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Math. Slovaca 33,1983, No. 4, 409—428 

ASYMPTOTIC BEHAVIOUR OF A CLASS 
OF NONOSCILLATORY SOLUTIONS 

OF DIFFERENTIAL EQUATIONS 
WITH DEVIATING ARGUMENTS 

CH. G. PHILOS 

0. Introduction 

The present paper is concerned with n-th order (n>l) differential equations 
with deviating arguments, which involve the r-derivatives D(,)jt (i = 0, 1, ..., n) of 
the unknown function jt defined by 

D(0)jt = Jt, D'px^r^D^xy 
(i = l , . . . , # i - l ) and D(n)jt = (D (n"1)jt)', 

where r, (i = 1, ..., M - 1) are positive continuous functions on an interval [t0y oo). A 
real-valued function h is said to be n-times r-differentiable on an interval [T, oo), 
T^t0 if D(n)h is defined on [T, oo), and h is said to be n-times continuously 
r-differentiable on [T, oo) if D(n)h is continuous on [T, oo). Note that in the special 
case where rx = ... = r„_i = 1 the above notion of the r-differentiability specializes 
from the one of the usual differentiability. Recently, there has been an increasing 
interest in studying the oscillatory and asymptotic behaviour of differential 
equations involving the r-derivatives of the unknown function in place of its usual 
derivatives. 

More precisely, the paper deals with the asymptotic behaviour of nonoscillatory 
solutions of differential equations with deviating arguments of the form 

(E) (D(n)Jt)(0 + F ( r ; j t < ^ o ( 0 > , 
( D ^ J t X ^ O ) , . . . , ( D ( / ) j t ) ( ^ ( 0 » = ^(r), t^t0, 

where: r0 = 1; / is an integer with 0 ̂  / ̂  n — 1; 

(D^x)(gi(t)) = (W>x)[gtl(t)], .... (D?x)[giN,(t)]), 
& = (& ,giNl) (i = o, l , . . . , / ) ; 
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gik (k = l , . . . , N , ; i = 0, 1, . . . , / ) are continuous real-valued functions on the 
interval [t0, oo) with 

\imgik(t) = co (k = l,...,Ni;i = 0,l,...,l); 

b is a continuous real-valued function on [t0, oo) and F is a continuous real-valued 
function defined at least on [t0, oo) x (R + vR-), where N = N0+Ni + ... + N, and 
R+ = (0, oo), R = (-oo,0). Without any further mention, we suppose that: For 
every t = t0, the function |F( t ; )| is increasing on R+ and decreasing on R-. For 
real-valued functions defined on subsets of RN mono tonicity is considered with 
respect to the order in RN defined by the positive cone {Y=(yi , ..., yN)eRN: 
yi = 0, ..., yN = 0}. Sufficient smoothness for the existence of solutions of (E) on an 
infinite subinterval of [t0, oo) will be assumed. In what follows the term "solution" 
is always used only for such solutions x(t) of (E) which are defined for all large t. 
The oscillatory character is considered in the usual sense, i.e. a continuous 
real-valued function which is defined on an interval of the form [T, oo) is called 
o sc i l l a to ry if the set of its zeros is unbounded above, and otherwise it is called 
n o n o s c i l l a t o r y . 

For our purposes, for any integers / and A with 0 = i = X = n— l,v/e introduce the 
function Rik which is defined on [t0, oo) by 

( 1, if i = A 
Rik(t)= \ f' = v< 1 f'.+ i 1 Hi-x i 

7 7 7 x-.. — 7 — r d s x . . . d s / + 2 d s I + i , if * < A . 
U , 0 ri+l(si+l) Jt0 ri+2(si+2) Jto rk(sk) 

In particular, for any integer A with 0 = X = n - 1, we put 

Rk(t) = R0k(t), t = t0. 

To obtain our results we need the following lemma from [1]. 

Lemma 0.1. Let A, 0 < A ^ r i — 1, be an integer such that 

!'%>-" ( i - A>-

Moreover, let h be a function whose k-th r-derivative D^h exists on an interval 
[Too), T^to. 

If lim (Dl»h)(t) exists in R*-{0}, where R* = Rv{-<fi, °°} is the extended 

410 



real line, then so does lim [h(t)IRk(t)] and, moreover, 
t—>oo 

lim [h(t)/Rx(t)] = lim (Dr

x)h)(t). 

The subject of this paper is the following: Let m be an integer with l^m^n — \. 
Provided that 

(-5[m]) fW) = C° (i = h - m ) 

for the case m > 0 and that the function \b\ satisfies a smallness condition 
depending on m (which holds by itself if b = 0), we shall find a condition 
(depending on m) for the function F, which ensures the existence of at least one 
(nonoscillatory) solution x of the differential equation (E) with 

(*) \im(Dr

m)x)(t) = \im4^=LeR-{0}. 

t—°° <—°° Km(t) 

Next, we shall consider the differential equation (E) with b = 0, i.e. the equation 

(E0) (Dr

n)x)(t) + F(f, x(Qo(t)), (Dii)x)(9i(t)), ..., 
(Dr

l)x)(Sl(t))) = 0, 
and we will suppose that the functions r, (i = 1, ..., n — 1) are such that 

(-0 / " - $ - = - (i = i , . - , " - l ) 

and that F has one of the sign properties 

(i) 

(И) 

J F ( f : Y ) ^ 0 for every t^t0 and Y e K ? 
l F ( f ; Y ) ^ 0 for every t^t0 and YeR", 

(F(t; Y)-i0 for every r ^ r 0 and Y e K ? 
l F ( t ; Y ) ^ 0 for every r ^ r 0 and YeR?. 

Then we shall prove that the condition which is sufficient in order that the 
differential equation (E0) have at least one (nonoscillatory) solution x satisfying (*) 
is also necessary. The results obtained extend previous ones due to the author, 
Sficas and S t a i k o s [2] and to the author and S t a i k o s [3] concerning the special 
case where / = 0. Notice that the methods used here pattern after that of [2] and [3]. 

1. Sufficient conditions 

To obtain our first result (Theorem 1.1) we shall apply the fixed point technique 
by using the following Schauder's theorem (Schauder [4]). 
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The Schauder theorem. Ler E be a Banach space and X a nonempty, convex and 
closed subset of E. Moreover, let S be a continuous mapping of X into itself. If SX 
is relatively compact, then the mapping S has at least one fixed point (i.e. there 
exists an xeX with x = Sx). 

A set 9 of real-valued functions defined on the interval [T, oo) is said to be 
(cf. [5]) equiconvergent at oo if all functions in 9 are convergent in R at the point oo 
and, moreover, for every e>0 there exists a T ' _ . T such that, for all functions / in 
9, 

1/(0-Jim f(s)\<e for every t^T. 

Let now B([T, oo)) be the Banach space of all continuous and bounded 
real-valued functions on the interval [T, oo), endowed with the usual sup-norm || ||. 
We need the following compactness criterion for subsets of B([T, oo)), which is 
a corollary of the Arzela—Ascoli theorem. For a proof of this criterion we refer to 
Staikos [5]. 

Compactness criterion. Let 9 be an equicontinuous and uniformly bounded 
subset of the Banach space B([T, oo)). If 9 is equiconvergent at oo, it is also 
relatively compact. 

Theorem 1.1. Let m, / _ _ m _ _ n - l , be an integer such that (Z[m]) holds when 
m > 0 , and: 

(C[m]) For some nonzero constant c 

j \F(t',cR0,n-\(go(t)), cR^n-^g^t)), ..., cR,,n-\(g,(t)))\ dt<oo 

if m = n — 1 

-—7-—y-. - — J - — \ \ \F(s;cRQm(g0(s)),cR,m(gl(s))J... 
J fm + \\Sm + i) Js„ 2 'n-\ySn-\) Js„_x 

_..., cR,m(g,(s)))\ ds dsn-x...dsm+i<co if m<n-l. 

(B[m\) There holds 

\b(t)\ df<oo if m = n - l 

~r U V " ~—U—\\ \Hs)\dsdSn-\...dsm+x<*> if m<n-\. 
J 'm + l^m + l j Jsn-2 rn-\\Sn-\) Js__, 

\c\ 
Then for every real number L with Lc>0 and - ! y - < | L | < | c | there exists 

a (nonoscillatory) solution x of the differential equation (E) with 
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(P_(*)) 

\im(D(
r
,)x)(t) = (sgnL)co (i = 0, 1, . . . , m - l ) when m>0 

• - + 0 0 

lim (D(
r
m)jc)(r) = l i m - ^ - = L 

lim (D(
r
j)jc)(0 = 0 (/ = m + 1, ..., n - 1) when m<n-l. 

d= 

Proof. The substitution u = —x transforms (E) into the equation 

(D^u)(t) + P(t;u(g0(t)), 
(D^u)(gi(t)),...,(D^u)(gt(t))) = B(t), 

where P(t; Y) = -F(t; -Y) and 6(t) = -b(t). The transformed equation is sub
ject to the assumptions of the theorem with - c in place of c. Thus we can confine 
our discussion only to the case of positive c. 

Let L be a (positive) number with -<L<c. By condition (B[m\) we choose 

a To>to such that c-L>d, where 

\ \b(t)\dt if m = n-l 

f } T...T \ r f \b(s)\dsdsn-l...dsm+i if m < r t - l . 
JTo rm + l\Sm + i) J*r,-2 ^r t - l (5 n _ l ) Jsn_i 

Next, by taking into account condition (C[m\), we consider a Ti__To so that 

0.k(O=To forevery fi_T (fc = 1, ..., N,; i = 0, 1, ...,/) 
and 

JjF(r; cRo,n-i(g0(t)), cR,,„_,(0,(O>,..., c_^-_,(0,(O>)|df_ic-L - d 

if m = n — 1 

I r !_ v..f°° r * J |F(5;ci?0.(_7o(5)>,cK,m(^,(5)>,... 

..., ci-/m(fif/(s)>)|ds d5n-,. . .d5m+ ,_ic-L-d if m < n - l . 

Now, we consider the Banach space E of all real-valued functions with 
continuous and bounded n-th r-derivative on the interval [T, »), endowed with 
the norm ||| ||| defined by 

• { 
||_||. if m = 0 

IID^II+S ' ^ ' ^ P 1 if m>0. 
i-0 i^imViJ 

We observe that the restriction of the function LRm on [T, - ) belongs in E, and so 
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we consider the nonempty, convex and closed subset X of E, which contains all 
function x e E with 

|x-__Rj | |__c-L, 
namely 

\x-L\\ = c-L if m = 0 

'-' |(D r°x)(T) 
ІDГдc-LЦ+S Žc-L if m > 0 . 

Rim(T) 

Next, we shall prove that for any function x in x these holds 

|(P.0x)(Q 
RimЏ) 

^c-L forall t^T (i = 0, 1, ..., m). 

This is obvious for m = 0. Let us suppose that m > 0 and let us consider an arbitrary 
function x in X. Then we observe that 

\(D[m)x){t)-L\^c~L for all t^T. 

Hence for every t=T we obtain 

(D ( m - , ) x)(f) 
- L = 

1 

*_-,.(.) -Rm-,m(t) I ^ ^ ^ ^ ^ Г ^ ( D ^ ) ( í ) d í - ^ - - ^ l 

:5-£í-j(D«---'x)(Л+/; ^[(D-x)(_)-L]d.+L/; -^--Li.m_,m(ř)} 

__.m-,m(r) 
Km-l.m(t) 

and hence 

(Dìm'í}x)(T) 
-R~-l,m(T) + Řzb)rdij | ( D í"' ) ( s ,-L i d 5 

________*)(t) r |< ;Km-,m(T) . _ __ _g 
^m-,,w(t) | Я m _,, w (0 

(pr- , )x)(T) 
- L + Rm-l,m\T) 

+кhr)í-å7)>(D'r'x)(s)-Цäs 

R„^ш(Dr-j!ţm_ L | + | | D „ , . Ł | | , j - d, 

|(DГ—>x)(T) 

Km-I.m(t) (s) 

Лm-l .m(T) 
- - L + | D ( m ) x - L . 
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Thus, 
(Dř—ъxo - L 

Rm-\,m(t) 

Next, provided that m > 1, for t _̂  T we get 

__5c-L forall r_^T. 

(p ("- 2 )„)(0 L = i 
-Rm-2.m(0 -Rm-2,m(0 

(D<"-2)x)(T) + ľ —------(DÍ"-,,x)(í)ds-LRя._2.«(0 
Jт rm-l(s) 

--c-híří {<-»—-XT.+/; %? 
-ľVm-l.m(s) 

(» 
(DГ"x)(.) 

-Rm-l,m(s) 
- L ds + 

+ L 

1 
-Rm-2,m(0 

Г _ k _ ^ ) d î _ L R m . 2 Л ( ) | 
Jт rm-i(s) ') 

[[(D(

r-
2)x)(T)-L_?m_2.m(T)]+ f *—•»(» f__ł______l(£)_L] d s 

l Jт rm-,(s) | кm-,.m(s) I J 

^Km-2.m(Г)Г(D("-2)x)(Г) .1 1 f R--..-C 
Я--2.m(0 I Яn-2.-(T) ^l Km-2.-(0Jт ._.-,(_] 

» (D|""x)(.) 
-Rm-l.m(s) 

- L ds, 

and consequently 

(D("-2)x)(Q T |^R m - 2 . m (T) L - L â 
-Rm-2,m(0 ' I -Rm-2,m(0 

(D("-2)x)(T) 

, 1 Г -^m-l.mj 

-Rm-2,m(0 JT rm-l(s; 

» 
( » 

-Rm-2,m(T) 
-L 

Rm-l,m(S) 
-L ds 

. Km-2,m(T) 

Rm-2.m(0 
(D ( "- 2 ) x)(T) Ł 

-Rm_2,m(T) 
|D r"- I łx 
I -ГVm — l . m 

- L 
1 ГRm-Um(s) ] 

Rm-2.m(0Jт гж_,(s) °SJ 

(D("-2)x)(T) 
-Rm-2,m(T) 

- L 
ІDГ"- x 

P 
II -ГVm — 1 , m 

- L 

(D("-2)x)(T) 
.(T) 

- L 
(D("-°x)(T) 

-Rm-l,m(T) 
- L + ||DÍ")x-L 

Hence 
(D(m-2)x)(Q 

П ц - 2 , ' « ( 0 
- L _ic-L forall t*__T. 
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If ra>2, then, following the same procedure, we conclude that for every t^T 

x(t) 

Rom(f) 
- L -sS 

(DГx)(T) 
Rim(T) 

-L + | | D < m , x - L | | š c - L . 

We have thus proved our assertion. 
Now, let x be an arbitrary function in X . Then for i = 0, 1, ..., / we have 

0<(D<
r
i)x)(t)ScRim(t) for every t^T 

and consequently 

where 
0<(Dinx)*(t)^cRim(t) for all t^T(), 

(D{px)*{t) = , < n v W M - l (D«x)(t)it í = T 

{(Di^m^L if T „ < f ^ T . 

Thus for all t^T 

0<(Dil)x)*[gik(t)]^cR,m[gik(t)] (k = 1, ..., iV,; i = 0 , 1. ..., /) 

and hence, since for any t ^ f„ the function |F(f; )| is increasing on R+. we have 

\F(t; x*(g„(t)), (D^x)*(g,(t)), ..., (D<' ,*)*(a,(f)»|< 
<\F(t; ci?„m(a„(f)), cR,„,(a,(f)), ..., ci? /m(g,(f)))| for every t^T. 

Thus, because of (C[m]) and (B[m]) for any f ^ T there holds 

j~[F(s;x*(g„(s)),(Drx)*(g,(s)),...,(D[»x)*(g,(s)))-b(s)]ds <°o if m 

= n-\ 

l i " r — - . . . í " 7 — - í" lF(s;x*{g„(s)),(D^x)*(gi(s)),... 
\Jt rm+,(sm+l) J,„ 2 r„_, ( í„- i )J ,„ , 

...,(Di,)x)*(g,(s)))-b(s)]dsds„ ,...ds„ <oo if щ<n — 1. 

Next, we define the mapping S as follows: 

f,=v<. ! p. i r-,. 2 i r-

(S,)(f) = LRm(f) + Jr - ( 7 , ) J T ^ ) - J T ^ T o L 
•[F(s;x*(a„(5)),...,(D r '

,x)*(.g,(s)))-/7(5)]d5ds„ ,...d-2ds, 

if m = n — \, 

(sx)(t)=LRm(t)+(-ir ' - i " ^ / ; ^ - / ; ' d b l ! 

7 v - f , /« J " [F(s^*<a»(s)>'-
rm+l(jm+l) J.„ 2 r„-,(sn-i) J,„ , 
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..., (Dr
nx)*(g,(s)))-b(s)]ds ds„-i...dsm+1 dsm...ds2dsi 

if 0 < m < n - l , 

(_x»)._i.w+(-irf-^-r;i5... 
•I , ,' . f [F(s;x'Ms)))-b(s)\ds<ls.-,...<ls,ds, 
Jsn-2

 rn-\\Sn-\) Jj-_, 

if m = 0. 
In order to apply the Schauder theorem it must be verified that S is a mapping of 

X into itself, SX is relatively compact and S is continuous. 
a) SXcX. 
Indeed, for any function xeX and every f__.T we obtain 

|(D!">Sx)(0-L| = 

If [F(s;x*(g<{s)),...,(D<,>x)*(gl(s)))-b(s)]ds if m = n-l 
\Jt 

If". / . v - f 7 - ^ - - - ; f" [F(*;*•(».(-)>,... 
|J/ rm + lVsm + 1,/ Js„-2 ' f i - l V - » n - l / J*,,-. 

...,(D<')jr)*(a,(s)))-i7(s)]djds„-1...d5m+1| if m < n - l 

l~[\F(s;x*(go(s)),...,(D(nx)*(g,(s)))\ + \b(s)\]ds if m = « - l 

f". A v " f 7—^—S f" [\F(s;x*(g0(s)),... 
Jt rm + \\Sm + \) Jsn-2

 rn-\\Sn-\) J-n_. 

,..., (D<nx)*(g,(s)))\ + \b(s)\]ds ds„-i...dsm+i if m < / i - l 

f [\F(s;cRo.n-1\j0o(s)),...,cRl.n-1(gl(s)))\ + \b(s)\]ds if m = n - l 

~\l'r (s ) • / " TlT^f" r|F(*;cJlo-(flo(*)>,... 
Jt 'm + H*ifl + U Js„-2 'n-l(Sn-l) J,m_, 

..., cR,m(g,(s)))\ + \b(s)\]ds dsn-i...dsm+1 if m < n - l 

£(c-L-d) + d 
= c-L. 

Also, if m > 0, we have 

(D?Sx)(T) 
-L = 0 0 = 0, 1, . . . , m - l ) . 

Rim(T) 

And for any xeX, \\\Sx -LJ?m | | |_Jc-L and consequently SxeX. 
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< < 

(3) SX is r e l a t ive ly c om pa c t . 
Obviously, it suffices to prove that the set 

^ = { D ( m ) 5 x : j c e X } 

is a relatively compact subset of the space B([T, oo)). Furthermore, by the 
compactness criterion, & is relatively compact if it is uniformly bounded, equicon-
vergent at oo and equicontinuous. Now, by the definition of X and the fact that 
SXcX, there holds 

\\D(m)Sx\\ = c for every xeX, 

which means that 8F is a uniformly bounded subset of B([T, oo)). Also, for any 
function x e X and every t = T we obtain 

\(D(m)Sx)(t)-L\ = 

j^ [ |F(s ;^*(^0(s)) , . . . , (D ( / )Jc)*(g /(s))) | + |b (s ) | ]ds if m = n-\ 

f" 7—yS \ S [|f(j;x*(go(j)),-
Jt r m + l ( s m + 11 Jsn-2 fn-iySn-l) Jsn-l 

...,(D(
r
l)x)*(gl(s)))\ + \b(s)\]dsdsn-1...dsm+l if m<n-\ 

and hence 

lim (D(m)Sjt)(0 = L for every x _ X, 

i.e. _̂  is equiconvergent at oo. Finally, in order to prove that & is equicontinuous, 
for any function xeX and every U, t2 with T^U^h we get 

\(D(m)Sx)(t2)-(D
(
r
m)Sx)(t1)\ = 

r[F(s;x*(go(s)),...,(D(l)x)*(gi(s)))-b(s)]ds\ if m = n - 1 

P f - f" [F(s;x*(go(s)),...,(D(»x)*(g,(s)))-b(s)]dsdsn , 
J t*i rn-l^sn-11 Jsn-i 

= K | if m = n — 2 

P—r—J" — r — v - f " — r — ^ f " [ITs;**<0o(*)>,... 
Jf, rm + Hsm + lJ Jsm + i rm + 2(,sm+21 J*„-2 rn-l(sn-lj Jsn i 

- . . . ,(D ( / )jc)*(6f,(s)))-b(s)]ds d_-_1...d_m+2dsm+J if M > 2 and m<n-2 
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l'\\F(s ; x*(g0(s)), .... (D<'>„-)*Ms)»l + ll>(-)|] d_ if m = n - 1 

-^ P - /- , f [^s' x*(9o(s)), .... WM'M-O))! + |t(-)ll ds d_._, 
Jtx

 rn-\\*n-\) Jsn-\ 

if m = n — 2 

r~~77~~J ~"~I7~r-f r~7~lf" n~(*;**(flo(s)>,... 
J/, 'm+U-m+U ^m+l 'm + 2V-*m + 21 J---2 ' n - l ^ n - l J J___. 

[...,(D<'>jc)*Ms)>)l + |Ms ) | ]d . d_--,...d.m+2d_m+I if n > 2 and m<n-2 

I \\F(t; cR0,„-i(g0(s)), ..., cRl,n-i(g,(s)))\ + \b(s)\] ds if m = n - l 
J<i 

ZT~~—^ t ' F ^ ; cR0,„-2(go(s)), ..., cH l,-__(0 l(s)»| + |ft(5)|] ds d.-_, 
Jr, rn-H-Jn-1/ J_n-i ' v " 

if m = n-2 

rh i f 0 0 1 f00 1 f~ 
~—r~—T ~—r~—"•• ~~~~r^—\\ [\Hs;cR0m(go(s))9... 

J., rm + l^sm + lJ Js- + i rm + 2\Sm + 2) J_„_2 rn-nsn-lJ J___. 

[_..., C-R/m(fif/(s)))| + |6(s)|] ds ds«-> ...d_.m+2dsm+1 if n > 2 and m < n - 2 . 

y) The mapp ing S is cont inuous . 
Let xeX and (XV)VSN be an arbitrary sequence in X with 

III | | | - I i m * v = *. 
V —»00 

Then it is easy to verify that for every t^T0 

lim (D^)*(t) = (Di°x)*(t) .(i = 0, 1, ..., /). 

On the other hand, for any ve/V and every r S T we have 

\F(t; x*(g0(t),..., (D . . '>x-)*M0»|--
__|F(f; cR0m(g0(t)),..., cRlm(g,(t)))\. 

Thus, because of condition (C[m\), we can apply the Lebesgue dominated 
convergence theorem to obtain the pointwise convergence 

lim (Sxv)(t) = (Sx)(t), t =_ T. 

In order to prove that 
HI HI - lim Sxy = Sx, 

v—»oo 

we consider any subsequence (^)yeN of (Sxv)veN- Then, because of the relative 
compactness of SX, there exist a subsequence (uvJveN of (§Mv)V€iv and a w e E so 
that 
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Ill III - l i m v»Qv = w . 

Since | | | ||(-convergence implies the pointwise one to the same limit function, we 
always have w = Sx, which proves the continuity of S. 

Finally, the Schauder theorem ensures the existence of at least one fixed point x 
of the mapping S. Then x = Sx and consequently 

(Din)x)(t)=-F(t;xHg0(t)),...,(D
irl)xr(gl(t)))+b(t), t^T, 

namely the fixed point x of the mapping 5 is a solution on [T, oo) of the differential 
equation (E). Moreover, x satisfies Pm(x)). Indeed, for every ti_.T we obtain 

|(D<" _)(.•)---1-i 

J [\F(t; x*(g0(s)), ...,(Dll)x)*(g,(s)))\ + \b(s)\]ds if m = n - 1 

J " . I v ~ J " - - ^ T [\F(s;x*(g0(s)).... 

Jt rm+iySm + lJ JSn 2 rn-Hsn-11 J sn i 

..., (Di,)x)*(g,(s)))\ + \b(s)\]ds ds^.-.ds^ if m < n - l 

and consequently 
lim(D r

m)„)(/) = L. 
Also, when m < n — 1, for / = m + 1, ..., n — 1 and every ti_T we have 

|(D«>x)(0|-J 

J [|F(.-;„*<fl„(j)),...,(D<' )„)*<o,(s)))| + |&(5)|]ds, if y = n - l 

J " r ^ i - J " r-s~if" n/(-;**<-o(5)>,... 
Jr ry+ltsy + l j Js„_2 ' n - K s n - 1 1 J s - - , 

...,(D r '
)„)*<fl,(s)))| + |fe(s)|]d5d5„-1...ds)+„ if ; < n - l . 

Hence, if m < n - 1, there holds 

lim(D (
r '

)„)(0 = 0 (/ = m + l , . . . , n - l ) . 

In addition, from Lemma 0.1 it follows that 

,;_, x(t) _ 

Moreover, if m > 0, then it is easy to verify that 

l im(D r °„ ) (0=°° 0 = 0, 1, . . . , m - l ) . 

Corollary 1.1. Let m, / __i m __i AZ - 1, be an integer such that (1 [m]) holds when 
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m>0. Under condition (C[m])9 for every real number L with Lc>0 and 
\c\ 
Lr-L< \L\ < \c\ there exists a (nonoscillatory) solution x of the differential equation 

(E0) satisfying (Pm(x)). 
Next, let us consider the case of more general differential equations with 

deviating arguments of the form 

(E*) (D^x)(t)+tFM;x^e0(t)), 
Q = l 

(D<,»x)(tel(t)), .... (D(yx)^elc(t))) = b(t), 

where for any Q = 1, ..., n we have: 0-\le-\n — 1; 

iwUOD («' = 0, 1, ..., le); j (DTx)(гвi(t)) = ((Dľx)[гeiì(t)],..., (D^x)^ 
[ TQІ = ( Tpi i , . . . , TQІNøi) 

TQlk (k = \> ..., NQi; i = 0, 1, ..., lQ) are continuous real-valued functions on the 
interval [t0, <») such that 

lim TQik(t) = oo (k = \, ...,NQi; i = 0, 1, ..., lQ) 

and FQ is a continuous real-valued function defined at least on the set [f0, «>) x 
(.R>U-RI<0, where vQ = NQ0 + NQI + ... +NQte. It is supposed that: For any Q = 
1, ..., \i and every t =̂  f0, the function \FQ(t; • )| is increasing on R"? and decreasing 
on .R!?. Following the same technique as in the proof of Theorem 1.1, we can 
obtain the following more general theorem. 

Theorem 1.1'. Let m be an integer with max lQ^m=\n-\ and such that 
e = i n 

(Z[m]) holds when m > 0 and the condition (B[m]) is satisfied. Moreover, suppose 
that: 

(C*[m]) For some nonzero constant c and every g = 1, ..., \i 

j | F , ( * ; c J W i ( r e o ( 0 > , c ^ if m 

= n - \ 

I*" \ r . . . n \ r f \FQ(s;cR0m(TQ0(s)),cRlm(TQl(s)),... 
J rm-,i(5m+i) JSn.2 r„-i(s,.-i) J-.., 
...cR,em(TQle(s)))\ dsdsn_i...d5m+i<oo if m<n-\. 

\c\ 
Then for every real number L with LoO and J 2 i < | L | < | c | there exists 

a (nonoscillatory) solution x of (E*) satisfying (Pm(x)). 

421 



Now, let us consider the linear differential equation with deviating arguments 

(D,) (D(
r
n)x)(t) + ai(t)(D[l)x)[ot(t)] + ... + 

+ „,(0(D(
r
1)x)[a1(0] + a0(t)x[oo(t)] = b(t), 

where a, (i = 0, 1, ..., /) are continuous real-valued functions on the interval [t0, oo) 
without any restriction on their sign and ot (i = 0, 1, ..., /) are also continuous 
real-valued functions on [t0, oo) with 

lim (7,(0= °° (i = 0, 1, ..., /). 

From Theorem 1.1'we obtain Corollary 1.2 below concerning the linear equation 
(Dt). In particular, for / = n - 1 we have Corollary 1.3 below. 

Corollary 1.2. Let m, I __ m _i n - 1, be an integer such that (I[m]) holds when 
m>0 and the condition (B[m]) is satisfied. Moreover, suppose that: 

(Y[m\) For every i = 0, 1, ..., / 

f \al(t)\Ri,n-l[ol(t)]dt<<* if m = n-\ 

r oo A r oo •* r oo 

T y..\ 7 \al(s)\Rim[ol(s)]ds dsn-i...dsm+l<oo 
J fm + iySm + l) Jsn 2

 rn-l\Sn-l) Jsn-} 

if m < n - 1. 

Then for every real number L with L -£ 0 there exists a (nonoscillatory) solution x 
of the linear equation (Dt) satisfying (Pm(x)). 

Corollary 1.3. Let (I) be satisfied and suppose that the conditions (B[n - 1]) 
and (Y[n — 1]), i.e. the conditions 

(B[n-l]) | " | b ( ř ) | d ř < o o 

and 

(Y[n-1]) | \al(t)\Ri,n^1[ol(t)]dt<co (i = 0, 1, ..., n - 1), 

hold. Then for every L=t 0 there exists a (nonoscillatory) solution x of the linear 
equation (Dn-_), which satisfies ( P ^ O ) ) , i.e. 

(Pn-Áx))< 
lim ( D ^ j c X t O ^ s g n L ) - (i = 0, 1, ..., n-2) 

lш(DГ^x)(t) = lim-fЩ- = L. 
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2. Necessary conditions 

Our basic purpose in this section is to prove that, for any integer m with 
l^m^n-1, (C[m]) is also a necessary condition in order that the differential 
equation (E0) have at least one (nonoscillatory) solution x satisfying (Pm(x)), 
provided that (I) holds and the function F has the sign property (I) or (II). 

Theorem 2.1. Suppose that (I) holds and the function F has the sign property 
(I) or (II). Moreover, let m be an integer with l^m<n-l. 

Then the condition (C[m\) is a necessary condition in order that the differential 

equation (E0) have at least one (nonoscillatory) solution x such that lim (D(m)x)(t) 
f-»oo 

exists in R — {0}. 
Proof. Let JC b e a solution on an interval [T0, o°), T0>t0, of the differential 

equation (E0) with lim (D(m)x)(t) = L for some LeR- {0}. Since the substitution 
f-»oo 

u = —x transforms (E0) into an equation of the same form satisfying the assump
tions of the theorem, we can restrict ourselves to the case where L is positive. 

If m > 0, then, in view of condition (I), we can easily derive that 

lim (D(i)x)(t) =oo (/ = 0, 1, ..., m - 1). 

Thus the r-derivatives D(
r
l)x (i = 0, 1, ..., I) are positive on an interval [T*, °o), 

TJgTo . Hence, if we choose a T S T * such that 

Qik(t)^T% forevery t^T (k = 1, ..., N,; i = 0, 1, ..., /), 

then from equation (E0) it follows that for all t^T 

(D(n)x)(t)^0 if (I) holds 
(D(n)x)(t)^0 if (II) holds. 

Namely, D(n)x is of constant sign on [T, °°). Thus the functions D(i)x (j = m, ..., 
n — 1) are also eventually of constant sign. Without loss of generality, we suppose 
that D(J)x (j = m, ..., n — 1) are of constant sign on the whole interval [T, °°). Next, 
provided that m < n — 1 we can use the assumption (2) to obtain 

I im(Dj°j0(0 = 0 (1 = m + l , ...,n-l). 

Furthermore, we get 

\(D<r>x)(t)-(D<r>x)(T)\=l' -------- \D<r+»x)(s)\ is, t*T, 

where r„ = 1, and hence «. 
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a) fV-Vi(D'm+,>;c)(')id'<o0-
JT rm + iU1 

Also, if m<n - 1, then 
(2) \(D?x)(t)\* f ^ -~\(Di^x)(s)\ ds 

Jt ri+i\S) 

forti_T (; = m + l, ..., n-1). 

Indeed, for every w i_ t 

\(Di»x)(t)\ + \(D«>x)(W)\^ f V V KD''+,>^)(s)l d s ' 
Jt rj + i^S) 

which gives (2), since lim (Dr
nx)(w) = 0. Combining (1) and (2), we obtain 

(3) ft: 

\(Dr
n)x)(t)\dt<oo if m = n-\ 

\ „ } v f - " V ~ l f |(D(,")x)(s)|dsds11-,...dsm+,<oo 
JT *m + l\Sm+l) JSn 2 fn-i^Sn-l) ./s__, 

if m<n — \. 

Now, by the L'Hospital rule, we can derive for i = 0, 1, ..., / 

I i m ^ ) ^ ( - " ) = lim(D^)Jc)(0 = L > 0 

and hence there exists a positive constant c so that 

(D^x)(t)^cRun(t) forall f__T* (i = 0 , l /). 
Thus 

(D (
r

o j c ) [^(0 ]^^ i m U„(0] for every f i_T 
(fc = l , . . . , N , ; 1 = 0 ,1 , . . . , / ) 

and consequently, for all fi_T , there holds 

|(D,"'x)(0| = |F(r;*<_o(0>.(D<
r

,)x)<fl,(r)>,...,(D,'>x)<fl,(0>)| 
^\F(t; cR0n(go(t)), cRlm(gl(t)), ..., cRlm(g,(t)))\. 

And so, because of (3), we have 
* • 

J |F(f;ci?„,„_,<a„(0>,...,ci?,.„-,<fl,(0>)|dr<oo if m = „ - l 

f V - r 7 ~ v - V r i H f " \F(t;cR0m(g0(s)),... 
JT rm + H s m + 11 Js„_2 rn-llsn-U •!*„-! 

..., c.R/m(0,(s)))| ds ds„_,...dsm+,<o° if m<n-\, 
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which means that (C[w]) is satisfied. 
Now we turn our attention to the case of the linear differential equation with 

deviating arguments 

(D,)o (D(
r
n)x)(t) + fl/(r)(D

(
r
/)jc)[a/(0] + ... + 

+ a,(t)(Dr
l)x)[oi(t)] + a0(t)x[oo(t)] = 0. 

For this equation we have the following corrolaries of Theorem 2.L 

Corollary 2.1. Let (I) be satisfied and suppose that: 

(A,), a,SO on [f0, oo) (i = 0, 1 I) 

or 

(A2), a.gO on [r0, » ) (i = 0, 1, ..., /). 

Moreover, let m be an integer with l^m^n-1. 

Then (Y[m]) is a necessary condition in order that the linear equation (D/)0 

have at least one (nonoscillatory) solution x so that lim (Dr
m)x)(t) exists in 

R-{0}. 

Corollary 2.2. Let (I) be satisfied and suppose that (Ai)n_i or (A2)„-i holds, i.e. 

(Ai)„-i a, ^ 0 on [r0, oo) (/ = 0, 1, ..., n - 1) 

or 

(A2)„-i a . ^ 0 on [fo, » ) (i = 0, 1, ..., n - 1). 

Then (Y[n - 1]) is a necessary condition in order that the linear equation 

(Dn-i)0 have at least one (nonoscillatory) solution x so that lim (D{n~l)x)(t) exists 

in R-{0}. 

3. A special case 

Here we shall confine our discussion to the special case where 

r, = ... = r„-, = l . 

In this case the differential equations (E), (E0), (D,) and (Dt)o become 

(E) xM(t) + F(t;x(g0(t)),x'(gl(t)),...,x^(gl(t))) = b(t), 

(Eo) xM(t) + F(t;x(go(t)),x'(g1(t)),...,x^(gl(t))) = 0, 

(D,) x (n )(0 + a,(0x(,)[<7,(0] + - + « . ( 0 * ' M 0 ] + a0(t)x[o0(t)] = b(t), 
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and 

(D/)0 x(n)(t) + a,(t)xin[a,(t)] + ... + fl.(0*'MO] + a0(t)x[o0(t)] = 0, 

respectively. Moreover, (I) is always satisfied and for every integer m with 
0 < m _i n - 1 the assumption (-T[m]) holds by itself. Also, for any integers / and X 
with 0_S/_SA__l.n — 1 we have 

Rix(t) = -~^(t-tof-\ tit tQ. 

In addition, for a nonnegative continuous function p on an interval of the form 
[T, oo), T^t(h and for any integer m with 0 * _ m < n - l there holds 

1 ... 7 ч p(s)ds dsn-\...dsm+x 

) Гm+l(sm + í) )sn 2 Г п - l ( s п - l ) Jsя , 

o í Г-^XOdґ' 

< o o o 

t < o o . 

Hence, applying Theorems 1.1 and 2.1 and Corollaries 1.2—1.3 and 2.1—2.2 to 
the special case considered, we derive the following results. 

Corollary 3.1. Let m be an integer with /_= m _i n - 1 and suppose that: (C[m]) 
for some nonzero constant c 

J V - \F (.; i, (UO)", Tm-{-^ <«.«»-..... ̂ -!T)7 <*(.»-) dt 

< o o , 

where 

(B[m]) f tn-,-m|b(0|dt<oo. 

Id 
Then for every real number L with Lc>0 and ~<\L\<\c\ there exists 

a (nonoscillatory) solution x of the differential equation (E) with 

lim x( , )(t) = (sgnL)oo (i = 0, 1, ..., m - 1) when m > 0 

(Pn,(x)X Hmx(m)(t)=m\lim^p-XL 
r-*°° r-»oo t 

Km x(,')(r) = 0 (/ = m + l, ..., n- 1) when m<n-l. 

Corollary 3.2. Suppose that the function F has the sign property (I) or (II) and 
let m be an integer with I _i m _5 n - 1. 
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Then (C[m\) is a necessary condition in order that the differential equation (E0) 

has at least one (nonoscillatory) solution x so that lim xim)(t) exists in R - {0}. 

Corollary 3.3. Let m be an integer with / § m = n — 1 and suppose that (B[m\) 
holds. Then we have: 

a) If 

(Y[m]) | V-1-m[a,(0r",|fli(0l <*'<«> 0 = 0, 1, ..., 0, 

then for every number L with L =£ 0 there exists a (nonoscillatory) solution x of the 
linear equation (Dt) satisfying (Pm(x)). 

p) If at^0 on [to, °°) (/ = 0, 1, ..., /) or a^O on [t0, oo) (/ = 0, 1, ..., / ) , then 
(Y[m]) is a necessary condition in order that the linear equation (Dt)0 has at least 

one (nonoscillatory) solution x so that lim xim)(t) exists in R - {0}. 

Corollary 3.4. Suppose that the condition (B[n - 1]), i.e. 

(B[n-\]) \m\b(t)\dt<co, 

holds. Then we have: 

a) If (Y[n - 1]), i.e. the condition 

(Y[n-\]) | [al(rr
1",>i0)d/<oo (/ = 0, 1, ..., n - 1), 

is satisfied, then for every L±0 there exists a (nonoscillatory) solution x of the 
linear equation (D„-i) which satisfies (Pn-i(x)), i.e. 

(A.-.0O) 
limx ( , )(ŕ) = (sgnL)a> (ŕ = 0, l , . . . , n - 2 ) 
t-*<X> 

^ lim ^-"(f) = (« - 1)! lim Щ='L. 
f-#<-» t 

( 3 ) 7 / ^ ^ 0 on [to, «>)(/ = 0, 1, ...,n-\)orai^0on [to,co)(i = 0, \,...,n-\), 
then (Y[n - 1]) is a necessary condition in order that the linear equation (D„-i)o, 
i.e. the equation 

(D„-i)o * ( n ) 0 ) + a.-i ( 0 * c " " V - i (01 + - + 
+ ax(t)x ' [ai(0] + ao(t)x[oQ(t)] = 0, 

have at least one (nonoscillatory) solution x so that lim (n 1}(/) exists in R - {0}. 
f-»oo 
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АСИМПТОТИЧЕСКОЕ ПОВЕДЕНИЕ ОДНОГО КЛАССА 

НЕКОЛЕБЛЮЩИХСЯ РЕШЕНИЙ 
ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ОТКЛОНЯЮЩИМИСЯ АРГУМЕНТАМИ 

СЬ.С. РЬПо8 

Резюме 

В статье изучается асимптотическое поведение одного класса неколеблющихся решений 
дифференциальных уравнений п-го порядка ( л > 1 ) с отклоняющимися аргументами. Эти урав
нения содержат г-производные Ог

пх (.? = 0, 1,..., п) неизвестной функции д:, определяемые 
следующим образом: 

О(

г

0)х = *, ^{

^

^)x = ^^(^^Гx)x)' ( / = 1 , 2 л - 1 ) и Ог

п)х = №1п 1)х)'. 

где г, ( / = 1 , 2, ..., п - 1) — положительные непрерывные функции на интервале [г0, <»). 
Даются достаточные и необходимые и достаточные условия для существования хотя бы 

одного (неколеблющегося) решения х такого, что 

Ит (Ог

т)х)(1) 

существует в Л - {0}, где т — целое, 1 ̂ т^п - 1. 
Полученные результаты обобщают результаты, данные в [2] и [3]. 
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