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MODULAR MEDIAN ALGEBRAS
HILDA DRASKOVICOVA

J. Hashimoto [5] shoved that bounded modular lattices can be characterized
by the ternary operation (abc)=(aA(bvc))v(bac) and exhibited a system of
identities characterizing such a ternary algebra. Another system of axioms was
given by M. Kolibiar and T. Marcisova [9]. (In fact it is not clear whether the
systems of axioms 1n [5] and [9] are equivalent.) We shall adopt for algebras in [9]
the term modular median algebras (m.m. algebras). The modular median algebras
corresponding to distributive lattices are characterized by the identity (xyz) = (yxz)
[9]. These algebras were studied by several authors (e.g. G. Birkhoff and S. A.
Kiss [1], M. Sholander [10], H. J. Bandelt and J. Hedlikova [2]; in the last
paper a large list of references can be found).

In the present paper some classes of m.m. algebras are studied. It is shown
(Theorem 3.1) that the m.m. algebra of satisfies the identity

(V) ((xyz)xt) = (xy(zxt))

if and only if neither a special algebra nor its specific homomorphic image is
a subalgebra of &/. An important variety of m.m. algebras is the variety T given by
the identity

(T ((xy2)uv) = ((xuv)(yuv)(zuv)).

This variety is closely related to the dual discriminator variety studied by E. Fried
and A.F. Pixley [3]. Namely, if &/ is an algebra of such a variety and q is the
corresponding ternary polynomial, then (A ; ¢) is an m.m. algebra of the variety T
where g(x, y,z) = q(z, y, x). We shall show that an algebra of a dual dis-
criminator variety has all congruence relations permutable if and only if each of its
congruence relations is regular. This is equivalent to the condition that the algebra
(A; q) is relatively complemented (see section 2). The author wishes to thank
J. Hedlikova for her remarks which contributed to a better formulation of some
parts of the section 3 of the present paper.

1.
For terminology in this paper we shall generally follow G. Gratzer [4].
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Definition 1.1. We shall call a set A with one ternary operation (xyz) a modular
median algebra (an m.m. algebra and notation o =(A;())) if the following
identities are satisfied in A:

(1) (abb) b,
(2) ((adc)be)— (ac(bed)).
An m.m. algebra A is called distributive if (abc)=(bac) is fulfilled in A.

Lemma 1.1 [9]. The following identities and implications are valid in each m.m.

algebra

(3) (aba) a.
(4) (abc) (ach).
(5) (aab)=a.

(6) ((abc)bc)=/(ach).
(7) ((abc)ac) (ac(abc)) (abc).
(8) (ab(cab))— (abc).
(9) (abc)— c implies (bac) = c —(cab).
(10) (bac)={(cab) implies (abc)= (bac).
(11) (a(abc)(dbc)) = (abc).

Remark 1.1. In virtue of (1), (3) and (5) the algebra in Definition 1.1 is
a median algebra in the sense of [4, Ex. 4, p. 356] and by [8] m.m. algebras have
distributive congruence lattices.

Remark 1.2. The following results are given in [9]: Given a modular lattice
F=(L; A, v), the operation (xyz) = (x A(yv z))v(y Az) satisfies (1) and (2). The
algebra (L ; ()) will be reffered to as the m.m. algebra corresponding to (or derived
from) the lattice ¥. Conversely, any m.m. algebra & with the elements o,
u satisfying (oxu) = x for each xe A gives a modular lattice in which x Ay =(xo0y)
and xvy—(xuy).

In an m.m. algebra (A ; ()) we say that x is between a and b and write axb if
x = (axb). From (4) and (9) it follows that axb implies bxa. The interval (a, b) is
defined as the set of all elements between a and b, i.e. (a, b)={xe A: axb}. We
shall write abcd instead of the next four betweenness relations : abc, acd, abd, bcd.
Evidently abcd implies dcba. We say that the elements a, b, ¢, d form a cyclic
quadruple in an m.m. algebra when they satisfy abc, bcd, cda, dab.

Lemma 1.2. The following identities and implications are valid in each m.m.
algebra.
(12) ((abc)(bac)(cab))= (abc).
(13) ((acd)cb)=(ac(dcb)) (ac(bcd))—((acb)cd).
(14) (ab cda))=(a(bda)(cda)).
(15) (ab(cda))=(ac(bda)).
(16) (ab acd))=(a(bac)(acd)) (a(bad)(acd)).
(17) abc and acd imply bcd and abd (i.e. abcd).
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(18) (axb)=x and (ayb) =y imply (xay)=(yax)=(axy).
(19) ((abc)de) = (((ade)(bde)(cde))de) implies
((abc)de) = ((ade)(bde)(cde)).

Proof. (12), (13), (14), (15) and (19) follow from the resuits of J. Hedlikovad
[7). For (17) see [6]. For the proof of (16) we shall use (7), (4); (15), (4):
(ab(acd)) = (ab((acd)ca)) = (a(acd)(bca)) = (a(bac)(acd)). Hence using (4)
we get (ab(acd)) = (ab(adc)) = (a(bad)(adc)). (18) can be deduced from the
proof of Theorem 1 (to be exact from the condition (24)) in [9].

Lemma 1.3. Let © be a congruence relation of an m.m algebra & and let the
elements x, y, z, u of A satisfy xyz and yzu. Then xOu implies y©Oz. In particular,
x=u implies y = z.

Proof. y=(xyz)O(uyz)=(uzy)=z.

2.

In paper [3] the dual discriminator variety was studied. The dual discriminator is
the ternary function d from A® to A, defined by d(x, y, z)=x if x=y and
d(x,y, z)=zif x#y. A variety V is a dual discriminator variety if V has a ternary
polynomial symbol q(x, y, z) such that the corresponding polynomial ¢¥(x, y, z)
is the dual discriminator on each subdirectly irreducible (SI) algebra «f from V.

Theorem 2.1 [3; 3.2 Theorem). For a variety V and a ternary polynomial symbol
q(x, y, z) the following are equivalent:
1) V is a dual discriminator variety with q(x, y, z) the dual discriminator on each
SI member of V.
2) The following are equations of V:
a) q(x, z Z)= Z, Q(x’ ys x)=x, Q(x, X, z)=x,
b) q(x, y, q(x, y, 2)) = q(x, y, 2),
) q(z, q(x, y, 2), q(x, y, w))=q(x, y, 2),
d) for each operation symbol f of V (where f is k-ary)

Q(X, ya f(ZH [T Zk))=q(x) y: f(q(x9 }’, Zl)a veey Q(X’ ) Zk)))'
If V is an idempotent variety, the equation d) may be replaced by
d’) q(x, y, f(zy, ..y 2))=f(q(x, ¥, 2), .. q(x, y, 2)).

Lemma 2.1. Let T be the variety of all m.m. algebras satisfying the identity (T).
Then T is a dual discriminator variety. An algebra of from T is S if and only if for
every x, y, Z€A

(t) (xyz)=x if y¥z and (xyz)=y if y=z.
The following identities hold in T: ((xyz)uv) = (x(yuv)(zuv)) = ((xuv)y(zuv))
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— ((xuv)(yuv)(zuv)) — (((xuv)(yur )(zuv))uv). The variety T has the congru
ence extension property (CEP).

Proof. Taking (xyz) for g(z, y, x) we can show (using (1), (3), (5), (6) and
(11)) that a), b), ¢), d") from Theorem 2.1 are satisfied. According to [3] g(x, y, 2)
is a dual discriminator on SI members of T, hence (t) holds. Clearly all m.m.
algebras satisfying (t) are SI. The last statement is true, because each its identity
can be verified on each SI algebra from T. To show CEP for T it suffices to use [3,
3.16 Corollary].

In [3, Theorem 3.1] it is proved that 1n an algebra & from a dual discriminator
variety (x, y)e @(a, b) if and only if
i) for each ue A (uxy)=((uab)xy)).

Lemma 2.2. In the variety T, (x, y)€ ©(a, b) if and only if
ii) (xab)xy)=x and ((yab)xy) 'y

Proof Taking u=x and u=y 1n i) we get ii). Now suppose 1i). Then the
identities of Lemma 2.1 give

(uxy) = (u((xab)xy)((yab)xy)) — ((u(xab)(yab))xy)
= (((uxy)ab)xy) — ((uxy)(axy)(bxy)) = ((uab)xy)

for each element u, hence i) holds

Lemma 2.3. Let &/ (A;()) belong to the variety T. Let u, be A. Then the
interval (a, b) is a median subalgebra of A which is distributive, hence (a, b) is
a distributive lattice with the operations x ny =(xay), x vy = (xby).

Proof.?) First we shall show that (a, b) is a subalgebra of «. Let x, y, z€(a, b),
i.e. (axb)=x, (ayb)=y, (azb) — z. By (9) we get (xab) = x — (bax) and analogous
ly for y and z. Using (16), (7) and (4) we get (ba(bxy)) = (b(abx)(bxy))
= (bx(bxy)) — (bxy), hence (bxy)e(a, b). By Lemma 2.1, (a(zxy)(bvy))
= ((azb)xy) = (zxy), i.e. a(zxy)(bxy) and this together with a(bxy)b gives (by
(17)) a(zxy)b, hence (zxy) € (a, b) and (a, b) is a subalgebra of A. Now we shall
show that (a, b) is distributive, i.e. (xyz) =(yxz) is valid for each 1, y, z€(a, b).
By Remark 1.2, ((a, b); A, v), where x Ay =(xay), xvy=(xby) for x, y e (a, b),
is a modular lattice. It is distributive, otherwise 1t would contain a five-element
nondistributive modular sublattice in which the identity (T) is not fulfilled.

Definition 2.1. An m.m. algebra s = (A ; ()) is called relatively complemented
if for each a, b, c € A satisfying abc (1.e. (abc)=b ), there is an element d € A such

') We write (xyz) for g(z, y, x)
*) Lemma 2.3 is a corollary of Theorem 3.2 because the idenuity (U) is a consequence of the identity
(T). Nevertheless we give an independent proof, because it is much simpler than that of Theorem 3 2.
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that the elements a, b, ¢, d form a cyclic quadruple. Then we call such element d a
complement of the element b in the interval (a, c).

Lemma 2.4. Let /=(A; A, v) be a modular lattice and sf,=(A; ()) the
corresponding m.m. algebra. Then (abc)=b in o, if and only if (anb) v (bAc)
=b= (avb) A (bvo).

Proof. Let (abc)=b. Then (an(bvc)) v (bac) =b= (av(bac)) A (bveo).
It implies avb = av(bac), bve = (an(bve))ve = (ave) A (bvc). Hence
(avb) A (bvc) = (av(bac)) A (ave) A (bve) = (av(bac)) A (bvc)=b.
b=(anab) v (bnc) can be proved dually. Conversely, let (aab) v (bAac) =b=
(avb) A (bvc). Thenbvcec = (anb)ve, an(bve) = an({(anb)vc) = (anb)
v (aac). Hence (abc) = (an(bvc)) v (bac) = (anb) v (anc) v (bac)
= (anc)v (aanb) v (bac) = (anc)vb = (arnc) v ((avb) A(bvc)) = (avbd)
A (bvc)=b.

The following Lemma 2.5 gives examples of relatively complemented m.m.
algebras.

Lemma 2.5. Let ¥ =(A; A, v) be a modular lattice and o,=(A; ()) the
corresponding m.m. algebra. o, is relatively complemented if and only if & is
a relatively complemented lattice.

Proof. Let &, be a relatively complemented m.m. algebra and let a<b =g, q,
b, ce A. Then (abc) = b and there exists d € A such that a, b, ¢, d form a cyclic
quadruple, i.e. bed, cda, dab. Using Lemma 2.4, from a<c and adc we get
asds<c, frombcd, b<c,d<cwegetbvd=c.bAd=a canbe proved similarly.
Hence d is a complement of b in the interval (a, ¢) of the lattice &/. Conversely, let
the lattice & be relatively complemented and let abc. Denote by d, a complement
of the element aAb in the interval (aAc, a) (for Lemma 2.4 gives anc<anab)
and by 4, a complement of the element b Ac in the interval (a Ac, ¢). We shall
prove that d = d, v d, is a complement of the element b in the interval (a, c¢) of the
m.m. algebra &, i.e. adc, bcd, bad. First we shall show adc (using Lemma 2.4):
and = an(divd) = div(and)) = div(anc)=d,. Analogously dac=d..
Then (and) v (dnac) = divd,=d. Similarly the rest can be proved. Now we shall
show bcd: (bac) v (cad) = (bac) v (ea(divdy)) = (bac) v (dav(cady))
= (bac) v (dav(anc)) = (bac) v dy=c. The following relations hold:
(bvc)ra = ((anb) v (bac)veyna = ((aab)vcyaa = (anb) v (anc)
= aab,(bvc)ad, = (bvc) A (and) = (bvc)ra)ad, = (aab)ad, = anc.
Hence (bvc) A (cvd) = (bve) A (cvd) = cv((bvec)ad) = cv(anc)=c.
bad can be proved analogously to bcd.

Definition 2.2. A congruence relation @ of an algebra 4 will be called regular if
for each congruence relation @ of o, ae A and [a]@ =[a]® imply O = P.
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Theorem 2.2. Let &/ be an m.m. algebra. Consider the following conditions.
(i) o is relatively complemented.
(ii) Each congruence relation of o is regular.
(iii) The congruence relations of of are pairwise permutable.
In each m.m. algebra, (i) implies (ii) and (iii). In algebras of the variety T (from
Lemma 2.1) the conditions (i), (ii), (iii) are equivalent.

Proof. (i) implies (ii): Let ©, & be congruence relations of & such that there
exists a € A with [a]©@=[a]®. With respect to symmetry, it suffices to show
O©<@. Let x, ye A. Using (4) and (7) we get (axy) € (a, x), (axy)e(a, y). Let
u, v be relative complements of the element (axy) in the intervals (a, x), (a, y),
respectively. x@y implies x = (axx)O(axy)O(ayy)=y. With respect to Lemma
1.3, this implies a®u, a@v. Using our assumption we get adu, adv. By Lemma
1.3, we have (axy)®x, (axy)®y, hence xPy.

(i) implies (iii): Let @, & be congruence relations of & and a®b, bdc. Then
a =(aac)@(abc), (abc)P(acc)— c. Denote d —(abc). Then we have a®d, ddc
and (adc) =d (by (7) and (4)). Since  is relatively complemented, there exists an
element e € A such that a, d, c, e form a cyclic quadruple. With respect to Lemma
1.3 we get ade, €Oc, hence O, P are permutable.

(iii) implies (i): Let & € T have permutable congruence relations and let abc.
Then a=b (O(a, b)), b=c (O(b, c)). Using permutability we get that there exists
d € A such that a=d (O(b, c¢)) and d=c (O(a, b)). With respect to Lemma 2.2,
((abc)ad)=a, ((dab)dc)=d, ((cab)dc)=c. Hence (bad) = ((abc)ad)=a and
using (9) we have (dab)=a. Similarly (bcd) = ((cab)cd)=c, (adc)
= ((dab)dc)=d. Thus the elements a, b c, d form a cyclic quadruple, q.e.d.

(ii) implies (i): Let B€eT, a, b, ce B and abc. According to Lemma 2.3 the
interval (a, c) is a distributive median algebra and a distributive lattice in which
xvy={(xcy). Denote @=0(b, c), A={xeB: x=a(O)}. Given xe A we get,
using Lemma 2.2, ((abc)ax)=a, i.e. (bax)—a. Thus

(a) x€A implies bax.

Denote ¥=\/{O(a, t): te A}. Evidently < © and A is a class of the congru-
ence relation ¥. W= follows from (ii). Thus b=c(¥), hence there are
sequences c=eo, €, ..., & =b and ¢, i, ..., 1,€ A such that e =e..(O(a, 1)),
i=0, 1, ..., n—1. Denote (bce)=f,. Then

fie(b,c), fi=(bce)=(bce.\) f.(O(a,t)), fi=c, f.=b.

According to Lemma 2.2, this implies ((fat))ff..)=f for i=0, 1,..., n—1.
Denote (fat.)=t. Evidently fita (by (7)). By (17), abc and bf.c imply af.c which
together with atf, implies atc, hence r. € (a, ¢). We get t,. € An(a, c) because of
t,.=(faa)=a(0O). It was shown before that
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(b) (tffe)=f, i=0,1,...,n—1.

For i =0 we have ¢ =(tcf\) = &V fi. Proceeding by induction suppose ¢ =£-:V?, 2
V...V lvf,=(scf),wheres,=t 1 v &, 2 v...v to. Using the identity (T) we have

¢ = (fies) = ((tffir)es) = ((tes)(fies. W firrcs))) =

=((tes)c(frrcs)) =t VSV i =tvE V.. ViV

Hence foralli=0,1, ..., n—1,c=tvt 1 v...v tov fi+1. In particular c=1¢, 1V, 2
V...V Lvf, = tvb = (tcb), where t=t.1Vt, 2 V...v b€(a,c). Then hvito
= (ticty) = (aca) = a(O) and using induction we get t=a(©O). Hence te A.
. According to (a), bat. Because of te(a, c), we get atc. Hence a, b, c, t form
a cyclic quadruple, q.e.d.

Corollary 2.1 [2, Theorem 6.1]. The conditions (i), (ii), (iii) from Theorem 2.2
are equivalent in algebras of the variety of all distributive median algebras.

It is easy to see that a modular lattice has the same congruence relations as the
corresponding m.m. algebra. Hence we have:

Corollary 2.2. The conditions (i), (ii), (iii) from Theorem 2.2 are equivalent in
any distributive lattice.

Corollary 2.3. Let o be an algebra of a dual discriminator variety with the dual
discriminator q(x, y, z). The conditions (ii), (iii) (from Theorem 2.2) and the
following condition are equivalent :

(iv) The m.m. algebra (A; G), where g(x, y, 2)=q(z, y, x), is relatively com-
plemented.

Proof. Indeed, the equations a), b), c), d) in Theorem 2.1 imply that d) holds in .
the variety V under consideration also if f stands for a polynomial symbol (it
suffices to use induction on the number of operation symbols occuring in f). Hence
g(a, b, b)=>b (i.e. (1)) and

4(4(a, b, c), d, €)= 4(4(4(a, d, e), 4(b, d, €), 4(c, d, €)), d, e).

According to (19) (Lemma 1.2) g satisfies the identity (T). Since g is a dual
discriminator one can easily check that q(x, y, q(x, z, u)) = q(q(z, x, y), x, u)
holds in each SI member of V. Hence this identity holds in V. It follows that, given
an algebra o/ =(A; (f))) of V, the algebra (A ; §) satisfies the identities (1), (2)
and (T), hence it belongs to T. Obviously (A; §) and (A; g) have the same
congruence relations. According to [3, Theorem 3.11] the same holds for the
algebras (A; q) and & =(A; (f))-

Theorem 2.3. Each m.m. algebra o from the variety T (see Lemma 2.1) can be
embedded into an m.m. algebra ¥=(L;()) derived from a modular lattice
Li=(L; A, v) (see Remark 1.2).
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Proof. Obviously it suffices to show that SI members of T (which are given in
Lemma 2.1) can be embedded in modular lattices. The two-element m.m. algebra
can be bijectively embedded in the two-element lattice. In the other case a ST m.m.
algebra of can be embedded into a modular lattice consisting of the elements 0,
1 and the set of atoms of cardinality card A. Each element of A will be mapped into
an atom. From this the assertion follows.

Corollary 2.4 [10]. Each distributive median algebra can be embedded into
a distributive median algebra derived from a distributive lattice.

3.

Throughout this section we shall call the m.m. algebra ({a, b, c}; ()), a, b, ¢
different, in which a =(abc), b =(bac), ¢ =(cab) hold, a triangle algebra and ¥
will denote the following six-element m.m. algebra (observed by J. Hedlikova):
#=({a,b,c,x,y, z};()) where {a, b, ¢} and {x, y, z} form triangle subalgebras
and the relations axyb, byzc, czxa hold. From this it can be easily derived that

(ayz)=(ayc)=(azb)=x, (yza)=(yca)=y, (zya)=(zba)=z2

and the relations symmetrical to these ones. Further by % we will denote the
four-element m.m. algebra ({a, b, ¢, 0}; ()), a, b, c, O different, derived from the
five-element modular nondistribytive lattice (diamond) ({a, b, ¢,0, 1}; A, v) (see
Remark 1.2). It can be easily cZecked that the m.m. algebra % and the triangle
algebra are SI m.m. algebras, %" is a homomorphic image of % and ¥ is subdirectly
reducible.

Lemma 3.1. In any m.m. algebra the following implication holds: ((abc)ad #
(ab(cad)) implies (abc)# (bac).

Proof. Let (abc)=(bac). Then the identity (13) gives ((abc)ad) = ((bac)ad)
= (ba(cad)). Using (10) and (13) we get ((abc)ad) = ((cab)ad) = (ca(bad))
= ((cad)ab). Hence (ba(cad)) = ((cad)ab) = ((abc)ad) and (10) gives
(ab(cad)) = (ba(cad)) = ((abc)ad), which proves the assertion.

Lemma 3.2. Let x, y, z, v be elements of an m.m. algebra satisfying the following
conditions.
a) x, y, z form a triangle subalgebra (hence x, y, z are different).
b) xvy, xvz and x+ v hold.
Then the subalgebra generated by {x, y, z, v} is either isomorphic to the algebra
W or it contains a subalgebra isomorphic to the algebra .

Proof. By (13) v=(xyv)=((xyz)yv)=((xyv)yz) =(vyz). Now we have two
possibilities :
i) (yvz)=(vy2).
i) (yvz) # (vyz).
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In case i), (yvz)=(vyz) =v, hence yvz holds. Further, y+ v and z# v hold (for
y = v implies x = (xyz) = (xvz) = v and z = v implies x = (xzy) = (xvy) = v). Hence
the elements x, y, z, v form a subalgebra isomorphic to W' In case ii), according to
(10), the elements (yzv), (zvy), (vyz) = v form a triangle subalgebra (see (12)).
From (7) we get (yv(yzv)) = (yzv), hence y(yzv)v holds. With respect to (17), it
imples (together with yvx) that y(yzv)vx hold. Because of the symmetry,
xv(zyv)z. Using (7) and (11) we get (y(yzv)(zyv)) = (y(yzv)((zyv)zv)) = (yzv),
hence y(yzv)(zyv) holds. With respect to (7) and (9), (zy(zyv)) = (zyv) and
y(zyv)z. Because of (17) y(yzv)(zyv)z. The elements x, y, z, v, (yzv), (zvy) are
different: According to (13), y = (yzv) implies x = (xzy) = (xz(yzv)) = ((xzv)zy)
= (vzy)=wv, which is a contradiction. Analogously x =(yzv) implies (by (7))
v =(yvx) = (yv(yzv)) = (yzv)=x. Hence y# (yzv) # x. y =v implies x = v as in
part i). Hence the elements x, y, v, (yzv) are different. Symmetrically x, z, v,
(zyv) are different. The proof of y# (zvy) and z# (yzv) is similar. Hence the above
six elements form the algebra .

Lemma 3.3. Let a, b, ¢, d be elements of an m.m. algebra. Denote i = (abc),
j=(bac), k=(cab), m=((abc)b(cad)), t=((abc)ad) and r=(ab(cad)). The
following identities hold.

(20) r=(rad).

(21) t=C(ia(cad)).

(22) t=(ai(cad))=((cad)ai).

(23) r=(tb(cad)).

(24) t=(irr).

(25) r=(rm).

(26) m=(rbc).

(27) m=(ic(bad)).

(28) m=(ij(cad)).

(29) m=(ik(bad)).

(30) m=(imyj).

(31) m=(imk).

(32) i=(thc).
Proof. We shall use (4) freely in proofs.
(20): According to (14), (7), (14), (13) and (7)

r=(a(bad)(cad)) = ((a(bad)(cad))a(bad)) = ((ab(cad))a(bad)) =
= (((ab(cad))ab)ad) = ((ab(cad))ad) = (rad).

(21): By (7) and (13)
t=(((abc)ac)ad) = ((abc)a(cad)) = (ia(cad)).
(22): By (7) (aci) = i and (ca(cad)) = (cad). According to (9) (ac(cad)) = (cad).
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Using (18) and (21) ((cad)ai) = (ai(cad))=1.

(23): (tb(cad))= (use (22))
=((a(cad)i)(cad)b) = (use (13))
= (a(cad)(b(cad)(abc))) = (by (15))
= (a(cad)(ba((cad)bc))) = (use (15))
= (ab((cad)a((cad)bc))) = (by (16))
= (ab((cad)(a(cad)c)((cad)bc))) = (by (7), (9) and (5))

= (ab((cad)(cad)((cad)bc))) =(ab(cad)) =r.
(24): By (20) and (11) (itr) = ((abc)((abc)ad)(rad)) — t.
(25): According to (23), (11) and (23) (trm)—

= (t(tb(cad))((abc)b(cad))) — (tb(cad)) r.
(26): Using (13) m = (ab(cb(cad))) = ((ab(cad))bc) = (rbc).
(27): According to (26), (15) and (13) m=(rbc)=

= ((ac(bad))cb) = ((acb)c(bad)) — (ic(bud)).

(28): Using (26) we get m=(rbc)= (by (13) and (7))
= (ab((cad)bc)) = (ab(((cad)ca)cb)) (by (13) and (14))
(ab(((cad)cb)ca)) = (a(bca)(((cad)cb)ca)) = (use (13) twice)

= (a(bca)((cad)c(bca))) = ((a(bca)c)(bca)(cad))= (by (8))
=((abc)(bca)(cad)) = (ij(cad)).

(29): According to (28) ((abc)b(cad))—m =
= ((abc)(bca)(cad)), hence ((acb)c(bad))= ((acb)(cba)(bad)).

This together with (27) gives m = (ic(bad)) — (ik(bad)).

(30): With respect to (28), (7) and (28) (imj)=
= (ij(ij(cad))) = (ij(cad)) = m.

(31): The proof is analogous to that of (30) (use (29)).

(32): By (7) (abi) = i. It implies (bai) = i (by (9)). It gives together with (13) that
(bat) = (ba(iad)) = ((bai)ad) = (iad)=t. Hence (abt) =1 holds by (9). Using
(13) (tbc) = ((abt)bc) = ((abc)bt) = (ib(iad)) and by (16) (ib(iad))
= (i(bia)(iad)) = (ii(iad))— 1. Hence (tbc)=1i holds.

Theorem 3.1. Let U be the variety of all m.m. algebras satisfyving the identity
(U). The m.m. algebra & does not belong to the variety U if and only if o{ contains
a subalgebra isomorphic to one of the m.m. algebras W and #.

Proof. We shall use the notation from Lemma 3.3. Let & not belong to U and
let a, b, ¢, d be such elements of A that t=((abc)ad) # (ab(cad))=r. With
respect to Lemma 3.1, (10) and (12), the elements /, j, k form a triangle subalgebra
of . Applying (25), (24) and Lemma 1.3 to the elements i, ¢, r, m we get i+ m.
Because of (31) and (30), the assumptions of Lemma 3.2 for the elements i, j, k,
m are fulfilled. Hence the subalgebra generated by {i, j, k, m} has the desired
property. As to the converse assertion, 1t suffices to check that the algebras %" and

# do not satisfy the identity (U).
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Theorem 3.2. Let U be the variety from Theorem 3.1, 4 €U, a, b € A. Then the
interval (a, b) is a subalgebra of o which is distributive, hence (a, b) is
a distributive lattice with the operations x Ay =(xay), xvy = (xby).

For the proof of Theorem 3.2 the following Lemmas are useful:

Lemma 3.4. In any m.m. algebra #, a, b € A the following implications hold. x,
y, z€(a, b) implies (ax(xyz)) = (xa(xyz)) = ((xyz)xa) and (by(xyz))
= (yb(xyz)) = ((xyz)yb).

Proof. By (7), (9), (13), (18), (13), (7) and (9) we get ((xyz)ax)
= ((px(xyx))ax) = ((»xa)x(xyz)) = ((axy)x(xyz)) = (ax(yx(xyz)))
= (ax(xyz)), hence by (10) (ax(xyz)) = (xa(xyz)) holds. Using (13), (18) and
(13) we get (by(x72) = (by2)y2) = ((x3b)y2) = (x72)yb), which according t
(10) gives (by(xyz)) = (yb(xyz)).

Lemma 3.5. In any mm. algebra 4, a, beA, x, y, ze(a, b) imply
((xyz)ba) € ((ax(xyz)), (xyz) ) N ((xyz), (by(xyz)))-

Proof. Using Lemma 3.4, (13) and (11) we have
((xyz)((xyz)ba)(by(xyz))) = ((xyz)((xyz)((xyz)ba)(yb(xyz))) =
= ((xy2)((xyz)ba)((yba)b(xyz))) =
= ((xyz)((xyz)ba)((xyz)ba)((yb(xyz))ba)) = ((xyz)ba)
thus ((xyz)ba)e( (xyz), (by(xyz)) ). Using (15), (13) twice and (11) we get
((xyz)((xyz)ba)(ax(xyz))) =
= ((xyz)((xyz)ba)(a(xab)(xyz))) = ((xyz)((xyz)ba)(a((xyz)ab)x)) =
= ((xyz)((xyz)ba)((xa(xyz))ba)) = ((xyz)ba), hence
((xyz)ba) € ( (ax(xyz)), (xyz) ).

Lemma 3.6. In any m.m. algebra &, a, be A, x, y, z€(a, b) imply
(xyz) € ( (ax(xyz)), (by(xyz)) ) and (xyz) € ((ay(xyz)), (bx(xyz)) )
Proof. Using Lemma 3.4, (13) twice, (7) and (5) we get
((ax(xyz))(xyz)(by(xyz))) = ((a(xyz)x)(xyz)(y(xyz)b)) =
= (a(xyz)(x(xyz)(y(xyz)b))) = (a(xyz)((x(xyz)y)(xyz)b)) =
= (a(xyz)((xyz)(xyz)b)) = (a(xyz)(xyz)) = (xyz2),
hence (xyz) € ( (ax(xyz)), (by(xyz)) ). The second assertion follows by symmetry.

Lemma 3.7. Let f be an m.m. algebra and let (uvt)=v for u, v, te A. Then
le(u, v)n(v, t) implies I = v.

Proof. According to (9) (ulv) =1 =(viu) = (luv) and (vit) = I = (tv) = (lvt). ulv
together with uwvt gives lvt by (17), hence /= (lvt)=v.

Lemma 3.8. In any m.m. algebra o, a, be A, x, y, z€(a, b) imply (xyz)
= ((xyz)ab).

Proof. It is a corollary of Lemmas 3.5, 3.6 and 3.7.

Proof of Theorem3.2. Let #€U, ¢, d, e, fe A. Using (26), (U) and (32) we
have
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((cde)d(ecf)) = ((cd(ecf))de) = (((cde)cf)de) = (cde), hence
(33) (cde)=((cde)d(ech))
holds in each & € U. We have to prove that (a, b) is a subalgebra of 4, i.e.
((ab(xyz)) = (ba(xyz)) = ((xyz)ab) = (xyz)
for x, y, z€(a, b). Using (33), the assumptions, (13), Lemma 3.4 and (13) twice
we get
(a(xyz)b) = ((a(xyz)b)(xyz)(bax)) — ((a(xyz)b)(xyz)x) — ((a(xyz)x)(xyz)b) =
= ((x(xyz)a)(xyz)b) — (x(xyz)(a(xyz)b)) = (x(xyz)(b(xyz)a)).
Symmetrically (b(xyz)a)=(x(xyz)(b(xyz)a)). Hence (ab(xyz)) = (ba(xyz)),
which together with (10) and Lemma 3.8 gives (ab(xyz)) = ((xyz)ba) — (xyz),
thus (xyz)e(a, b), g.e.d. Further assertions of Theorem 3.2 can be proved
analogously as the corresponding assertions in Lemma 2.3.

Added in proof. After this paper was elaborated the author learned of the
paper by J. R. Isbell [11], where various properties of the variety T were
established. (In [11] the members of T are called isotropic media.)
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MOOY/SIPHBIE MENMUAHHBIE ANITEBPBI
Xunpa [lpamikosuHyoBa
Pe3some

Mopnynsipsas MenuaHHas anre6pa (M.M. anreGpa) ecTb MHOXECTBO C OJHOH TepHApHOW onmepauuner
(abc), ynosnetsopsiowel ToxnectBam (abb)=b n ((adc)bc) = (ac(bcd)). Beakaa monynspHas
cTpykTypa ¢ onepauuert (xyz) = (xA(yvz)) v (yAz) aBasercs m.m. anre6poit H Hao6OPOT, BCAKas
OrpaHM4eHHas MOJYJAPHAM CTPYKTypa MOXeT GbITh OXapakTepH3oBaHa KaK M.M. anre6pa ¢ AByMS
cnelManbHLIMH 3neMeHTaMi. PaccmarpuBaioten MHoroo6pasus T u U m.M. anre6p, onpeneneHusie
COOTBETCTBEHHO ToXAecTBaMH ((xyz)uv) = ((xuv)(yuv)(zuv)), ((xyz)xt) = (xy(zxt)). T TecHo
CBA3aHO ¢ MHOTOOGPa3HAMH C IyalbHbIM AHCKPHMHHaTOpOM. [lna anre6p, npunagnexaumx T, nepec-
TaHOBOYHOCTb M PETYNSPHOCTL KOHTPYIHLUMH 3KBHBaJNCHTHbl. Asrebpa & npunapnexut U Torma
M TOJILKO TOTAQa, KOIMa He CONEPXHT Mofanre6py, H30MOPHYIO OfHOH H3 RBYX YKa3aHHbIX anre6p.
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