—L forall t=T.

Ron-1.m(t)
Next, provided that m>1, for t=T we get
“rn [0 om e [ e @G o+
+Lj R;"m ’IZ'()S) ds — LR, 2m(z)}
R (P70 LR+ [ S22 R EE 00 1o

Rp2.m(T) [(D"2x)(T) Rp-1.m(s) [(D"~Px)(s)
Rz m(t) [ Rp-2.m(T) ] R.- Zm(t)J. Tm- I(S) [ Rn-1.m(s) L] ds

and consequently

— Rz ()| (D 2)(T)

‘wﬁ3£)4=mzm) “An'4+
e ) e G-
s e - et B e
s| -t e
§‘M—L1+|w—L|+|IDS’"’x—L".

R.-2.m(T) Rn-1.m(T)

Hence
(D" 2x)(t)

—Llsc- =
Roan(t) L‘_c L forall t=T.
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If m>2, then, following the same procedure, we conclude that for every t=T

(Dx)(T)
Rin(T)

x(t) !
Ron(D) L’ =

We have thus proved our assertion.
Now, let x be an arbitrary function in X. Then for i=0, 1, ..., [ we have

—L' FID™x—L|Sc-L.

i=0

0<(DPx)(t)=cR..(t) forevery t=T

and consequently

0<(Dx)*(t)=cRin(t) forall t=T,,
where
(Dx)(t) if (=T

(D¥x)(T) 1%(% if T,<I=T.

(Ds“x)*(r)=[
Thus for all t=T
0<(Dx)*[gu ()] = cRum[ga(t)] (k=1,...,Ni;i=0,1,...,1)
and hence, since for any ¢ = t, the function |F(t; -)| is increasing on RY. we have

[F(t; x*(go(t)), (D"x)*{g:(1)), ..., (Dx)*(g()))| =
S|F(t; cRom{go(t)), Ry (g:(1)), ..., cRim{gi(t)))| forevery t=T.

Thus, because of (C[m]) and (B[m]) for any t=T there holds

(Um[F(s:x*(gn(s)),(D‘,”x)*(g.(s)), o (DPX) (i(5))) = b(s)] ds| <o if m

=n-1

fw 1 B 1 ) [F(s;x*<g(,(s)),(D(,l)x)*<gl(5))s.-~

rm+l(sm+l)”. Se 2 rn—l(sn—l) Sn 1

<o if m<n-—1.

[ ... (DPx)*(gi(s))) — b(s)] ds ds, 1...dSme
Next, we define the mapping S as follows:
=59 1 N 1 J"n 2 1
=LR,(1)+
(Sx)(t) L (t) J; rn(Sl) T fz(sz) T rn—l(sn 1) Smo1

[F(s; x*{go(s)), ..., (Dx)*(gi(s)))— b(s)] ds ds. 1...ds; ds,
if m=n-1,

o

S0 1 51 1 St 1 N
(Sx)(t)=LR,.(t) + (- 1)" '_ML r(s)) Jr fz(sz)me Fm(sm) )i
1 - 1 )

[F(s5 x*(go(s)), ...

rm+l(sm+l)‘“ Sn 2 r’l—l(sn—l) S
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voes (DPx)*(gi(s))) — b(s)] ds dsn-1...dSm+1 dSm...ds2 ds,

if0<m<n-1,
_ Ty b T e U
(8x)(t) = LR.(t) + (1) 1) )y raGs2)

t

J:: ﬁ s,.: [F(s; x*(go(s)))— b(s)] ds ds,—;...ds, ds,

if m=0.

In order to apply the Schauder theorem it must be verified that S is a mapping of
X into itself, SX is relatively compact and S is continuous.

a) SXcX.

Indeed, for any function x € X and every t= T we obtain

[(DI™Sx)(t) - L|=

if m=n-1

rUlm[zr(s : x*(go(s)), -, (DPx)*(gi(s))) - b(s)] ds

o 1 o 1 o
=J ‘J: r,,,+|(s,,.+|)'" Sn—2 rn—l(sn—l) Sn—1 [F(s;x*<g0(S))’

if m<n-—1

[.-» (Dx)*(gi(5))) — b(s)] ds ds._i...dSmas

[T1FG; x*(a))s s DO aDI+ 16 ds it m=n—1

A

f . [1E(s; x*{go(s)), ...

rm+l(sm+l).” Spn-2 rn—l(sn—l) Sp—1

L... (D¥x)*(gi(s)))| + |b(s)|] ds dsn_;...dSmer if m<n—1

r[‘1“1:‘(3; cRo.n-11JGo(5)), ..., cRiaz1(gi(s)))| + |b(s)|] ds if m=n—-1

IIA

| it e [ UF G eRontaton

[---» CRim{gi(s)))| + [b(s)|] ds dsa-y...dSmsy if m<n-—1
S(c-L-d)+d

=c—L.
Also, if m>0, we have
DOSID_ ;o i
Rin(T) L=0 (i=0,1,...,m-1).

And for any x € X, |||Sx — LR.|||=c - L and consequently Sx € X.
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B) SX is relatively compact.
Obviously, it suffices to prove that the set

F={D"™Sx:xe X}

is a relatively compact subset of the space B([T, ©)). Furthermore, by the
compactness criterion, & is relatively compact if it is uniformly bounded, equicon-
vergent at © and equicontinuous. Now, by the definition of X and the fact that
SX c X, there holds

|ID{Sx||=c forevery xelX,

which means that & is a uniformly bounded subset of B([T, «)). Also, for any
function x € X and every t= T we obtain

(D¢ Sx)(t) - L| =

[T1EG: 2¢as)), .. DO @I+ b1 ds if m=n—1

lIA

r l [ [1F(s; x*{go(s)), ...

Fme1Gme1) o s Fac1(Sa1) Jons

e (DPx)*(gi(s)))| + |b(s)|] ds dsu-i...dSmsr if m<n-—1

«

and hence
lim (D{™Sx)(t)=L forevery xeX,

i.e. F is equiconvergent at «. Finally, in order to prove that & is equicontinuous,
for any function x € X and every t, t, with T=t,=t, we get

[(D{™Sx)(t2) = (DI™Sx)(t)] =

f if m=n-1

JIIZ[F(S; x*{go(s)), ..., (DPx)*(gi(s)))— b(s)] ds

[ 5 | R x50, oo 000 (a5 = b1 ds s,

=qif m=n=2

] 1 ® 1 o 1 ’ o
_ _. _ F(s; x* s)), ...
fl] rm+l(sm+l) Sm+1 rm+2(sm+2) Sp—2 rn—l(sn—l) Sn 1 [ (s <gO( ))

~ s (DPx)*(gi(s))) — b(s)] ds dsaoy...dsmrz dsmn

if n>2and m<n-2
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ffh[lF(s; x*(go(s))s ..., (Dx)*(gu(sIN| + [b(s)|1 ds if m=n—1

= J’,’zal:v:) °°1 UF(s5 x*(go(s))» -..r (Dx)*(g,(s)))] + |b(s)]] ds dsa_s
if m=n-2
s 1 [T 1 S
f“ ) b TGy e . [IF(s; x*{(go(s)), ...

o (DPx)*( ()| + |b(s)|] ds dSu-i---dSmsz dspsy if n>2 and m<n—2

-

j"nF(t; cRo.n-1(G0(5)), ..., Rons(g(S)N] + [b(s)|] ds if m=n~—1

IIA

“ 1 L
; [ e ] UFCs Rostau(s)), s Rss I b(5) 1 s ds,

if m=n-2

f 1 1 T [|F(s; cRom{go(s)), ...

rm+l(sm+l) Sm+1 rm+2(sm+2).” Sn—-2 rn-l(sn—l) Sn—1

Los R (g ()| +|b(s)]] ds ds=-1...dSms2 Sy if n>2 and m<n —2.

v) The mapping S is continuous.
Let x € X and (x.).e~ be an arbitrary sequence in X with

I8 111 tim x, =x.
Then it is easy to verify that for every t= T,
lim (DPx,)*(t)=(DPx)*(t) (i=0,1,...,1).
On the other hand, for any v € N and every t=T we have

[F(t; x3(go(t), ..., (Dx.)*(g:()))| =
= IF(I; cRo,,.(go(t)), . Cle(gl(t)))l'

Thus, because of condition (C[m]), we can apply the Lebesgue dominated
convergence theorem to obtain the pointwise convergence

ll_l;ll (Sx.)(t)=(Sx)(t), t=T.

In order to prove that
Il 111~ lim Sx, =S,

we consider any subsequence (§.,)ven of (Sx,),~. Then, because of the relative
compactness of SX, there exist a subsequence (v+,)ven Of (§.)ven and a w e E so
that
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11111 = tim v, = w.

Since ||| |||-convergence implies the pointwise one to the same limit function, we
always have w = Sx, which proves the continuity of S.

Finally, the Schauder theorem ensures the existence of at least one fixed point x
of the mapping S. Then x = Sx and consequently

(Dx)(t)=—F(t; x*(go(1)), ..., (DPx)*(gu())) + b(t), t=T,

namely the fixed point x of the mapping S is a solution on [T, «) of the differential
equation (E). Moreover, x satisfies P.(x)). Indeed, for every t=T we obtain

[(D™x)()—L|=

f[IF(t; x*(go(s)), ..., (DLx)*(g(s)))| + |b(s)|] ds if m=n—1

f'“’ 1 T [ [IF(s; x*(go(s)). ...

rm+l(sm+l)”' S 2 :—l(sn—l) S 1

1A

ey (DPx)*(gi(s)))| + |b(s)|] ds dsn-i...dSpmsr if m<n-—1
and consequently
lim (D™x)(¢t)=L.
Also, when m<n—1, for j=m+1, ..., n—1 and every t=T we have

[(DPx)(1)|=

-

[ 1R x*(au(5)), - (DED (@D + 6N ds, it j=n=1

J,“’ 1 ) 1 ) [1f(s; x*(go(s)), ...

ri+l(si+1)'” Sn—2 r,._1(S,._1) Sn—1

cees (DPx)*(gi(5)))| + |b(s5)]] ds dsa-r...dsyss, if j<n—1.

IIA

L
Hence, if m <n — 1, there holds

lim (DYx)(1)=0 (j=m+1,...,n-1).
In addition, from Lemma 0.1 it follows that

. ox()
5112 R,,.(t)_L

Moreover, if m >0, then it is easy to verify that
lim (DPx)(t)=» (i=0,1,...,m—1).
Corollary 1.1. Let m, [Sm=n — 1, be an integer such that (£[m]) holds when
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m>0. Under condition (C[m]), for every real number L with Lc>0 and

|<]

5 < |L|<|c| there exists a (nonoscillatory) solution x of the differential equation

(Eo) satisfying (P.(x)).
Next, let us consider the case of more general differential equations with
deviating arguments of the form

(E") (DEx)O+ 3, Falts X (7l0)),

(DPx)(Ter(1)), ..., (DFOx)(Tet, (1)) = b (),
where for any =1, ..., u we have: 0=[,=n-1;

{ (DPx)(Tai(t)) = ((DPx)[Ter (D], ... (D) [Tame()])  (i=0, 1, ..., L);

Toi = ('l«'ou, ceey Tgm‘,,)

T (k=1,..., Nu; i=0,1,...,1,) are continuous real-valued functions on the
interval [t,, ©) such that

lim tu() =0 (k=1,.., Na;i=0,1,..., 1)

and F, is a continuous real-valued function defined at least on the set [, @) X
(R%UR?Y), where v, =Nyo+ No1+...+ Ng,. It is supposed that: For any ¢ =
1, ..., uand every t 2 t,, the function |F,(t; -)| is increasing on R and decreasing
on R%. Following the same technique as in the proof of Theorem 1.1, we can
obtain the following more general theorem.

Theorem 1.1'. Let m be an integer with max I, =m=n-1 and such that
e=1,...u

(Z[m]) holds when m > 0 and the condition (B[m]) is satisfied. Moreover, suppose
that:

(C*[m]) For some nonzero constant c and every o =1, ..., u

4[ IFo(t; CRO.n—l<TQO(t)>7 CRI.n—l(tgl(t))a seey CRI,,,n—l(tplp(t)>)| dt<w if m
=n-—1

3 r 1 ) : " |Fu(s; cRon(Teo(5)) Run(Tx(5)) -

rm+l(sm+l)“. Sn-2 rn—l(s'l—l) Sn—1

ce.CRm (Tt (5)))] ds dsp-ir...dsmir <o if m<n-—1.

.

Then for every real number L with Lc>0 and l;—I<IL|<|CI there exists

a (nonoscillatory) solution x of (E*) satisfying (Pn(x)).
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Now, let us consider the linear differential equation with deviating arguments

(D)) (D&x)(t) + a(t) (D) [o()] + ... +
+ ai()(Dx)[01()] + ao(t)x[0o(t)] = b(2),
where a; (i=0, 1, ..., ) are continuous real-valued functions on the interval [¢,, ®)

without any restriction on their sign and o; (i=0, 1, ..., [) are also continuous
real-valued functions on [t, ®) with

limo ()= (i=0,1,..,1).
From Theorem 1.1’ we obtain Corollary 1.2 below concerning the linear equation
(D,). In particular, for /=n—1 we have Corollary 1.3 below.

Corollary 1.2. Let m, ISm=n — 1, be an integer such that (£[m]) holds when
m >0 and the condition (B[m]) is satisfied. Moreover, suppose that:

(Y[m]) For every i=0,1, ..., 1

.

Jmla,(t)lR.-,,._l[o,(t)] di<o if m=n-1

S 1 ” 1 z
j P e i e en Y A |a.(s)|Rim[0.(s)] ds dsn-i...dsmer <

if m<n-—1.

\

Then for every real number L with L # 0 there exists a (nonoscillatory) solution x
of the linear equation (D,) satisfying (P.(x)).

Corollary 1.3. Let (X) be satisfied and suppose that the conditions (B[n —1])
and (Y[n —1]), i.e. the conditions

(B[ - 1]) [borar<e
and
(Y[n-1]) fmla,(t)IR,-,,,_l[o,(t)] di<o (i=0,1,..,n-1),

hold. Then for every L+ 0 there exists a (nonoscillatory) solution x of the linear
equation (D.-.), which satisfies (P,_,(x)), i.e.

ILIE (Df"x)(t): (sgnL)e (i=0,1,...,n-2)
(P,.—l(x)) '

lim (D y)(¢) = lim >~ =
pm (Db () =lim 20y
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2. Necessary conditions

Our basic purpose in this section is to prove that, for any integer m with
I=m=n-—-1, (C[m)]) is also a necessary condition in order that the differential
equation (E,) have at least one (nonoscillatory) solution x satisfying (P.(x)),
provided that (Z) holds and the function F has the sign property (I) or (II).

Theorem 2.1. Suppose that (£) holds and the function F has the sign property
(I) or (II). Moreover, let m be an integer with [I=Sm<n—1.
Then the condition (C[m]) is a necessary condition in order that the differential

equation (E,) have at least one (nonoscillatory) solution x such that lim (D{™x)(t)

exists in R — {0}.
Proof. Let x be a solution on an interval [T,, ®), To> to, of the differential

equation (E,) with lim (D{™x)(t) =L for some L € R — {0}. Since the substitution

u = —x transforms (E,) into an equation of the same form satisfying the assump-
tions of the theorem, we can restrict ourselves to the case where L is positive.
If m>0, then, in view of condition (X), we can easily derive that

lim (D®x)(t)=o (i=0,1,...,m—1).
Thus the r-derivatives Dx (i=0, 1, ..., I) are positive on an interval [T%, =),
T%= To. Hence, if we choose a T= T§ such that
gi(t)=T% forevery t=T (k=1,..,Ni; i=0,1,...,1),
then from equation (E,) it follows that for all t=T

{(D$">x)(t)§o if (1) holds
(D™x)(t)=0 if (IT) holds.

Namely, D{"x is of constant sign on [T, ®). Thus the functions D@x (j=m, ...,
n — 1) are also eventually of constant sign. Without loss of generality, we suppose
that D¥x (j=m, ..., n — 1) are of constant sign on the whole interval [T, ). Next,
provided that m <n —1 we can use the assumption (X) to obtain

lim DPx)(t)=0 (j=m+1,..,n-1).

Furthermore, we get

(DPDO - DM = [ s IDrOx) (@) ds, 2T,

T Tm+1(S)
where r, =1, and hence .
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(1) f: Z%(t_) [(D{*Px)(8)] dt < oo.

Also, if m<n—1, then

) * 1 )
0] > 2 (i+1)
2) (PYDOIZ [ = DL x)(s)] ds
fort=T (j=m+1,...,n—1).
Indeed, for every w=t¢

DL+ D2 [ s (D8 0] s,

which gives (2), since lim (D¥x)(w)=0. Combining (1) and (2), we obtain

jml(Dﬁ"’x)(t)l dt<o if m=n-1
3) "

« 1 ® 1 ®
J‘r T, +1(S +1)m r —1(S —I)J' I(D(,")x)(s)l ds ds,-1...dsme <
if m<n-1.

Now, by the L’Hospital rule, we can derive for i=0,1, ..., [
i (DO L hemyy ) =
!L’E Ro() !Lrg (D!™x)(t)=L>0
and hence there exists a positive constant ¢ so that
(D¥x)(t)ZcRin(t) forall t=T% (i=0,1,...,1).
Thus

(D¥x)[gu(t)]Z cR.m[gu(t)] forevery t=T
(k=1,..,Ni; i=0,1, .., 1)

and consequently, for all t= T, there holds

[(DIx)()| = [F(t;5 x(go(1)), (DPx)(gs(D)), ..., (D°x){a:(D)))]
= lF(t; CRo».(go(t)), Cle(gl(t))’ ey CR[,,.(Q;(!)))I-

And so, because of (3), we have
4

jwlF(t; cRo..-1(go(t)), ..., cRin-1{g(t)))| dt<oo if m=n—1

f: 1 f ; f |F(t; cRom(go(s)), ---

rm+l(5m+1)m 2 rn—l(sn—l)

wees CRI(gi(s)))| ds dsn-y...dsm <o if m<n-—1,

L
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which means that (C[m]) is satisfied.
Now we turn our attention to the case of the linear differential equation with
deviating arguments

(D)o (D&™x)(t) + a()(DPx)[o(t)] + ... +
+ a,(t)(D"x)[0:(t)] + ao(t)x[00(t)] = 0.

For this equation we have the following corrolaries of Theorem 2.1.

Corollary 2.1. Let (X) be satisfied and suppose that:

(A), @420 on [te®) (i=0,1,..,1)
or
(Az)l a;=0 on [to, w) (l=0, 1, ..., l). —

Moreover, let m be an integer with ISm=n—1.
Then (Y[m]) is a necessary condition in order that the linear equation (D,),

have at least one (nonoscillatory) solution x so that llirg (D™x)(t) exists in
R - {0}. '
Corollary 2.2. Let (X) be satisfied and suppose that (A,).-. or (Az).-1 holds, i.e.

(Al)n—l a.'go on [t(), w) (i=0, 1,...,n—1)
or
(Az)n—l ai=<-_0 on [to, w) (i=0, 1, ...,n—l).

Then (Y[n—1]) is a necessary condition in order that the linear equation

(n—-1)
r

(D.-1)o have at least one (nonoscillatory) solution x so that !irg (D"~ Px)(¢) exists

in R — {0).

3. A special case

Here we shall confine our discussion to the special case where
n=..=ra=1.
In this case the differential equations (E), (Eo), (D:) and (D)o become
(E) xP()+F(t; x(go(1)), x'(g1(1))5 ..., x(gi(t))) = b(1),
(Eo) () + F(t; x(go()), x'(91(1)), ..., x(g:(2))) = 0,
(D) x™()+ a(t)xP[a()] + ... + ai(t)x'[0:(1)] + ao(t)x[00o(t)] = b(2),
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and
(D)o x(6)+ a()xP[a(D)] + ... + ai(t)x[0:(£)] + ao(t)x[0(1)] = 0,

respectively. Moreover, (X) is always satisfied and for every integer m with
0<m=n -1 the assumption (X[m]) holds by itself. Also, for any integers i and A
with 0=i=A1=n-1 we have

R,‘A(t) = ——?'l_‘ (t - t())A_i, tg t(].

In addition, for a nonnegative continuous function p on an interval of the form
[T, »), T=t, and for any integer m with 0Sm <n —1 there holds

w 1 w 1 w
j rm+|(sm+|)m,[" e L lp(s) ds dspci...dsSme < ®© <

¢J t" " "p(t) dt < .

Hence, applying Theorems 1.1 and 2.1 and Corollaries 1.2—1.3 and 2.1—2.2 to
the special case considered, we derive the following results.

Corollary 3.1. Let m be an integer with S m =n — 1 and suppose that: (C[m])
for some nonzero constant ¢

[ e | (125 au0) ™ gy ()™ e gy o)) e
< oo,
where
(g.(0))™ " =g, oy [gm (D)™ (i=0,1, ..., 1)
(B[m)) j"t"-'—qbun dt < o.

Then for every real number L with Lc>0 and I—;l<|L|<|cl there exists
a (nonosciliatory) solution x of the differential equation (E) with

lim x?(t)=(sgnL)o (i=0,1,..,m—1) whenm>0
(mu»!@xmm=mum%QxL
!i_.'?, x?()=0 (j=m+1,...,n—1) whenm<n-—1.

Corollary 3.2. Suppose that the function F has the sign property (I) or (II) and
let m be an integer with ISm=n—1.
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Then (C[m)) is a necessary condition in order that the differential equation (E,)
has at least one (nonoscillatory) solution x so that 'lin_) x™(t) exists in R — {0}.
Corollary 3.3. Let m be an integer with S m=n — 1 and suppose that (B[m])

holds. Then we have:
a) If

(¥[m]) Iwt""""'[a.-(t)]"'"la.-(t)l dt<w (i=0,1,..,1),

then for every number L with L # 0 there exists a (nonoscillatory) solution x of the
linear equation (D,) satisfying. (P.(x)).

B) If a,=Z0 on [to, ®) (i=0,1,...,1) or a;=0 on [ty, ®) (i=0,1, ..., 1), then
(Y[m]) is a necessary condition in order that the linear equation (D,)o has at least

one (nonoscillatory) solution x so that !im x™(t) exists in R — {0}.
Corollary 3.4. Suppose that the condition (B[n — 1)), i.e.
(B[n-1]) f |b(2)| dt < =,

holds. Then we have:
a) If (Y[n —1]), i.e. the condition

(¥[n-1]) fm[ai(:)~-'-'|ai(:) dt<o (i=0,1,..,n—1),

is satisfied, then for every L # 0 there exists a (nonoscillatory) solution x of the
linear equation (D,_,) which satisties (P.-,(x)), i.e.

lim x®(t)=(sgnL) (i=0,1,...,n-2)

t—>®

(I",.-l(x))[
!Lrg () =(n-1)! !L'E ’_t‘:(f_?___xL_
B) Ifa;Z0 on [to, ©) (i=0,1,...,n—1) ora;=0 on [t, ®) (i=0,1, ..., n - 1),

then (Y[n —1]) is a necessary condition in order that the linear equation (Da-1)o,
i.e. the equation

(Da-1)o x(t) + au-r()x "V 0n-a ()] + ... +
+ al(t)x'[(h(t)] + ao(t)x[Uo(t)] = 0,

have at least one (nonoscillatory) solution x so that lim *=1(t) exists in R — {0}.
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ACHUMIITOTUYECKOE MOBEJEHHUE OJHOI'O KIIACCA
HEKOJIEBJIIOIUXCST PELIEHUN
IN®PEPEHIIUMAIILHBIX YPABHEHUN C OTKJIOHAIOUAMUCS APTYMEHTAMU

Ch. G. Philos
Pe3ome

B craThe M3ydaeTcs acCHMMNTOTHYECKOE MOBEAEHHE OJHOTO KJacca HEKONEOMIOIWHXCA pelIeHHH
nucdepeHunanbHbIX ypaBHEeHUH n-ro nopaaka (n>1) ¢ OTKIOHAIOIUMHUCA apryMEHTaMH. DTH ypas-

HeHHs comepXat r-npoussofHbie D®x (i=0, 1, ..., n) Hen3BecTHOH YHKUHHM X, onpenensieMble
cleyIoIMM 06pa3oM :

D®x=x, D¥x=r(D!"x) (i=1,2,...,n—-1) n D™x=(D" “x).

rae r; (i=1,2, ..., n—1) — nonoxurenbHbie HenpepbiBHbIE (GYHKUHAH HA HHTEpBaeE [f,, ©).
IMatoTcs pocratoynsle W HeOOXOAMMBIE M JOCTAaTOYHBIE YCIOBHS A/ CYLIECTBOBAHHA XOTS Obl
ofHOTO (HeKoNEGMOMErocs) peMeHHs X Takoro, 4To

lim (D{™x)(0)

cymectsyet B R — {0}, rne m — uenoe, 1=m=n-—1.
Tlony4ennble pe3yabTaThl 06061a0T pe3yabTarThl, AaHHble B [2] u [3].
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