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SOPHIE G E R M A I N LITTLE SUNS 

M I C H A L K Ř Í Ž E K * — LAWRENCE S O M E R * * 

(Communicated by Stanislav Jakubec ) 

A B S T R A C T . We assign to each positive integer n a digraph whose set of vertices 
is H = { 0 , 1 , . . . , n—1} and for which there is a directed edge from a G H to b G H 
if a2 ==. b (mod n). We show t h a t this digraph has an interesting s tructure for 
n = 2p + 1 , where p is a Sophie Germain prime. Namely, in this case its nontrivial 
components look like little suns. Making use of the Carmichael function, we prove 
t h a t the number of little suns is equal to (p — l ) / s , where s is the multiplicative 
order of 2 modulo p. We also present a new rela tionship between Mersenne and 
Sophie Germain primes. 

1. Introduction 

In 1819, a French mathematician Sophie Germain demonstrated that if p and 
2p + 1 are both prime, then the so-called first case of Fermat's Last Theorem 
holds for the exponent p. Odd primes p for which 2p + 1 is also a prime are 
thus called Sophie Germain primes. These primes have a number of interesting 
properties. For instance, in [8] we observe that all quadratic nonresidues are 
primitive roots modulo 2p + 1, where p is a Sophie Germain prime, except for 
exactly one number 2p, which is a quadratic nonresidue, but not a primitive 
root. 

Another well-known property can be stated as follows. Let p be a prime such 
that p = 3 (mod 4). Then 2p+l divides the Mersenne number 2P — 1 if and only 
if 2p + 1 is prime (see, e.g., [7; p. 214]). It is not known whether the number of 
Sophie Germain primes is finite or infinite. However, if there would be infinitely 
many Sophie Germain primes for which p = 3 (mod 4), then there would be 
also infinitely many composite Mersenne numbers, since 2p + 1 divides 2P — 1. 
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Conjecturally, for large x the number of integers n < x such that both n 
and (n - l)/2 are primes is ( l + o(l))Dx/ log2 x, where D =. 0.6601618 . . . . An 
upper bound of this order of magnitude is known by B r u n ' s work (see [6] and 
also [2]). If this is true, then by the recent paper [1] there exists a sixth-degree 
polynomial deterministic algorithm for testing the primality of a given integer 
number. 

Here, for each positive integer n, we construct a directed graph (digraph) 
G(n) whose vertices are 0,1,2, . . . , n — 1 . In particular, we will see that when p 
is a Sophie Germain prime, then G(2p-\-l) has a particularly beautiful structure. 

For n > 1 let 
H = { 0 , l , . . . , n - 1 } 

and let / be a map of H into itself. The iteration digraph of / is a directed 
graph whose vertices are elements of H and such that there exists exactly one 
directed edge from x to f(x) for all x G H. For each x G H let f(x) be the 
remainder of x2 modulo n, i.e., 

f(x) Є H and Л — f(x) (mod n) ( ì . i ) 

From here on, whenever we refer to the iteration digraph of / , we assume that 
the mapping / is as given in (1.1). (A connection of Sophie Germain primes 
with more general polynomial mappings is given in [9; p. 235].) 

Each natural number has a specific iteration digraph corresponding to it. 
For instance, S z a l a y in [13] investigated properties of iteration digraphs cor­
responding to Fermat primes, i.e., the primes of the form n = 22 + 1 for 
m — 0 , 1 , . . . . He showed that the associated digraphs have always a special 
binary structure (cf. Figure 1). This result wras independently discovered in [11]. 
Further connections between number theory and graph theory are also examined 
in [3] [5], [7] [12]. 

11 7 10 5 12 3 14 

© Ф (25 Ф 
F I G U R E 1. Iteration digraphs corresponding to the Fermât primes n = 5 and 
n = 17. 
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In this paper, we shall see that iteration digraphs corresponding to n = 2p + 1, 
where p is a Sophie Germain prime, have particular structural characteristics. 
Namely, we prove that their "nontrivial" components are identical and resemble 
little suns (or ship wheels according to [11; p. 323]), compare with Figures 2, 3, 
and 4. 

F I G U R E 2. Itera t ion digraphs corresponding to n = 11 and n = 23. 

2. Discrete iteration 

Starting with an arbitrary element x0 from if, we define the sequence of 
successive elements of H by 

x-j+1 = f(xj), j = 0,1,..., 

where / is given by (1.1). This iteration scheme is called a discrete iteration. 
Since H is finite, the sequence {xA has to be cyclic starting from some ele­
ment xk . If xk,xk+1,..., x£ are pairwise distinct and 

ьk+l / ( * * ) , 

x i — j\Xe_1), 

Xk = f\XV i 

then the elements xk,xk+1,..., xe constitute a cycle of length £ — k + 1. Let us 
call a cycle of length 1 a fixed point. The cycles of length t are called t-cycles. 
Cycles are assumed to be oriented counterclockwise (see Figures 2 and 3). 
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FIGURE 3. Iteration digraph corresponding to n — 47. 

We identify the vertex a of H with residues modulo n. For brevity we will 
make statements such as gcd(a,n) = 1, treating the vertex a as a number. 
Moreover, when we refer, for instance, to the vertex a 2 , we identify it with the 
remainder f(a) given by (1.1). 

For a particular value of n, we denote the iteration digraph of / by G(n). We 
investigate the structure of G(n) in [12]. Also R o g e r s [11] describes completely 
the structure of each component of G(n) when n is prime. 

Let oo(n) stand for the number of distinct primes dividing n . By [13] the 
number of fixed points of G(n) is equal to 2^™). This leads to the following 
corollary (cf. Figures 1 and 2). 

COROLLARY 2.1. If n is prime, then there exist exactly two fixed points, 
namely 0 and 1. 

3. Structure of iteration digraphs 

A component of the iteration digraph is a subdiagraph which is a maximal 
connected subgraph of the symmetrization of this digraph (i.e., the associated 
nondirected graph). In [12], we showed that each component has exactly one cycle 
(which is a general property of the iteration graph of any mapping / : H -» H). 
Therefore, the number of components of G(n) is equal to the number of its 
cycles. 

Before proceeding further, we need to review some properties of the C a r -
m i c h a e l lambda-function A(n), which was first defined in [3]. It modifies the 
Euler totient function 4>(n) in that it can be used in an analogue of the Euler-
Fermat theorem (see Theorem 3.2 below). 
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DEFINITION 3 .1. Let n be a positive integer. Then the Carmichael lambda-
function \(n) is denned as follows: 

A(l) = 1 = 0(1) , 

A(2) = 1 = 0(2) , 

A(4) = 2 = 0(4) , 

A(2fc) = 2k~2 = \cj>(2k) for k > 3 , 

KPk) = (P - l )p f e _ 1 = 4>(pk) f° r a nY °dd prime p and k > 1, 

A ^ 2 • • -p**) = lcm[A(p^), A(p*-) , . . . , A(p*")] , 

where PX,P2T - • ,Pr are distinct primes and fc^ > 1 for all i G { 1 , . . . , r } . 

It immediately follows from Definition 3.1 that A(n) | </>(n) for all n . The 
following theorem generalizes the well-known Euler-Fermat theorem. It shows 
that A(n) is a universal order modulo n . 

THEOREM 3.2 (CARMICHAEL). Let a ,n <E N. Then 

aA(n) = 1 (mod n) (3.1) 

if and only if gcd(a, n) = 1. Moreover, there exists an integer g such that 

ord n g = A(n), (3.2) 

where ordn g denotes the multiplicative order of g modulo n. 

For the proof see [3] or [7; p. 21]. 

THEOREM 3.3. There exists a cycle of length t in G(n) if and only if t = 
ordd 2 for some odd positive divisor d of X(n). 

P r o o f . Suppose that a is a vertex of a t-cycle in G(n). Then t is the least 
positive integer such that 

a2 = a (mod n ) , 

which implies that t is the least positive integer for which 

a2* - a = a(a2'~l - l ) = 0 (mod n ) . (3.3) 

Since gcd(a, a2 _ 1 — l) = 1, it follows from (3.3) that if nx = gcd(a,n) and 
n2 = njnx, then t is the least positive integer such that 

a = 0 (mod n x ) , 

a2 _ 1 = 1 (mod n 2 ) , 
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and therefore, gcd(n l5 n2) = 1. Hence, by the Chinese remainder theorem, there 
exists an integer b such that 

b = 1 (mod n , ) , , 
t, H

 ( 3 - 5 ) 

b = a (mod n 2 ) . 
It follows from (3.4) and (3.5) that t is the least positive integer such that 

b2t~l = l ( m o d n ) . (3.6) 

Let d = o rd n b . Then d \ 2l — 1. Since, by (3.6), t is the least positive integer 
for which d \ 2l — 1, we see that t = ordd 2. Clearly, d is odd as d \ 2l — 1. 
Moreover, d \ A(n) by (3.1), since gcd(b, n) = 1 due to (3.6). 

Conversely, suppose that d is an odd positive divisor of A(n) and let t = 
ord d 2 . By C a r m i c h a e l ' s Theorem 3.2, there exists a residue g modulo n 
such that o r d n a = A(n). Let h = gx^ld. Then ordn h = d. Since d \ 2l - 1 
but d \ 2k — 1 whenever 1 < k < t, we see that t is the least positive integer for 
which 

h2t-x = l ( m o d n ) . (3.7) 

Since, by (3.7), 

h-h2 ~l = h2 = h (mod n ) , 

if follows that h is a vertex in a t-cycle of G(n). • 

THEOREM 3.4. Let p be a Sophie Germain prime. Then G(2p -f 1) has two 
trivial components: the isolated fixed point 0 and the component {l ,2p} having 
the fixed point 1. Each of the other components has 2t vertices and contains a 
t-cycle, where t = ord 2. The number of directed edges coming into a vertex of 
a t-cycle is exactly 2. 

P r o o f . Since n = 2p + 1 is prime, by Definition 3.1 we get 

A ( 2 p + l ) = 2p. 

The only odd positive divisors of 2p are 1 and p. Setting d = 1 in Theorem 3.3, 
we find by Corollary 2.1 that there are exactly two fixed points: 0 and 1. Clearly, 
0 is the only solution to the congruence x2 = 0 (mod n) , and so 0 is an isolated 
fixed point. Moreover, x = 1 and x = 2p are the only solutions of the congru­
ence x2 = 1 (mod n) , since n is prime. We have to show that the associated 
component containing {1,2p} does not contain any other vertices. Since p and n 
are odd numbers, we find that n = 3 (mod 4). Consequently, 2p is a quadratic 
nonresidue modulo n , which means that the congruence x2 = 2p (mod n) has 
no solution. 

Now set d = p in Theorem 3.3. Hence, each of the other components of 
G(2p-\-1) contains a cycle of length t = ord 2 with t > 1. If a vertex a belongs 
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to this t-cycle, then the congruence x2 = a (mod n) has a solution, and hence, 
a is a quadratic residue modulo n. Since n is an odd prime, the congruence has 
exactly two solutions, c and —c. One of them lies on the t-cycle and the other 
outside. As n = 2p + 1 = 3 (mod 4), one of the two residues c or — c has to be 
a quadratic residue and the other a quadratic nonresidue modulo n. 

Suppose that c is the quadratic nonresidue modulo n. Then c lies outside 
the t-cycle and the directed edge going out of c enters a. Since c is a qua­
dratic nonresidue modulo n , there is no edge going into c. Thus, the associated 
component has exactly 2t vertices. • 

In Theorem 3.10 we give a converse of Theorem 3.4. 

DEFINITION 3.5. If p is a Sophie Germain prime, then all components of 
G(2p + 1) which do not contain vertices 0 and 1 are called Sophie Germain 
little suns. 

COROLLARY 3.6. Let p be a Sophie Germain prime. Then the number of 
Sophie Germain little suns of G(2p + 1) is equal to 

p-1 

ord 2 
(3.8) 

P r o o f . According to Theorem 3.4, the number of vertices of G(2p + 1) 
that are outside the two trivial components is equal to 2p — 2. By Theorem 3.4 
we also know that each Sophie Germain little sun has 2ord 2 vertices, which 
leads to the corollary. • 

R e m a r k 3.7. If 2p + 1 is prime with p > 1, then 2p — 2 is not divisible 
by 3 . Consequently, by (3.8), the number of Sophie Germain little suns is never 
divisible by 3 and the length of each of the associated t -cycles is also not divisible 
by 3. 

We can prove a more general statement, namely that G(2p+1) never contains 
a g-cycle for q = 3, 5, 7 ,13 ,17 ,19 , . . . , which are the exponents of all Mersenne 
primes Mq = 2q — 1 with q > 2. (Notice that G(7) contains a 2-cycle.) 

THEOREM 3.8. Let M be a Mersenne prime with q > 2. Then there does not 
exist a Sophie Germain prime p such that G(2p-\- 1) contains a q-cycle. 

P r o o f . Assume to the contrary that there exist a Sophie Germain prime p 
and a Mersenne prime M with q > 2 such that G(2p + 1) contains a g-cycle. 
Then by Theorem 3.4, q -= ord 2 and thus p =- 2q — 1. However, the number 

2p + 1 = 2q+1 - 1 = ( 2 ^ + 1 ^ 2 + 1) ( 2 ^ + 1 ) / 2 - 1) 

is composite for q > 2 prime, which is a contradiction. • 
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F I G U R E 4. Iteration digraph corresponding to n = 179. 

E X A M P L E 3.9. Let p = 89. Since 2 1 1 = 1 (mod 89), we see that ord 8 9 2 = 11. 
Hence, by Corollary 3.6, the number of Sophie Germain little suns of G(179) 
is 88/11 = 8 (see Figure 4). 

THEOREM 3.10. Let n be a positive integer. Suppose that G{n) has exactly 
two trivial components: the isolated fixed point 0 and the component {l,n—1} 
having the fixed point 1. Suppose further that G{n) has a positive number of 
other components, each of which has 2t vertices and contains a t-cycle, where 
t > 1 is a fixed integer. Then n is a prime of the form 2m -f 1. where m > 3 
is odd, and ord 2 = ord 2 = t for any primes p and q dividing m, and 
ord 2 = ord k 2 whenever pk \\m. 
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P r o o f . We first observe that n > 7, since the two trivial components 
of G(n) contain 3 vertices and each of the other components has at least 2t 
vertices, where t > 2. Moreover, by the discussion preceding Corollary 2.1, we 
see that if n has two or more distinct prime divisors, then there exist at least four 
fixed points, contrary to the hypothesis that G(n) has exactly two fixed points. 
Furthermore, n ^ pk, where p is a prime and k > 2, since then the component 
of G(n) containing the vertex 0 also contains the vertex pk~l, contradicting 
the assumption that 0 is an isolated fixed point. Thus, n is an odd prime. 

We now claim 4 { \(n). If 4 | A(n), then by (3.2), it follows that there 
exists an integer 1 < c < n such that ordn c = 4. Then the component of 
G(n) containing the vertex 1 has at least three vertices, namely 1, n— 1, and c, 
contrary to the hypothesis. Since X(n) = n — 1, we find that n is of the form 
2ra + 1, where ra > 3 is odd. 

By Theorem 3.3, ord d 2 = t for every odd divisor d of m such that d > 1. 
We further note that if ord 2 = ord k 2, where p is an odd prime and k > 2, 
then ordp 2 = ordpe 2 for 1 < e < k. We also observe that if gcd(r, s) = 1 and 
ord r 2 = ord5 2 = £, then ord r5 2 = t. The result now follows. • 

R e m a r k 3 .11 . To fulfil the assumptions of Theorem 3.10, we can choose, e.g., 
p = 499, q = 2657 and t = ord p2 = ordg 2 = 166. Then p , q and n = 2 p g + l = 
2 651 687 are primes. Note in Theorem 3.10 that when n is a prime of the form 
2ra + 1 and m is itself an odd prime, then m is a Sophie Germain prime. 
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