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Motti. Slovoca 32,1982, No. 3, 269—281 

MODULAR MEDIAN ALGEBRAS 

HILDA DRASKOVlCOVA 

J. H a s h i m o t o [5] shoved that bounded modular lattices can be characterized 
by the ternary operation (abc) = (aA(bvc))v(b AC) and exhibited a system of 
identities characterizing such a ternary algebra. Another system of axioms was 
given by M. K o l i b i a r and T. Marc i sova [9]. (In fact it is not clear whether the 
systems of axioms in [5] and [9] are equivalent.) We shall adopt for algebras in [9] 
the term modular median algebras (m.m. algebras). The modular median algebras 
corresponding to distributive lattices are characterized by the identity (xyz) = (yxz) 
[9]. These algebras were studied by several authors (e.g. G. Birkhoff and S. A. 
Kiss [1], M. S h o l a n d e r [10], H. J. B a n d e l t and J. H e d l i k o v a [2]; in the last 
paper a large list of references can be found). 

In the present paper some classes of m.m. algebras are studied. It is shown 
(Theorem 3.1) that the m.m. algebra M satisfies the identity 

(U) ((xyz)xt) = (xy(zxt)) 

if and only if neither a special algebra nor its specific homomorphic image is 
a subalgebra of s4. An important variety of m.m. algebras is the variety T given by 
the identity 

(T) ((xyz)uv) = ((xuv)(yuv)(zuv)). 

This variety is closely related to the dual discriminator variety studied by E. F r i ed 
and A. F. P ix ley [3]. Namely, if s4 is an algebra of such a variety and q is the 
corresponding ternary polynomial, then (A ; q) is an m.m. algebra of the variety T 
where q(x, y, z) = q(z, v, x). We shall show that an algebra of a dual dis­
criminator variety has all congruence relations permutable if and only if each of its 
congruence relations is regular. This is equivalent to the condition that the algebra 
(A; q) is relatively complemented (see section 2). The author wishes to thank 
J. H e d l i k o v a for her remarks which contributed to a better formulation of some 
parts of the section 3 of the present paper. 

1. 

For terminology in this paper we shall generally follow G. G r a t z e r [4]. 
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Definition 1.1. We shall call a set A with one ternary operation (xyz) a modular 
median algebra (an m.m. algebra and notation si = (A ; ( )) ) ;/ the following 
identities are satisfied in A: 

(1) {abb) b, 
(2) ((adc)bc)-(ac(bcd)). 

An m.m. algebra si is called distributive if (abc) = (bac) is fulfilled in A. 

Lemma 1.1 [9]. The following identities and implications are valid in each m.m. 
algebra 

(3) (aba) a. 
(4) (abc) (acb). 
(5) (aab) = a. 
(6) ((abc)bc) = (acb). 
(7) ((abc)ac) (ac(abc)) (abc). 
(8) (ab(cab))-(abc). 
(9) (abc)-c implies (bac) = c — (cab). 

(10) (bac) = (cab) implies (abc) = (bac). 
(11) (a(abc)(dbc)) = (abc). 

R e m a r k 1.1. In virtue of (1), (3) and (5) the algebra in Definition 1.1 is 
a median algebra in the sense of [4, Ex. 4, p. 356] and by [8] m.m. algebras have 
distributive congruence lattices. 

R e m a r k 1.2. The following results are given in [9]: Given a modular lattice 
!£=(L ; A, v) , the operation (xyz) = (* A(_V VZ))V(_VAZ) satisfies (1) and (2). The 
algebra (L ; ( )) will be reffered to as the m.m. algebra corresponding to (or derived 
from) the lattice it. Conversely, any m.m. algebra s4 with the elements o, 
u satisfying (oxu) = x for each xeA gives a modular lattice in which xAy = (xoy) 
and xvy — (xuy). 

In an m.m. algebra (A; ( ) ) we say that x is between a and b and write axb if 
x = (axb). From (4) and (9) it follows that axb implies bxa. The intenal (a, b) is 
defined as the set of all elements between a and b, i.e. (a, b) = {xe A: axb). We 
shall write abed instead of the next four betweenness relations: abc, acd, abd, bed. 
Evidently abed implies deba. We say that the elements a, b, c, d form a cyclic 
quadruple in an m.m. algebra when they satisfy abc, bed, cda, dab. 

Lemma 1.2. The following identities and implications are valid in each m.m. 
algebra. 
(12) ((abc)(bac)(cab)) = (abc). 
(13) ((acd)cb) = (at(dcb)) (ac(bcd)) -((acb)cd). 
(14) (ab cda)) = (a(bda)(cda)). 
(15) (ab(cda)) = (ac(bda)). 
(16) (ab acd)) = (a(bac)(acd)) (a(bad)(acd)). 
(17) abc and acd imply bed and abd (i.e. abed). 
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(18) (axb) = x and (ayb) = y imply (xay) = (yax) = (axy). 
(19) ((abc)de) = (((ade)(bde)(cde))de) implies 

((abc)de) = ((ade)(bde)(cde)). 
Proof. (12), (13), (14), (15) and (19) follow from the results of J. H e d l i k o v a 

[7]. For (17) see [6]. For the proof of (16) we shall use (7), (4); (15), (4): 
(ab(acd)) = (ab((acd)ca)) = (a(acd)(bca)) = (a(bac)(acd)). Hence using (4) 
we get (ab(acd)) = (ab(adc)) = (a(bad)(adc)). (18) can be deduced from the 
proof of Theorem 1 (to be exact from the condition (24)) in [9]. 

Lemma 1.3. Let 0 be a congruence relation of an m.m algebra si and let the 
elements x, y, z, u of A satisfy xyz and yzu. Then x&u implies y&z. In particular, 
x = u implies y = z-

Proof. y = (xyz)&(uyz) = (uzy) = z. 

In paper [3] the dual discriminator variety was studied. The dual discriminator is 
the ternary function d from A 3 to A, defined by d(x, y, z) = x if x = y and 
d(x, y, z) = z if x+ y. A variety V is a dual discriminator variety if V has a ternary 
polynomial symbol q(x, y, z) such that the corresponding polynomial q*(x, y, z) 
is the dual discriminator on each subdirectly irreducible (SI) algebra si from V. 

Theorem 2.1 [3 ; 3.2 Theorem]. For a variety V and a ternary polynomial symbol 
q(x, y, z) the following are equivalent: 
1) X is a dual discriminator variety with q(x, y, z) the dual discriminator on each 

SI member of V. 
2) The following are equations of X: 
a) q(x, z, z) = z, q(x, y, x) = x, q(x, x, z) = x, 
b) q(x, y, q(x, y, z)) = q(x, y, z), 
c) q(z, q(x, y, z), q(x, y, w)) = q(x, y, z), 
d) for each operation symbol f of X (where f is k-ary) 

q(x,y,f(zu ..., Zk)) = q(x,y,f(q(x,y, - ,) , ..., q(x, y, Zk))). 

If X is an idempotent variety, the equation d) may be replaced by 

d') q(x,y,f(zu ..., Zk)) = f(q(x, y, z ) , ..., q(x, y, Zk)). 

Lemma 2.1. Let T be the variety of all m.m. algebras satisfying the identity (T). 
Then T is a dual discriminator variety. An algebra si from T is SI if and only if for 
every x, y, zeA 

(t) (xyz) = x if y+z and (xyz) = y if y = z. 

The following identities hold in T: ((xyz)uv) = (x(yuv)(zuv)) = ((xuv)y(zuv)) 
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- ((xuv)(yuv)(zuv)) — (((xuv)(yui)(zuv))uv). The variety T has the congru 
ence extension property (CEP). 

Proof. Taking (xyz) for q(z, y, x) we can show (using (1), (3), (5), (6) and 
(11)) that a), b), c), d') from Theorem 2.1 are satisfied. According to [3] q(x, y, z) 
is a dual discriminator on SI members of T, hence (t) holds. Clearly all m.m. 
algebras satisfying (t) are SI. The last statement is true, because each its identity 
can be verified on each SI algebra from T. To show CEP for T it suffices to use [3 , 
3.16 Corollary]. 

In [3, Theorem 3.1] it is proved that in an algebra s4 from a dual discriminator 
variety (x, y)e©(a, b) if and only if 
i) for each ueA (uxy) = ((uab)xv) )• 

Lemma 2.2. In the variety T, (x, y)e 0(a, b) if and only if 
ii) (xab)xy) = x and ((yab)xy) y 

Proof Taking u = x and u=y in i) we get ii). Now suppose ii). Then the 
identities of Lemma 2.1 give 

(uxy) = (u((xab)xy)((yab)xy)) - ((u(xab)(yab))xy) 
= (((uxy)ab)xy) - ((uxy)(axy)(bxy)) = ((uab)xy) 

for each element u, hence i) holds 

Lemma 2.3. Let si (A ; ( )) belong to the variety T. Let a, be A. Then the 
interval (a, b) is a median subalgebra of si which is distributive, hence (a, b) is 
a distributive lattice with the operations x/\y = (xay), x v_y = (xby). 

Proof.2) First we shall show that (a, b) is a subalgebra of si. Let x, y, z e (a, b), 
i.e. (axb) = x, (ayb) = y, (azb)-z- By (9) we get (xab) = x-(bax) and analogous 
ly for y and z. Using (16), (7) and (4) we get (ba(bxy)) = (b(abx)(bxy)) 
= (bx(bxy)) - (bxy), hence (bxy)e(a, b). By Lemma 2.1, (a(zxy)(bxy)) 
= ((azb)xy) = (zxy), i.e. a(zxy)(bxy) and this together with a(bxy)b gives (by 
(17)) a(zxy)b, hence (zxy)e(a, b) and (a, b) is a subalgebra of A. Now we shall 
show that (a, b) is distributive, i.e. (xyz) = (yxz) is valid for each x, y, ze(a, b). 
By Remark 1.2, ((a, b); A, V) , where XAy = (xay), xvy = (xby) for x, ye (a, b), 
is a modular lattice. It is distributive, otherwise it would contain a five-element 
nondistributive modular sublattice in which the identity (T) is not fulfilled. 

Definition 2.1. An m.m. algebra si = (A; ()) is called relatively complemented 
if for each a, b, ce A satisfying abc (i.e. (abc) = b ) , there is an element de A such 

') We write (xyz) for q(z, y, x) 
2) Lemma 2.3 is a corollary of Theorem 3.2 because the identity (U) is a consequence of the identity 

(T). Nevertheless we give an independent proof, because it is much simpler than that of Theorem 3 2. 
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that the elements a, b, c, d form a cyclic quadruple. Then we call such element d a 
complement of the element b in the interval (a, c). 

Lemma 2.4. Let s4 = (A; A, V ) be a modular lattice and s4\ = (A ; ( )) the 
corresponding m.m. algebra. Then (abc) = b in s4t if and only if (a A b) v (bAc) 
= b= (avb) A (bvc). 

Proof. Let (abc) = b. Then (aA(bvc)) v (bAC) =b= (av(bAC)) A (bvc). 
It implies avb = av(bAc), bvc = (aA(bvc))vc = (avc) A (bvc). Hence 
(avb) A (bvc) = (av(bAc)) A (avc) A (bvc) = (av(bAc)) A (bvc) = b. 
b = (aAb) v (bAc) can be proved dually. Conversely, let (a A b) v ( 6 A C ) = b = 
(avb) A (bvc). Then bvc = (aAb)vc, aA(bvc) = aA((aAb)vc) = (aAb) 
v (OAC). Hence (abc) = (aA(bvc)) v (bAc) = (aAb) v ( U A C ) V ( 6 A C ) 

= (OAC) v (aAb) v (bAC) = ( a A c ) v i = ( O A C ) V ((avb) A (bvc)) = (avb) 
A (bvc)= b. 

The following Lemma 2.5 gives examples of relatively complemented m.m. 
algebras. 

Lemma 2.5. Let s4 = (A; A , V ) be a modular lattice and s4\ = (A; ()) the 
corresponding m.m. algebra. s4\ is relatively complemented if and only if s4 is 
a relatively complemented lattice. 

Proof. Let s4\ be a relatively complemented m.m. algebra and let a^b^c, a, 
b, ce A. Then (abc) = b and there exists de A such that a, b, c, d form a cyclic 
quadruple, i.e. bed, cda, dab. Using Lemma 2.4, from a^c and adc we get 
a^d^c, from bed, b^c, rf^cwe get bvd = c. b Ad = a can be proved similarly. 
Hence d is a complement of b in the interval (a, c) of the lattice s4. Conversely, let 
the lattice s4 be relatively complemented and let abc. Denote by d, a complement 
of the element aAb in the interval (OAC, a) (for Lemma 2.4 gives aAc^aAb) 
and by d2 a complement of the element bAC in the interval (OAC, C). We shall 
prove that d = di v d2 is a complement of the element b in the interval (a, c) of the 
m.m. algebra s4\, i.e. adc, bed, bad. First we shall show adc (using Lemma 2.4): 
aAd = aA(d\vd2) = div(aAd2) = d\v(aAc) = d\. Analogously dAc = d2. 
Then (aAd) v (d A C) = dtv d2 = d. Similarly the rest can be proved. Now we shall 
show bed: ( 6 A C ) V (cAd) = (bAc) v (cA(d\vd2)) = ( 6 A C ) v (d2v(cAd ,)) 
= (bAc) v (d2v(aAc)) = ( 6 A C ) V d2 = c. The following relations hold: 
(bvc)Aa = ((aAb) v (Z»AC)VC)AO = ((aAfc)vc)Afl = (aAb) v ( « A C ) 

= aAb,(bvc)Ad\ = (bvc) A (aAdi) = ((fcvc)Aa)Adi = (aA&)Ad, = OAC. 
Hence (bvc) A (cvd) = (bvc) A (cvd i ) = cv ( (b vc ) A d , ) = C V ( « A C ) = C. 

bad can be proved analogously to bed. 

Definition 2.2. A congruence relation & of an algebra s4 will be called regular if 
for each congruence relation <P of s4, aeA and [a]© = \a\4> imply 0=0. 
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Theorem 2.2. Let si be an m.m. algebra. Consider the following conditions. 
(i) si is relatively complemented. 

(ii) Each congruence relation of si is regular. 
(iii) The congruence relations of si are pairwise permutable. 
In each m.m. algebra, (i) implies (ii) and (iii). In algebras of the variety T (from 
Lemma 2.1) the conditions (i), (ii), (iii) are equivalent. 

Proof, (i) implies (ii): Let 0, <P be congruence relations of si such that there 
exists aeA with [ a ] @ = [ a ] 0 . With respect to symmetry, it suffices to show 
0^<P. Let x, ye A. Using (4) and (7) we get (axy)e(a, x), (axy)e(a, y). Let 
u, v be relative complements of the element (axy) in the intervals (a, x), (a, y), 
respectively. x0y implies x = (axx)0(axy)0(ayy) = y. With respect to Lemma 
1.3, this implies a@u, a&v. Using our assumption we get a<Pu, a<Pv. By Lemma 
1.3, we have (axy)<Px, (axy)4>y, hence x<Py. 

(i) implies (iii): Let 0, 4> be congruence relations of si and a0b, b<Pc. Then 
a = (aac)0(abc), (abc)<P(acc) — c. Denote d-(abc). Then we have a0d, d&c 
and (adc) = d (by (7) and (4)). Since si is relatively complemented, there exists an 
element e e A such that a, d, c, e form a cyclic quadruple. With respect to Lemma 
1.3 we get a<Pe, e0c, hence 0, <P are permutable. 

(iii) implies (i): Let .s^eT have permutable congruence relations and let abc. 
Then a = b (0(a, b)), b = c (0(b, c)). Using permutability we get that there exists 
de A such that a = d (0(b, c)) and d = c (0(a, b)). With respect to Lemma 2.2, 
((abc)ad) = a, ((dab)dc) = d, ((cab)dc) = c. Hence (bad) = ((abc)ad) = a and 
using (9) we have (dab) = a. Similarly (bed) = ((cab)cd) = c, (adc) 
= ((dab)dc) = d. Thus the elements a, b c, d form a cyclic quadruple, q.e.d. 

(ii) implies (i): Let S e T , a, b, ceB and abc. According to Lemma 2.3 the 
interval (a, c) is a distributive median algebra and a distributive lattice in which 
xvy = (xcy). Denote 0= 0(b, c), A = {xe B: x = a(0)}. Given xe A we get, 
using Lemma 2.2, ((abc)ax) = a, i.e. (bax)~a. Thus 

(a) xeA implies bax. 

Denote W=\/{0(a, t): teA}. Evidently y^0 and A is a class of the congru­
ence relation W. <J/=6> follows from (ii). Thus b^ciV), hence there are 
sequences c = e0, eu ..., e„=b and t\, t[, ..., t'„e A such that e, = e,+i(0(a, t',)), 
i = 0, 1, ..., n-\. Denote (bce,) = f. Then 

fe(b, c), f, = (bce,) = (bce, + l) /,. t(0(a, t',)), f=c, f„ = b. 

According to Lemma 2.2, this implies ((f,at',)f,f,+i) = f for / = 0, 1, . . . , n — \. 
Denote (f,at',) = t,. Evidently f,t,a (by (7)). By (17), abc and bfc imply af,c which 
together with at,f, implies at,c, hence t,e(a, c). We get t,eAn(a, c) because of 
t, = (f,aa) = a(0). It was shown before that 
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(b) (t,f,f,+\) = f„ i = 0 , l , . . . , / i - l . 

For / = 0 we have c = (t0cfx) = t0vf\. Proceeding by induction suppose c = t-i v t, 2 

v... v t0vf, = (s,cf), where s, = t,\vt,2v...vto. Using the identity (T) we have 

c = (fcs,) = ((t,f,f,+\)cs.) = ((t,CS,)(f,CS,)(f,+\CS,)) = 
= ((r,C5,)c(/1 + iC5,)) = t, V S, v/1 + i = t, V /, i V ... V t0vf, + \. 

Hence for all .' = 0, 1, ..., n — 1, c = t,vti i v . . . v t0vf,+\. In particular c = r„ ivf„ 2 

v . . . v fov/„ = tvb = (tcb), where t = t,t>\Vtn 2 v . . . v ioe(a , c). Then /ivfe 
= (t\ct0) = (aca) = a(0) and using induction we get t = a(0). Hence teA. 
According to (a), bat. Because of te(a, c), we get ate. Hence a, b, c, t form 
a cyclic quadruple, q.e.d. 

Corollary 2.1 [2, Theorem 6.1]. The conditions (i), (ii), (iii) from Theorem 2.2 
are equivalent in algebras of the variety of all distributive median algebras. 

It is easy to see that a modular lattice has the same congruence relations as the 
corresponding m.m. algebra. Hence we have: 

Corollary 2.2. The conditions (i), (ii), (iii) from Theorem 2.2 are equivalent in 
any distributive lattice. 

Corollary 2.3. Let si be an algebra of a dual discriminator variety with the dual 
discriminator q(x, y, z). The conditions (ii), (iii) (from Theorem 2.2) and the 
following condition are equivalent: 
(iv) The m.m. algebra (A ; q), where q(x, y, z) = q(z, y, x), is relatively com­

plemented. 
Proof. Indeed, the equations a), b), c), d) in Theorem 2.1 imply that d) holds in 

the variety V under consideration also if / stands for a polynomial symbol (it 
suffices to use induction on the number of operation symbols occuring in / ) . Hence 
q(a,b,b) = b (i.e. (1)) and 

q(q(a, b, c), d, e) = q(q(q(a, d, e), q(b, d, e), q(c, d, e)), d, e). 

According to (19) (Lemma 1.2) q satisfies the identity (T). Since q is a dual 
discriminator one can easily check that q(x, y, q(x, z, u)) = q(q(z, x, y), x, u) 
holds in each SI member of V. Hence this identity holds in V. It follows that, given 
an algebra si = (A; (/,)) of V, the algebra (A; q) satisfies the identities (1), (2) 
and (T), hence it belongs to T. Obviously (A; q) and (A; q) have the same 
congruence relations. According to [3, Theorem 3.11] the same holds for the 
algebras (A ; q) and si = (A ; (/,)). 

Theorem 2.3. Each m.m. algebra si from the variety T (see Lemma 2.1) can be 
embedded into an m.m. algebra &=(L;()) derived from a modular lattice 
<£\ = (L; A, v ) (see Remark 1.2). 
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Proof. Obviously it suffices to show that SI members of T (which are given in 
Lemma 2.1) can be embedded in modular lattices. The two-element m.m. algebra 
can be bijectively embedded in the two-element lattice. In the other case a SI m.m. 
algebra si can be embedded into a modular lattice consisting of the elements 0, 
1 and the set of atoms of cardinality card A. Each element of A will be mapped into 
an atom. From this the assertion follows. 

Corollary 2.4 [10]. Each distributive median algebra can be embedded into 
a distributive median algebra derived from a distributive lattice. 

3. 

Throughout this section we shall call the m.m. algebra ({a, b, c}; ( ) ) , a, b, c 
different, in which a = (abc), b = (bac), c = (cab) hold, a triangle algebra and 3€ 
will denote the following six-element m.m. algebra (observed by J. H e d l i k o v a ) : 
5if = ({a, b, c, x, y, z};( )) where {a, b, c} and {x, y, z} form triangle subalgebras 
and the relations axyb, byzc, czxa hold. From this it can be easily derived that 

(ayz) = (aye) = (azb) = x, (yza) = (yca) = y, (zya) = (zba) = -

and the relations symmetrical to these ones. Further by W we will denote the 
four-element m.m. algebra ({a, b, c, 0} ; ( )), a, b, c, 0 different, derived from the 
five-element modular nondistributive lattice (diamond) ({a, b, c, 0, 1} ; A, V ) (see 
Remark 1.2). It can be easily checked that the m.m. algebra W and the triangle 
algebra are SI m.m. algebras, W is a homomorphic image of 3€ and 7( is subdirectly 
reducible. 

Lemma 3 .1 . In any m.m. algebra the following implication holds: ((abc)ad =£ 
(ab(cad)) implies (abc)^(bac). 

Proof. Let (abc) = (bac). Then the identity (13) gives ((abc)ad) = ((bac)ad) 
= (ba(cad)). Using (10) and (13) we get ((abc)ad) = ((cab)ad) = (ca(bad)) 
= ((cad)ab). Hence (ba(cad)) = ((cad)ab) = ((abc)ad) and (10) gives 
(ab(cad)) = (ba(cad)) = ((abc)ad), which proves the assertion. 

Lemma 3.2. Let x, y, z, v be elements of an m.m. algebra satisfying the following 
conditions. 
a) x, y, z form a triangle subalgebra (hence x, y, z are different). 
b) xvy, xvz and x4=v hold. 
Then the subalgebra generated by {x, y, z, v} is either isomorphic to the algebra 
W or it contains a subalgebra isomorphic to the algebra S€. 

Proof. By (13) v = (xyv) = ((xyz)yv) = ((xyv)yz) = (vyz). Now we have two 
possibilities: 
i) (yvz) = (vyz). 

ii) (yvz)^(vyz). 
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In case i), (yvz) = (vyz) = v, hence yvz holds. Further, y£v and z£v hold (for 
y = v implies x = (xyz) = (xvz) = v and z = v implies x = (xzy) = (xvy) = v). Hence 
the elements x, y, z, v form a subalgebra isomorphic to W. In case ii), according to 
(10), the elements (yzv), (zvy), (vyz) = v form a triangle subalgebra (see (12)). 
From (7) we get (yv(yzv)) = (yzv), hence y(yzv)v holds. With respect to (17), it 
imples (together with yvx) that y(yzv)vx hold. Because of the symmetry, 
jcu(z>>t;)z.Using(7)and(ll)weget(y(>>2t;)(->>u)) = (y(yzv)((zyv)zv)) = (yzv), 
hence y(yzv)(zyv) holds. With respect to (7) and (9), (zy(zyv)) = (zyv) and 
y(zyv)z. Because of (17) y(yzv)(zyv)z- The elements x, y, z, v, (yzv), (zvy) are 
different: According to (13), y = (yzv) implies x = (xzy) = (xz(yzv)) = ((xzv)zy) 
= (vzy) = v, which is a contradiction. Analogously x = (yzv) implies (by (7)) 
v = (yvx) = (yv(yzv)) = (yzv) = x. Hence y± (yzv) =£ x. y = v implies x = v as in 
part i). Hence the elements x, y, v, (yzv) are different. Symmetrically x, z, v, 
(zyv) are different. The proof of y£ (zvy) and z4= (yzv) is similar. Hence the above 
six elements form the algebra ffi. 

Lemma 3.3. Let a, b, c, d be elements of an m.m. algebra. Denote i = (abc), 
j = (bac), k = (cab), m = ((abc)b(cad)), t = ((abc)ad) and r = (ab(cad)). The 
following identities hold. 
(20) r = (rad). 
(21) t = (ia(cad)). 
(22) t = (ai(cad)) = ((cad)ai). 
(23) r = (tb(cad)). 
(24) t = (itr). 
(25) r = (trm). 
(26) m = (rbc). 
(27) m = (ic(bad)). 
(28) m = (ij(cad)). 
(29) m=(ik(bad)). 
(30) m = (imj). 
(31) m = (imk). 
(32) i = (tbc). 

Proof. We shall use (4) freely in proofs. 
(20): According to (14), (7), (14), , (13) and (7) 

r = (a(bad)(cad)) = ((a(bad)(cad))a(bad)) = ((ab(cad))a(bad)) = 
= (((ab(cad))ab)ad) = ((ab(cad))ad) = (rad). 

(21): By (7) and (13) 

t = (((abc)ac)ad) = ((abc)a(cad)) = (ia(cad)). 

(22): By (7) (aci) = i and (ca(cad)) = (cad). According to (9) (ac(cad)) = (cad). 
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Using (18) and (21) ((cad)ai) = (ai(cad)) = t. 
(23): (tb(cad))= (use (22)) 

= ((a(cad)i)(cad)b)= (use (13)) 
= (a(cad)(b(cad)(abc)))= (by (15)) 
= (a(cad)(ba((cad)bc)))= (use (15)) 
= (ab((cad)a((cad)bc)))= (by (16)) 
= (ab((cad)(a(cad)c)((cad)bc))) = (by (7), (9) and (5)) 
= (ab((cad)(cad)((cad)bc))) = (ab(cad)) = r. 

(24): By (20) and ( H ) (itr)-((abc)((abc)ad)(rad))- t. 
(25): According to (23), (11) and (23) (trm)-

= (t(tb(cad))((abc)b(cad))) - (tb(cad)) r. 

(26): Using (13) m = (ab(cb(cad))) = ((ab(cad))bc) = (rbc). 
(27): According to (26), (15) and (13) m = (rbc) = 

= ((ac(bad))cb) = ((acb)c(bad)) -(ic(bad)). 
(28): Using (26) we get m = (rbc)= (by (13) and (7)) 

= (ab((cad)bc)) = (ab(((cad)ca)cb)) (by (13) and (14)) 
(ab(((cad)cb)ca)) = (a(bca)(((cad)cb)ca))= (use (13) twice) 
= (a(bca)((cad)c(bca))) = ((a(bca)c)(bca)(cad)) = (by (8)) 
= ((abc)(bca)(cad)) = (ij(cad)). 

(29): According to (28) ((abc)b(cad)) - m = 
= ((abc)(bca)(cad)), hence ((acb)c(bad)) = ((acb)(cba)(bad)). 
This together with (27) gives m = (ic(bad))- (ik(bad)). 

(30): With respect to (28), (7) and (28) (imj) = 
= (ij(ij(cad))) = (ij(cad)) = m. 

(31): The proof is analogous to that of (30) (use (29)). 
(32): By (7) (abi) = /'. It implies (bai) = /' (by (9)). It gives together with (13) that 

(bat) = (ba(iad)) = ((bai)ad) = (iad) = t. Hence (abt) = / holds by (9). Using 
(13) (tbc) = ((abt)bc) = ((abc)bt) = (ib(iad)) and by (16) (ib(iad)) 
= (i(bia)(iad)) = (ii(iad))~i. Hence (tbc) = i holds. 

Theorem 3.1. Let U be the variety of all m.m. algebras satisfying the identity 
(U). The m.m. algebra si does not belong to the variety U if and only if si contains 
a subalgebra isomorphic to one of the m.m. algebras W and X. 

Proof. We shall use the notation from Lemma 3.3. Let si not belong to U and 
let a, b, c, d be such elements of A that t = ((abc)ad) =£ (ab(cad)) = r. With 
respect to Lemma 3.1, (10) and (12), the elements /,/', k forma triangle subalgebra 
of si. Applying (25), (24) and Lemma 1.3 to the elements /', /, r, m we get /'=£ m. 
Because of (31) and (30), the assumptions of Lemma 3.2 for the elements /', /', k, 
m are fulfilled. Hence the subalgebra generated by {/', /', k, m) has the desired 
property. As to the converse assertion, it suffices to check that the algebras W and 
^f do not satisfy the identity (U). 
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Theorem 3.2. Lef U be the variety from Theorem 3.1, si e\J, a, be A. Then the 
interval (a, b) is a subalgebra of si which is distributive, hence (a, b) is 
a distributive lattice with the operations xAy = (xay), x\fy = (xby). 

For the proof of Theorem 3.2 the following Lemmas are useful: 

Lemma 3.4. In any m.m. algebra si,a,be A the following implications hold, x, 
v, ze(a,b) implies (ax(xyz)) = (xa(xyz)) = ((xyz)xa) and (by(xyz)) 
= (yb(xyz)) = ((xyz)yb). 

Proof. By (7), (9) , (13), (18), (13), (7) and (9) we get ((xyz)ox) 
= ((yx(xyz))ox) = ((yxa)x(xyz)) = ((axy)x(xyz)) = (ax(yx(xyz))) 
= (ax(xyz)), hence by (10) (ax(xyz)) = (xa(xyz)) holds. Using (13), (18) and 
(13) we get (by(xyz)) = ((byx)yz) = ((xyb)yz) = ((xyz)yb), which according to 
(10) gives (by(xyz)) = (yb(xyz)). 

Lemma 3.5. In any m.m. algebra si, a, be A, x, y, ze(a,b) imply 
((xyz)ba)e((ax(xyz)), (xyz) ) n ((xyz), (by(xyz)) )• 

Proof. Using Lemma 3.4, (13) and (11) we have 
((xyz)((xyz)ba)(by(xyz))) = ((xyz)((xyz)((xyz)ba)(yb(xyz))) = 
= ((xyz)((xyz)ba)((yba)b(xyz))) = 
= ((xyz)((xyz)ba)((xyz)ba)((yb(xyz))ba)) = ((xyz)ba) 
thus ((xyz)ba) e ( (xyz), (by(xyz)) )• Using (15), (13) twice and (11) we get 
((xyz)((xyz)ba)(ax(xyz))) = 
= ((xyz)((xyz)ba)(a(xab)(xyz))) = ((xyz)((xyz)ba)(a((xyz)ab)x)) = 
= ((xyz)((xyz)ba)((xa(xyz))ba)) = ((xyz)ba), hence 
((xyz)ba)e((ax(xyz)), (xyz) ) . 

Lemma 3.6. In any m.m. algebra si, a, be A, x, y, ze(a, b) imply 
(xyz) £ ( (ax(xyz)), (by(xyz)) ) and (xyz) e ( (ay(xyz)), (bx(xyz)) )• 

Proof. Using Lemma 3.4, (13) twice, (7) and (5) we get 
((ax(xyz))(xyz)(by(xyz))) = ((a(xyz)x)(xyz)(y(xyz)b)) = 
= (a(xyz)(x(xyz)(y(xyz)b))) = (a(xyz)((x(xyz)y)(xyz)b)) = 
= (a(xyz)((xyz)(xyz)b)) = (a(xyz)(xyz)) = (xyz), 
hence (xyz) e ( (ax(xyz)), (by(xyz)) )• The second assertion follows by symmetry. 

Lemma 3.7. Let si be an m.m. algebra and let (uvt) = v for u, v, teA. Then 
le(u, v)n(v, t) implies l = v. 

Proof. According to (9) (ulv) = l = (vlu) = (luv) and (vlt) = 1 = (tlv) = (Ivt). ulv 
together with uvt gives Ivt by (17), hence l = (lvt) = v. 

Lemma 3.8. In any m.m. algebra si, a, be A, x, y, ze(a, b) imply (xyz) 

= ((xyz)ab). 
Proof. It is a corollary of Lemmas 3.5, 3.6 and 3.7. 
Proof of T h e o r e m 3.2. Let sieU, c, d, e, feA. Using (26), (U) and (32) we 

have 
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((cde)d(ecf)) = ((cd(ecf))de) = (((cde)cf)de) = (cde), hence 
(33) (cde) = ((cde)d(ecf)) 
holds in each i e U . We have to prove that (a, b) is a subalgebra of si, i.e. 

((ab(xyz)) = (ba(xyz)) = ((xyz)ab) = (xyz) 
for x, y, ze(a, b). Using (33), the assumptions, (13), Lemma 3.4 and (13) twice 
we get 
(a(xyz)b) - ((a(xyz)b)(xyz)(bax)) - ((a(xyz)b)(xyz)x) - ((a(xyz)x)(xyz)b) = 
= ((x(xyz)a)(xyz)b) - (x(xyz)(a(xyz)b)) = (x(xyz)(b(xyz)a)). 
Symmetrically (b(xyz)a) = (x(xyz)(b(xyz)a)). Hence (ab(xyz)) = (ba(xyz)), 
which together with (10) and Lemma 3.8 gives (ab(xyz)) = ((xyz)ba) — (xyz), 
thus (xyz) e (a, b), q.e.d. Further assertions of Theorem 3.2 can be proved 
analogously as the corresponding assertions in Lemma 2.3. 

A d d e d in proof. After this paper was elaborated the author learned of the 
paper by J. R. Isbell [11], where various properties of the variety T were 
established. (In [11] the members of T are called isotropic media.) 
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МОДУЛЯРНЫЕ МЕДИАННЫЕ АЛГЕБРЫ 

Хилда Драшковичова 

Резюме 

Модулярная медианная алгебра (м.м. алгебра) есть множество с одной тернарной операцией 
(аЬс), удовлетворяющей тождествам (аЬЬ) = Ь и ((аа'с)Ьс) = (ас(Ьса')). Всякая модулярная 
структура с операцией (хуг) = (хл(учг)) V (улг) является м.м. алгеброй и наоборот, всякая 
ограниченная модулярная структура может быть охарактеризована как м.м. алгебра с двумя 
специальными элементами. Рассматриваются многообразия Т и V м.м. алгебр, определенные 
соответственно тождествами ((хуг)^) = ((xиV)(уиV)(xиV)), ((хуг)х!) = (ху(гх<)). Т тесно 
связано с многообразиями с дуальным дискриминатором. Для алгебр, принадлежащих Т, перес­
тановочность и регулярность конгруэнции эквивалентны. Алгебра $4 принадлежит и тогда 
и только тогда, когда не содержит подалгебру, изоморфную одной из двух указанных алгебр. 
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