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Math. Slovaca 37, 1987, No. 2, 173—189 

PAIRS OF PARTIALLY ORDERED GROUPS WITH 
THE SAME CONVEX SUBGROUPS 

MILAN JASEM 

C o n r a d [3] studied the system of all convex 1-subgroups of a lattice 
ordered group G. J akub ik and Ko l ib i a r [7] investigated pairs of distri­
butive lattices L, and L2 with the same underlying set such that the system of all 
convex sublattices of L, coincides with the system of all convex sublattices of L2. 
They proved that Lx and L2 can differ only by duality of a direct factor. 

The paper presented is a contribution to the investigation of an analogous 
question concerning partially ordered groups. In the paper there are studied 
pairs of isolated abelian partially ordered groups (//, ^ ) , (//, fg') with the same 
underlying set and the same group operation such that the system of all convex 
subgroups of (//, ^ ) coincides with the system of all convex subgroups of 
(//, 5^'). It will be shown that instead of direct factors (as in the case examined 
by J a k u b i k and Kol ib ia r in [7]) we have now to deal with certain sub-
direct factors of (//, !g) and (H, :g'), respectively, which are either linearly 
ordered or trivially ordered. For the main results concerning partially ordered 
groups cf. 2.2, 2.3 and 2.20. A related question for abelian lattice ordered groups 
is dealt with in Theorem 3.1. 

In Section 4 there are investigated mixed products with factors which are 
either linearly ordered or trivially ordered. 

In Section 5 we obtain necessary and sufficient conditions for certain par­
ticular cases. 

1. Preliminaries 

First we recall some notions and denotations which will be used in the paper. 
Throughout this paper let ^ ~ denote for a partially ordered group (notation 
po-group) (G, ^ ) the dual of ^ . The group operations in po-groups will be 
written additively. 

(R, ^ ) , (<2, ^ ) and (Z, ^ ) will denote additive groups of all real numbers, 
rational numbers and integers with the natural order. The set of all positive 
integers will be denoted by IV. 
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Let (G, ^ ) be a po-group. A subgroup C of (G, =) is said to be convex if 
a, ce C, beG and a = b = c imply fteC 

We say that a po-group (G, = ) is isolated if a e G and na = 0 for some t? e IV 
imply a = 0. 

A subgroup A of an abelian group G is called pure if the equation nx = g, 
where g e A and « e IV, is solvable in A whenever it is solvable in the whole group. 

Let rbe a partially ordered set (notation po-set) and for each ie Flet (II,, =,) 
be a nontrivial po-group. Let V = V[F, //,•] be the following subset of the large 
direct sum of the //,.. An element v = (... ,v„ ...) belongs to V if and only if 
Sv = {ie r\ v, 7-- 0} contains no infinite ascending sequence. This is equivalent to 
the maximum condition. V is a subgroup of the large direct sum of the //,. If 
ve V, vir # 0 and vj = 0 for ally > /, then v, is called a maximal component of r. 
A nonzero element of Vis positive if each maximal component v, off is positive 
with respect to the partial order on the group II,. Then V[K, II,] is a po-group 
[4, Th. 2.1]. We shall denote this po-group by V[F, (II„ =l)]. The po-group 
V[r,(Hr =/)] is called the mixed product of po-groups (IJ„ =l). For x,ye 
e V[F, (I7„ g,)], x *- y let Mx = {ie T, x,- # 0 and *,- - 0 for all j > /} and let 
Mxv = {/e r, Xj ^ y{ and xf = yy- for all j > /}. 

Unless otherwise stated, in this section (G, =) will always denote an isolated 
abelian po-group and r will be the set of all pairs of convex pure subgroups 
(G', G,) of (G, =) such that G' covers G, (i. e. G, cz G and for any pure convex 
subgroup K of G, G, c: K cz G' implies K = G'). We shall frequently identify the 
pair (G\ G;) with /. For / and j in /^define that / ^j if either G = G and G, = G;, 
or G' cz Gj. Then T i s a po-set [4, p. 148]. 

For I e G'/G, we define X > G, if and only if X ^ G, and nX contains an 
element p > 0 for some positive integer n. Then G'/G, is a po-group for each / 
in F [2 , p. 22]. For ie F, G/G, is order isomorphic (notation o-isomorphic) to a 
subgroup of (R, =) unless it is trivially ordered, and in this case it is isomorphic 
to a subgroup of the additive group Q of all rational numbers [2, p. 23]. 

Let (G, =) be an isolated abelian po-group and let Foe as above. (G, =) is 
said to be factorially rational if each nontrivially ordered group G'/Gh /eF , is 
o-isomorphic to a subgroup of (Q, ^ ) . 

If geG\Gt, ieT, then /is said to be a value of g. (G, =) is finite valued if each 
ge G has only a finite number of values. 

An isomorphism cp of G into VfF1, G'/G,] is said to be valuation preserving 
(notation ^-isomorphism) provided that it satisfies 
(v) ieTis a value of geG if and only if (g(p)j is a maximal component of g<p, 
and in this case (g(p)i = g + G,, 

From [2, p. 23] it follows that each v-isomorphism q> of (G, =) into V[K, (G' 
/G„ ^,)] is an o-isomorphism. 

For the remainder of this section let (G, g ) be a divisible isolated abelian 
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po-group. Then G is a rational vector space. We need the following result 
(cf. [4, p. 148], where we find the remark that this result goes back to Ban-
aschewski [1]). 

(T) There exists a mapping n of the set of all subspaces of G into itself such 
that for all subspaces A and B of G 
(i) G = A 0 n{A), and 

(ii) if A = B, then n(A) = n(B). 
In the paper of C o n r a d , Harvey and Ho l l and [4, p. 148—149] there 

was investigated the mapping cp of G into V[7", G/G] such that for xe G xcp is 
defined as follows: for each ie Flet (x(p)t = xt + G„ where x = xt + c„ xieGi and 
c,e/r(G'). It was proved that q> is a v-isomorphism of (G, ^ ) into 
V[r, (G'/G,, <)] . 

2. Partially ordered groups with the same convex subgroups 

In this section there are studied pairs of isolated abelian po-groups (//, ^ ) , 
(//, =') with the same underlying set and the same group operation such that 
the system of all convex (directed convex) subgroups of (//, ^ ) coincides with 
the system of all convex (directed convex) subgroups of (//, ^ ' ) . Such po-groups 
will be called groups with the same convex (directed convex) subgroups. 

2.1. Lemma. Let (//, :g), (//, f=') be isolated abelian po-groups with the same 
convex subgroups. Assume that aeH. Then a is comparable with 0 in (H, _ )̂ if and 
only if a is comparable with 0 in (//, rg'). 

Proof. Without loss of generality we may assume that a ^ 0. Let A be 
the subgroup of H generated by the element 2a and let (C(A), f§) be the convex 
subgroup of (//, ^ ) generated by A. Since (//, ^ ) , (//, ^ ' ) have the same convex 
subgroups, (C(A), ^ ' ) is a convex subgroup generated by A in (//, ='). Let P' 
be the positive cone of (7 / ,^ ' ) . Then from [5, Chap. II, p. 32] we have 
C(A) = (A + P') n(A + (-P ')). Since ae C(A), we obtain a = m(2a) + u, 
where u = '0, meZ. From this we get a = m(2a) + u =' m(2a)). Thus 
0 ='(2m - l)a. If (2m - l)eN, then 0 = ' a , because (//, ^ ' ) is isolated. If 
(2m — 1) is a negative integer, then (1 — 2m) eN. Since (//, ^ ' ) is isolated, from 
the relation 0 ^ ' ( 1 — 2m)( — a) we get a f^'O. Thus a is comparable with 0 in 
(H, ='). The sufficiency of the conditions can be verified analogously. 

2.2. Proposition. Let (G, = ) and (G, ^ ' ) be abelian po-groups with the same 
group operation. Then (G, ^ ) and(G, ^ ' ) have the same convex subgroups if and 
only if 
(1) x, yeG and 0 < y < x imply mx <'y <' nx for some m, neZ and 
(2) z, teG and 0 < ' z <' t imply kt < z < It for some k, leZ. 

Proof. The conditions are obviously sufficient, we now show their necess-
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ity. Let (G, ^ ) , (G, ^ ' ) have the same convex subgroups and let 0 < y < x for 
some x, yeG. Denote by A the subgroup of G generated by the element x. Let 
(C(A), ^ ) be the convex subgroup of (G, ^ ) generated by A. Since (G, ^ ) , 
(G, ^ ' ) have the same convex subgroups, (C(A), ^ ' ) is a convex subgroup 
generated by A in (G, ^ ' ) , Let P' be the positive cone (G, ^ ' ) . Then from 
[5, Chap . II, p . 32] we have C(A) = (A + F) n (A + ( - / " ) ) • Since yeC(A), we 
obtain y = mx + u, y = nx + v, where u ^ ' 0, 0 ^ 'v, m, n e Z. From this we get 
nx—^'y ^' mx. Assertion (2) can be verified analogously. 

2.3. Theorem. Let (H, ^ ) , (H, ^ ' ) be nontrivial isolated divisible abelian 
groups with the same convex subgroups. Then there exists a po-set rand for each 
ie r there exist ordered groups (C„ rg,) and (C„ ^?l such that 
(i) (C„ ^ , ) , (C„ 5̂ ,0 Aave lA^ same group operation and card C, > 1, 

(ii) the following conditions (1)—(4) are fulfilled'. 
(1) there exists a mapping (p of H into V[r, C] such that <p is a v-isomorphism of 
(H, ^ ) into l\r, (C„ ^,)] and also a v-isomorphism of(H, ^ ' ) into V[F, (C„ ^,0], 
(2) for each ier we have either that 

(a) both (C„ 5 ,̂) and(C„ ^ are trivially ordered and each of them is isomor­
phic to a subgroup of Q 

or (b) bolA (C„ ^ , ) and (C„ fg,0 are linearly ordered and each of them is 
o-isomorphic to a subgroup of (R, ^ ) , 

(3) there exists no element 0 < heH such that (A<p), < ' 0 , 0 < ' (hep), for some 
maximal components (h(p)h (A<p)7 of h<p, 
(4) there exists no element 0 <'geH such that (gcp)k < 0, 0 < (g(p)( for some 
maximal components (g(p)k, (g(p)i of g(p. 

Proof . If (H, ^ ) , (H, ^ ' ) have the same convex subgroups, then they also 
have the same pure convex subgroups. Let F b e the set of all pairs of pure convex 
subgroups (H, H,) of (H, ^ ) and (H, ^ ' ) such that H covers Hh For each ie .T, 
(H/Hh :g.-) is o-isomorphic to a subgroup of (R, ^ ) unless it is trivially ordered, 
and in this case it is isomorphic to a subgroup of Q. The same is valid for 
(H/Hh^, ier [2, p. 23]. 

If ier and (H/Hh g,) is linearly ordered, then there exists A > 0, henX for 
some neN, XeH/Hh X ^ Hh In view of 2.1 we have 0 < 'A or A < ' 0 . Thus 
//, < ; X o r X < ; ' / / , , Hence (H/Hh ^ is linearly ordered. Thus (2) is valid. Tcan 
be partially ordered as shown in Section 1. Then the mapping <p of H into 
V[r,H/H] defined as in Section 1 is a v-isomorphism of (//, ^ ) into 
\\r,(H/Hh ^,)] and also a v-isomorphism of (H, ^ ' ) into \\r,(H/Hh g/)], 
because (xcp); is determined by group properties of H for each ie r 

(3) and (4) are consequences of 2 .1 . 
It is easy to verify (cf. e.g. [6, Section 1.3]) that if (G, ^ ) is an isolated abelian 

po-group, then there exists an isolated divisible abelian po-group (Z(G), ^ ) 
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such that (G, ^ ) is a po-subgroup of (Z(G), ^ ) and if zeZ(G), then there exist 
xeG and meN such that mz = x. 

In the present paper Z(G) has the same meaning as in [6, Section 1.3], i.e., 
x 

Z(G) is the set of all expressions of the form - , where xeG,neN, subject to the 
n 

rules of: 

x v 
a) equality: - = - if and only if kx = ny, 

n k 
, ,. . x y kx + ny 

b) addition: - - F - = - , 
n k nk 

c) partial order: for ze Z(G) we have z > 0 if and only if there exists xe G, x > 0 
x 

such that z = - for some n e N. 

n 

If C is a subgroup of G, then we can assume that Z(C) is a subgroup of Z(G). 
2.4. Lemma. Let B be a subgroup of a po-group (A, :_) and let C be a convex 

subgroup of (A, ^ ) . Then C n B is a convex subgroup of (B, fg). 
P roof . The assertion is obvious. 

2.5. Lemma. Let (G, —) be an isolated abelianpo-group and let C be a convex 
subgroup of (G, _^). Then Z(C) is a convex subgroup of (Z(G), ^ ) . 

P roof . Let O^yf^x for some xeZ(C), yeZ(G). Then there exist 
m, neN such that myeG, nxe C. Thus mnyeG, mnxeC. From the relation 
0 = mnv ;= mnx and the convexity of C in (G, ^ ) we obtain mnveC. Hence 
yeZ(C). 

2.6. Lemma. Let (G, -£) be an isolated abelian po-group. Then for each geG 
the equation g = nx, where neN, has at most one solution. 

Proof . Let xx, x2, geG and let nxx = nx2 = g for some neN. Then 
n(xx — x2) = 0. Since G is isolated, we have xx — x2 §: 0. If xx 7-= x2, we obtain 
0 < n(xx — x2), a contradiction. Thus xx = x2. 

As a consequence of 2.6 we obtain 

2.7. Lemma. Let (G, _^) be an isolated divisible abelian pogroup. Then for each 
geG the equation g = nx, where neN, has a unique solution. 

2.8. Lemma. Let (G, g ) be an isolated abelian po-goup and let C be a pure 
convex subgroup of (G, fg). Then Z(C) is a pure convex subgroup of Z(G) and 
Z(Q nG = C. 

Proof . Let aeZ(C), beZ(G) and a = nb for some neN. Then there exist 
k, leN such that kaeC, lb e G. Since klb is a solution of the equation kla = nx, 
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from 2.6 and the purity of C in G we get klbeC. Thus beZ(C). The con\exity 
of Z(C) follows from 2.5. Hence Z(C) is a pure convex subgroup of Z(G). 

Clearly C ^ Z(C) n G. Let a e Z(C) n G. Then a is a solution of the equation 
nx = b for some be C, neN. From 2.6 and the purity of C in G we get ae C. 

R e m a r k . If we do not assume that C is pure in 2.8, then the relation 
Z(C) nG = C need not be valid. 

2.9. Lemma. Let (G, ^ ) be an isolated abelian po-group and let C be a pure 
convex subgroup of(Z(G), ^ ) . Then C nG is a pure convex subgroup of(G, r^) 
and Z(C nG) = C. 

Proof . Let aeCnG, beG and a = nb for some neN. Since a,beZ(G), 
from 2.7 and the purity of C in Z(G) we get beC. Thus beC nG. The convexity 
of C n G follows from 2.4. 

Let xeC. Then nxeGnC for some neN. Thus xeZ(G n C). Hence 
C ^ Z(Gn C). Let yeZ(G n C). Then myeGnC for some meN. Since C is 
pure in Z(G), from 2.7 it follows that ye C. Thus Z(G n C) ^ C. 

2.10. Lemma. Lei (G, ^) be an isolated abelian po-group and(A\ A,) be a pair 
of convex pure subgroups of(G, ^ ) such that A' covers Ar Then (Z(A'), Z(At)) is 
a pair of convex pure subgroups of(Z(G), ^ ) such that Z(A') covers Z(A,). 

Proof . In view of 2.8 it suffices to verify that Z(A') covers Z(A,). Let 
Z(A,) c B c Z(A') for some pure convex subgroup B of Z(G). Then 
Z(Ai)nG^BnG^Z(Ai)nG. From 2.8 we also have Z(A)nG = An 

Z(A') nG = A'. By 2.9 G n B is a pure convex subgroup of G and Z(G n B) = B. 
Since A1 covers Ah we get GnB = At or Gn B = A\ Thus Z(A,) = B or 
Z(_4') = B. From 2.8 we get Z(A') # Z(y*,). Hence Z(_4f) covers Z ( 4 ) . 

2.11. Corollary. Let (G, ^) be an isolated abelian po-group, geG and (A\ A,) 
be a value of g in (G, ^ ) . Then (Z(A'), Z(A)) is a value of g in (Z(G), ^ ) . 

2.12. Lemma. Let (G, ^ ) be an isolated abelian po-group and let (B\ B) be a 
pair of convex pure subgroups of (Z(G), ^ ) such that B covers Br Then 
(G n B\G n B,) is a pair of convex pure subgroups of (G, ^ ) such that G n B 
covers G n Br 

Proof . In view of 2.9 it suffices to verify that G n B covers GnBr Let 
GnBj^A^GnB1 for some pure convex subgroup A of G. Then 
Z(G n £,) c Z(A) c Z(G n B). From 2,9 we also have Z(G n Bt) = Bn 

Z(GnB') = B'. By 2.8 Z(A) is a pure convex subgroup of Z(G) and 
Z(A)n G = A. Since B' covers Bh we obtain Z(A) = B or Z(A) = Br Thus 
A = B'nG or A = BtnG. From 2.9 we get GnB ?- Gn Br Hence G n B' 
covers G n Br 

2.13. Corollary. Let (G, 5 )̂ be an isolated abelian po-group, geZ(G) and let 
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(B\B) be a value of g in (Z(G), _ ) . Then there exists neN such that 
(G n Bl,G n I?,) is a value of ng in (G, _ ) . 

P roof . In view of 2.12 it suffices to show that ngeG n B\G n Bt. 
If geZ(G), geBl, then there exists neN such that ngeG n B\ 
If ngeGnB(, then geZ(GnB). From 2.9 we get Z(Gn B,) = Bt. Hence 

ge Bt, a contradiction. Thus ng$G n Bf. 
From 2.8 and 2.9 we obtain the following corollary 

2.14. Corollary. If(II, _ ) , (II, _ ' ) are isolated abelian po-groups with the same 
pure convex subgroups, then (Z(H), _ ) , (Z(II), _ ' ) have also the same pure convex 
subgroups and the mapping a of the set P{ of all pure convex subgroups of(H, _ ) 
into the set P2 of all pure convex subgroups of(Z(H), _ ) such that Aa = Z(A)for 
each AePx is one-to-one and onto. 

2.15. Lemma. Let (II, _ ) , (II, _ ' ) be isolated abelian po-groups with the same 
convex subgroups. Then (Z(H), _ ) , (Z(H), _ ' ) also have the same convex sub­
groups. 

Proof . Let C be a convex subgroup of (Z(II), _ ) . Let 0 _ ' y _ ' x for 
some xeC, yeZ(H). Then there exist m,neN such that mx,nyeH. Thus 
mnx e C n II. In view of 2.4 C n II is a convex subgroup of (II, _ ) . Thus C n H 
is also a convex subgroup of (II, _ ' ) . Then from 0 _ 'm/ry _ ' m n x we get 
mnyeCn II. Hence mnyeC. Since 0 _ ' m « y , from 2.1 it follows that 0 _ mny 
or mny _ 0. Since (Z(II), _ ) is isolated, we infer that 0 _ y _ mny or 
0 _ — y _ mn(—y). From this and the convexity of C in (Z(II), _ ) we obtain 
J G C . Hence C is a convex subgroup of (Z(II), _ ' ) . 

2.16. Lemma. Lel (II, _ ) , (II, _ ' ) be isolated abelian po-groups with the same 
convex subgroups. Then (II, _ ) , (II, _ ' ) Aave l/ze same directed convex subgroups. 

Proof . Let C be a directed convex subgroup of (II, _ ) . Then C is a con­
vex subgroup of (II, _ ' ) . Let ye C. Then there exists an element xeC such that 
0 _ x, y _ x. In view of 2.1 we get x _ ' 0 or 0 _ ' x, y _ ' x or x _ '^. 
1) If 0 _ 'x and JC _ 'y or x _ ' 0 and y _ 'x , then 0, y are comparable. 
2) If x _ ' 0 and x _ 'y, then / = y — x is an element of C and 0 _ ' t, y _ ' l. 
3) If 0 _ 'JC and j _ 'JC, then x is an upper bound of 0, y in (II, _ ' ) . Thus C is 
a directed convex subgroup of (II, _ ' ) . 

The following example shows that if two isolated abelian po-groups have the 
same directed convex subgroups, then they need not have the same convex 
subgroups and if some element is comparable with 0 in one group, then it need 
not be comparable with 0 in other group. 
E x a m p l e . Let (G, _ ) be the direct product ( / ? , _ ) © (R, _ ) and let (G, _ ' ) 
be the direct product (R, _ ) © (I?, _ ~ ) . Then (G, _ ) , (G, _ ' ) have the same 
directed convex subgroups (cf. Th. 4.3). The II = {(x, —x);xeR} is a convex 
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subgroup of (G, ^ ) , but H is not a convex subgroup of (G, r^'). The element 
a = (1,1)eG is comparable with 0 in (G, ^ ) , but it is not comparable with 0 in 

2.17. Lemma. Let (G, ^ ) be an isolated abelian po-group and let C be a directed 
convex subgroup of (Z(G), ^ ) . Then CnG is a directed convex subgroup of 

Proof. From 2.4 it follows that CnG is a convex subgroup of (G, rg). 
Let xeC nG. Since C is a directed subgroup, there exists ye C such that 0 ^ v, 
x ^ y. Then there exists neN such that nyeG. Thus we get 0 ^ rz>\ x ^ ny, 
nyeCn G. Hence Cn G is a directed convex subgroup of G. 

2.18. Lemma. Let (G, ^) be an isolated abelian po-group and let C be a directed 
convex subgroup of(G, ^ ) . Then Z(C) is a directed convex subgroup of (Z(G), ^ ) . 

Proof. This follows from 2.5. 

2.19. Proposition. Let (H, ^ ) , (H, ^ ' ) be isolated abelian po-groups with the 
same directed convex subgroups. Then (Z(H), ^ ) , (Z(H), ^ ' ) also have the same 
directed convex subgroups. 
Proof. Let C be a directed convex subgroup of (Z(H), ^ ) . Let 0 ^ ' v ^'.x 
for some xeC, yeZ(H). Then there exist m,neN such that mxeH, nyeH. 
Thus mnx eC' n H, mny e H. From 2.17 it follows that C n H is a directed convex 
subgroup of (/I, :g). Since (II, ^ ) and (II, ^ ' ) have the same directed convex 
subgroups, C "". II is also a directed convex subgroup of (II, ^ ' ) . Then from 
0 i^'mny^'nmx we get mnyeCnH. Since C is a directed subgroup of 
(Z(II), 5^), there exist elements u,veC such that 0 ^ v, mny^v, u ^ 0, 
u ^ rarry. Then we obtain mr/y ^ mnv, mnu ^ mr/y. Since (Z(H), ^ ) is an isolated 
group, we obtain u ^ ; ^ v. From the convexity of C in (Z(II), ^ ) it follows that 
yeC. Thus C is a convex subgroup of (Z(H), ^ ' ) . 

Let zeC. then there exists keN such that kzeCnH. Since C n II is a 
directed convc x subgroup of (JI, ^ ' ) , there exists t e C such that 0 ^ ' t, kz ^ ' t. 
Then kz ^ ' kt. Since (Z(II), ^ ' ) is an isolated group, we obtain z ^ ' t. Hence C 
is a directed subgroup of (Z(H), ^ ' ) . 

From 2.11. 2.13, 2.14 and 2.15 we obtain 

2.20. Corollary: The hypothesis that (II, ^ ) , (II, ^ ' ) are divisible can be 
omitted in 2.3. 

3. Lattice ordered grouips with the same convex 1-subgroups 

In this section there are studied pairs of abelian lattice ordered groups 
(notation 1-groups) (II, ^ ) , (II, ^ ' ) with the same underlying set and the same 
group operation such that the system of all convex 1-subgroups of (II, ^ ) 
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coincides with the system of all convex 1-subgroups of (H, ^ ' ) . Such 1-subgroups 
will be called 1-groups with the same convex 1-subgroups. 

A convex 1-subgroup A of an abelian 1-group (G, _ ) is said to be regular if 
it is maximal with respect to not containing some element of G. 

A po-set M is called a root system if no pair of incomparable elements of M 
have a common lower bound. 

Let Tx be the set of all pairs of convex 1-subgroups (H, //,) of (H, ^ ) and 
(17, ^ ' ) such that H' covers H,. If (H, ^ ) , (H, ^ ' ) have the same convex 
1-subgroups, then they also have the same regular 1-subgroups. Let T = 
= {ieFi, H,- is regular}. For i andf in T define that / !gj if either H' = HJ and 
Hi = //, or IT ^ //. Then f is a root system and V[T, (Hl/Hi, =",)], 
V\r,(H/Hi, ^,0] are 1-groups [4, Th. 2.2, Lemma 4.2], 

For each ie T(H/Hi, ^ , ) , (H/Hh ^-) are nontrivial linearly ordered groups 
each of which is o-isomorphic to a subgroup of (R, :g) [4, p. 143]. 

In view of (4, Th. 4.2] the mapping (p of H into V[T, H/H] defined similarly 
as in Section 1 (i.e. for xeH xcp is defined as follows: for each ieT let 
(xcp)i = x, + Hh where x = x, + c„ x,e H and c(e 7t(H)) is an /-isomorphism of 
( / / ,_ ) into V[r,(H/Hh fQ] and also an /-isomorphism of (//,_;') into 
V[r,(H/Hi,^]. 

Thus we have 

3.1. Theorem. Let (H, ^ ) , (H, ^ ' ) be nontrivial divisible abelian l-groups with 
the same convex l-subgroups. Then there exists a root system Tandfor each ieT 
there exist nontrivial linearly ordered groups (C„ ^,, (C„ 5̂ ,9 such that 
(1) there exists a mapping cp of H into V\T, C,] such that cp is an /-isomorphism 
of (H, ^ ) into the 1-group V[T, (C„ 5̂ ,)] and also an /-isomorphism of (H, ^ ' ) 
into the 1-group V[F,(C„ ^,0], 
(2) for all ieT each of the groups (C„ ^ , ) , (C„ 5̂ ,0 is ^-isomorphic to a sub­
group of (R, ^ ) . 

Let (G, ^ ) be an abelian 1-group. Then (Z(G), ^ ) is a divisible abelian 
1-group and (G, g;) is an 1-subgroup of (Z(G), ^ ) [6,1.4], 

3.2. Lemma. Let (G, ^ ) , (G, ^ ' ) be abelian l-groups with the same convex 
^•subgroups. Then (Z(G), ^ ) , (Z(G), ^ ' ) also have the same convex l-subgroups. 

Proof. This is a consequence of 2.19. 

3.3. Corollary. The hypothesis that (H, gj), (H, ^ ' ) are divisible can be 
omitted in 3.1. 

4. A Hahn-type po-group 

Let T be a po-set and for each ieT let (//„ ^,) be a nonzero linearly or 
trivially ordered group. 
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When no misunderstanding is likely to arise we shall omit index / in the 
notation of the partial order on II,. We shall denote the neutral elements of all 
po-groups by 0, because in all cases it will be clear which po-group is considered. 

Let I_ K. For each ie .T let _ , ' = _ , i f / e K \ I a n d let _ , ' = _ f [fie I. 
Let V[r, (H„ _,)] (V[K, (II,, _;)]) be the mixed product of po-groups (II„ _ , ) 

((II,, _ ,0), ie r. We shall also denote V(r, (II,, _,)] and V[F, (II„ _ ft by (V, _ ) 
or (V, _ ' ) , respectively. 

If x, yeV, x ^ y, then v < x(j; < ' x ) if and only if y( < x,(v, < 'x , ) for all 
ieMxv. 

Throughout this section for aeV let a denote the element of V whose 
components are defined as follows: a, = 2a, if either ieMa9 ie I, a, < 0 or ie Ma, 
i$I, a, > 0 and all other components are zero. From the definition of a we infer 
that 0 _ ' a , for all ieT. Thus 0 _ ' a . 

4.1. Lemma. Let C be a directed convex subgroup oj (V , _ ) and let xe C. Then 
xeC. 

Proof . Since C is a directed subgroup of (V, _ ) there exist elements 
a, beCsuch that 0 _ a, x _ a, 3x _ a, b _ 0, b _ x, b _ 3x. We shall show that 
x _ a. 

Let a # x, ieMax. Then a, =̂  *, and a} = x, for all j > i. 
1) Let i$Mx. Then we have x, = 0, a, ^ 0. 

If a7 ̂  0 for some / > /, then there exists k e Ma, k = j . From 0 _ a we get 
0 < ak. Thus xk = ak > 0. Since xA > 0 only in the case when k e Mx, xk > 0, k $ I, 
whereby we get xA = 2xk = ak > 0. Thus keM0x)a. Since a = 3x, we obtain 
ak > 3xk., which contradicts the relation 2xA = aA, > 0. 

Therefore a7 = 0, xy = 0 for all j > i. Then ieMa. Since 0 = a, we have 
a, > 0 = x,, 
2) Let ieMx. Then x; = xy = a}• = 0 for all j > /. 

a) Assume that x, > 0, i$I. If a, = 3x„ then we obtain a, = 3x, > 2x, = x„ If 
a, T«- 3x„ then from the relations a = 3x, ieM{3x)a we get a, > 3x, > 2x, = x,. 

b) If x, < 0, ie I, then x, = 2x, < 0. Since a, = 0, we get al = 0> 2x, = x,. 
c) In other cases x, = 0. Since a, j=- x, = 0, from the relation a = 0 we obtain 

a, > 0 = x,. 
Thus x, < a, for all ieMax. Hence x = a. Analogously we can obtain b = x. 

From the convexity of C in (V, _ ) we have xeC. 

4.2. Lemma. Let C be a directed convex subgroup of{ V, _ ) and let xeC. Then 
there exists y e C such that x _ ' y \ 0 _ ' y \ 

Proof . From 4.1 we have xeC. Since C is a directed subgroup of (V, _ ) , 
there exists zeC such that 0 _ z, x _ r. Then f, -f (^z) y ^ 0 for all jeMz and 
f,-r- ( - z ) , _ ' 0 f o r a l l / G r . L e t j = x + f + ( - z ) . Since f, ("-^z) G C, then we get 
yeC and the relation y) _ 'xy _

 r0 is valid for all je r. 
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Now we shall prove that x ^ ' y . 
Let x 7-= y and /e M v r Then x, # y, and x, = vy for all j > /. 
1) Let i$Mx. By way of contradiction we shall prove that x, = 0. Suppose 
x, ^ 0. Then there exists j > i,jeMx. 
a) Let Xj > 0,jel. 

If Zj = 0, then f, = (^z)7 = 0. Since xy = 0, we get xy > 0 = yp which con­
tradicts the assumption that x7 = yP 

If z7 ̂  0 andje Mz, then zy > 0, f,- = 0, ( — z\ = — 2zp Since x} = 0, we obtain 
}) = — 2z7 < 0 < xy, a contradiction. 

If Zj 7-: 0 and j ^ M_, then there exists k > j , keMz. Then we get zk > 0, 
xk = 0, zk + ( — z)k 7-- 0. From this we obtain yk ^ 0 = xk, a contradiction. 
b) Let Xj<0,jel. 

If z, = 0, then f7 = ( — z)7 = 0. Since x7 = 2xy < x; < 0, we obtain yy = 2xy < xp 

a contradiction. 
If Zj y£ 0 and jeMz, then z, > 0, f7 = 0, ( — z\ = — 2z/,From the relations 

x, = 2Xj < Xj < 0, Zj + ( — z)j = —2zj < 0 we get >7 = 2x, — 2z, < xp a contradic­
tion. 

If Zj 7̂  0 andj^M_, then there exists k > j , keMz. Thus zk > 0. Since xk = 0, 
xk = 0, zk + ( — z)k # 0, we obtain yk 7-- 0 = xk, a contradiction. 
c) Let x7 > 0 and j$I. Then x7 = 2x, > x; > 0. 

If Zj = 0, then f7 = ( — z)y = 0. From this we get y} = 2xf > xp a contradiction. 
If Zj^O and jeMz, then Zj > 0. Thus f7 = 2z7, ( —z)7 = 0. Then we get 

\) = 2Xj + 2z} > xn a contradiction. 
If Zj 7-- 0 and j£Mz, then there exists k > j , keMz. Thus zk > 0. From the 

relations xk = 0, xk = 0, zk + (-z)^7-0we obtain yk ^ 0 = xk, a contradiction. 
d) Let Xj < 0,j$I. Then x7 = 0. 

If Zj = 0, then Zj = 0, ( — z\ = 0. From this we obtain y}•, = 0 > xp a contradic­
tion. 

If Zj 7-- 0 andjeM-, then zy > 0. Hence fy = 2z, > 0, ( — z)y = 0. From this we 
get y} = 2zj > 0 > x7, a contradiction. 

If zt 7-- 0 and j$Mz, then there exists k > j , keMz. Then zk > 0. From the 
relations xA = 0, xk = 0, zk + ( - z ) ^ 0 w e get yk 7-- 0 = xk, a contradiction. 
e) Let Xj be incomparable with 0 in (Hn ^ 7 ) . Then (IIp ^J) is trivially ordered. 
Suppose that zk = 0 for all k > j . If zy ?- xy, thenjeMvr, which contradicts the 
assumption that z = x. If zy = x7 9-- 0, thenjeM., Thus zp 0 are incomparable in 
(Hp g;.), which contradicts the assumption that z ^ 0. Therefore there exists 
k > j , keMz. Thus zA. > 0. Then we obtain xA. = 0, xk ••= 0, zk + ( — z)k =£ 0. Thus 
} \ 7-= 0 = xk, a contradiction. 

Therefore x, = 0. Then from the relations yt ^ 0, 0 ^ 'y( we infer x, = 0 < 'yr 

2) Suppose that ieMx. 
a") If Xj < 0, iel, then x, = 2x;, x, > ' 0. From this we have x, = 2x, > ' x, 
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b) If x, < 0, /<£ I, then x, = 0, x, <' 0. Thus x, > 'xr 

c) If x, > 0, /e I, then x, = 0, x, <' 0. Thus x, > ' x,. 
d) If Xj > 0, /<£ I, then x, = 2x„ x, > ' 0. Hence x, = 2xt > ' x,. 

Since v, =' x, for all ie T, we obtain >*, > ' .v, in all the cases above. 
e) Suppose that x, is incomparable with 0 in (IJ„ =l). Then (II„ •_,) is trivially 
ordered. Since x, ^ 0, x = z, 0 ^ z, then there exists j > i, jeMz. Thus _. > 0, 
Xj = 0, z; + ( —z),- ^ 0. From this we obtain y} ^ 0 = xp a contradiction. 

Hence >*,• > ' x , for all / E M U . Therefore y > ' x . From the definition of the 
element y we have v = ' 0. 

4.3. Theorem. (V, fg), (V, =') have the same directed convex subgroups. 

Proof . Let C be directed convex subgroup of (V, =). From 4.2 we ob­
tain that C is a directed subgroup of (V, ='). Thus it suffices to verify that C is 
a convex subgroup of (V, ^ ' ) . 

Let 0 < ' y < 'x for some ye V, xeC. Since (C, =) is a directed subgroup of 
(V, :§) there exist elements u, r e C such that 2x _ r, — 2x _ r, 0 ^ r, x = v, 
u = — 2x, it = 2x, u = 0,u = x. 

We shall prove that u = y = v. 
Let v ¥• v and ie Mu. Then r, 7̂  y, and r; = >'7 for all j > i. By contradiction we 
shall show that v; = vy = xf = 0 for all j > i. 

Suppose that r, ^ 0 for some j > i. Then there exists k =j, keMt. Thus 
keM^. 

If x! ^ 0 for some / > k, then there exists m e Mv m = I. Thus xm >' 0. Hence 
meM(2x)i, meM(_2x)l. From r = 2x, v=—2x we obtain 0 = vm > 2xm, 
0 = rm > —2xm, a contradiction. 

Suppose that x{ = 0 for all / > k. Since i\ 7-= 0, we have vk = yk >' 0. If xk = 0, 
then k e Mv,. Thus xk < 'yk, a contradiction. If xk ^ 0, then from x > ' 0 it follows 
that xk >'0. Since .YA ='yk, we get xA. ='yk = vk>'0. Since keMt, v = 0, the 
relation vk = 0 is valid. Thus ke T\I, hence 0 < rA = yk = xk < 2xk. From the 
relations keM(2x)l, v = 2x we have rA > 2xk, a contradiction. 

Thus Vj = 0 and also yf = 0 for all j > i, je K. Suppose that x, ^ 0 for some 
j > i. Then there exists k = j , k e Mv . Thus xk >' 0. From the relations k e M(2v),, 
keM(_2v)1, r = 2x, r = —2x we obtain 0 = rA. > 2x^, 0 = rA > — 2xA, a con­
tradiction. Hence xf = 0 for all j > /. 

If y„ r, are incomparable in (II„ =i), then II, is trivially ordered. From the 
relation 0 < ' v we get _>*,• = 0. Then r, ^ 0, ie Mt, which contradicts the assump­
tion that r = 0. If v, > r, and iel, then from r = 0 it follows that v, > r, = 0. 
Thus ieMx, v, < ' 0 , which contradicts the assumption that y >' 0. 

If j , > r, and i^I, then j , > r, = 0. From the relations i$I, x> ' y, Xj = y} for 
all7 > / we have x, = v, > r, = 0, ie Mxl, which contradicts the assumption that 
v > x. 
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Theorefore yt < vt for all ieMvv. Hence y < v. Similarly we can prove that 
u _^ y. From the convexity of C in (V,_\) it follows that yeC. Hence C is a 
convex sugbroup of (V, _^f). 

4.4. Lemma. Let x, ye(V, _l) and let 0 < y < x. Then M(2x)v = M(_2x)v and if 
ieM(2x)v, then y} = xf = 0 for all j > i. 

Proof. Let 0 < y < x for some x, yeV. Then we have 
— 2x<0<y<x<2x. Let ieM(2x)v. Then 2x, > yt. 

Suppose that yf 7- 0 for some j > i. Then there exists k _zj, ke My. Thus 
yk > 0. Since ieM(2x)v, we have 2xk = yk > 0. From this we obtain 2xk > xk> 0 
and xt = 0 for all I > k. Since x > y, we get xk = yk. Thus 2xk > xk = yk > 0, a 
contradiction. 

Therefore y} = 0 for ally > /. Then we have yi = 0> — 2xt. Thus ieM(_2x)y. 
Conversely, assume that ieM(_2x)y. Then — 2xt < yt. Suppose that y} 7- 0 for 

some j > /. Then there exists k=j,ke My. Then yk > 0. Since ieM(_2x)y, we have 
— 2xk = yk> 0. Thus — 2xk > —xk>0 and xt = yt = 0 for all I > k. This con­
tradicts the assumption that x > 0. 

Thus yj = 0 for all j > i. Then also Xj = 0 for all j > i. If >', = 0, then 
— 2x( 7- 0. Therefore 2x, 7- yt. If y, 7- 0, then y{ > 0. Assume that 2xt = yt. Then 
y( = 2x{ > Xi > 0, which contradicts the assumption that x > y. Thus 2xt 9- y,. 
Hence ieM(2x)v. 

Remark. Lemma 4.4 is true for an arbitrary mixed product of po-groups 
(i.e., need not suppose that for each ieT, Ht is linearly ordered or trivially 
ordered). 

Let F) = {ieT; Ht is linearly ordered}. 

4.5. Theorem. (V, rg), (V, :g') have the same convex subgroups if and only if 
there are no incomparable elements i,j in F) such that ier\l,jel. 

Proof. 1) We first shall prove the sufficiency of the conditions. Note that 
if a, be V and i,jeMah, i 7- j \ then i,j are incomparable in F. 

Suppose that C is a convex subgroup of (V, t_f). Let 0 < y < x for some 
yeV, xeC. Then we have — 2x < 0 < y < x < 2x. From 4.4 we have 
M(2x)v = M(_2x)v. By the assumptions we obtain M(2x)v _= I or M(2x)v _; r\I. 

If M(2x) _= I, then 2xt<'yt<' —2xt for all ieM(2x)v = M(_2x)v. Thus 
2x <fy <f -2x. 

If M(2x)v^r\I, then — 2xx<
fyx-<'2Xi for all ieM(2x)v = M(_2x)v. Thus 

- 2 x < / ^ < / 2 x . 
From the convexity of C in (V, ±_f) it follows that y e C. Hence C is a convex 

subgroup of (V, _\). 
2) Suppose that there exist incomparable elements i,j in F) such that ier\I, 

je I. Since //,-, Hj are nontrivial linearly ordered groups, then there exist elements 
aeHh beHj such that a >,0, b <j0. 
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Let v be the element of V such that v, = 2a, vf = 2b and vk = 0 for all 
ke T\{i, /'}. Let A = [nv, meZ}. Clearly A is a subgroup of V. 

Let 0 ^ r _ x for some ye V, xeA. Then x. = m(2a), xt = m(2b), where 
meZ. Since 0 = x, we get x, = m(2a) = 0, .v. ^ m(2b) = 0. From this we have 
m = 0. Thus xA = 0 for all k f . Suppose that yk 9-- 0 for some ke T. Then there 
exists / = k, leMr Since y = 0, we obtain 17 > 0 = *,, which contradicts the 
assumption that x = y. Therefore yk = 0 for all ke T a n d hence ye A. Thus A 
is a convex subgroup of (V, =). 

Let r be the element of V such that zt = a,zf = b and zk = 0 for all k e K {/, /}. 
Let t be the element of V such that f = 2a, t; = 2b and tk = 0 for all k e K\{/,f}. 
Then z ^ A , teA. From 0 < ' - . < ' 2 a , 0 <'zt-<'2b, M=t - {/,/jwegetO < ' : : < ' / . 
Since r ^ A , A is not a convex subgroup of (V, = '). 

5. Isolated factorially rational groups and isolated finite valued groups 

5.1. Lemma. Let Q, be a nontrivial subgroup of the additive group Q of all rational 
numbers. Then there exist only two different linear orders on Qx, which are dual 
to each other. 

Proof . Let =, be a linear order on Q, and let P(Q^ be the positive cone 
of (Q,, =]). Then P(Q{) is the positive cone of a partial order on Q. Since Q is 
a torsion-free group, from [5, Chap. I l l , Coll. 13] it follows that each partial 
order on Q can be extended to a linear order on Q. Since there exist only two 
different linear orders on Q which are dual to each other [8, Chap. II, Sec. 2, 
Proposition 1], the same holds for Qv 

5.2. Lemma. Let (G, =), (G, =') be nontrivial linearly ordered groups with the 
same group operation and let (G, =') be o-isomorphic to a subgroup of (Q, _ ) . 
Then =' = = or _ ' = _ ". 

Proof . This follows from 5.1. 

5.3. Lemma. Let (G, _ ) be a nontrivial linearly ordered abelian group and let 
aeG, a > 0. Then (G, _ ) is o-isomorphic to a subgroup of (Q, =) if and only if 
for each beG there exist elements m, neZ, n =£ 0 such that ma = nb. 

The proof is obvious. 

5.4. Theorem. Nontrivial isolated factorially rational divisible abelian groups 
(H, = ) , (H, = ') have the same convex subgroups if and only if there exists a po-set 
rand for each ie r there exist linearly or trivially ordered groups (C„ _ , ) , (C„ =^) 
with the same group operation such that 
(1) there exists a mapping <p of H into V\T, C] such that cp is an o-isomorphism 
of ( / / , _ ) into V\T, (C„=i)] and also an o-isomorphism of (H,= ) into 

VrE(c„<o], 
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(2) for each ieT = \ = <^or f§,' = g f . 
(3) there exists no element 0 < heH such that (hep), > ' 0 , (hep), < ' 0 for some 
maximal components (hcp)t, (h<p)j of hep, 
(4) there exists no element 0 <'geH such that (g(p)k > 0, (g(p)t < 0 for some 
maximal components (g(p)k, (g<p)i of gcp. 

Proof. In order to prove the necessity of the conditions in view of 2.3 it 
suffices to show that for each ieT ^'t= ^ , or ^,- = ^f. 

Since (H, =), (H, ^ ' ) are factorially rational, the required relations follow 
from 5.2. 
Now we show the sufficiency of the conditions. Let A be a convex subgroup of 
(H, ^ ' ) and let 0 < y < x for some yeH,xeA. From this we get — 2x < y < 2x 
and 0 < yep < xcp. Then ( — 2x)cp < yep < (2x)(p. In view of 4.4 we have 
M(2x)9y9 = M(_2x)9xr Thus ((-2x)(p)i<(y(p)i<((2x)(p)i for each ieM{lx)(pyr 

From (2) and (3) it follows that ( — 2x)(p <'ycp <'(2x)cp or 
( — 2x)cp >'ycp >'(2x)(p. Thus —2x<'y<'2x or —2x >'y >'2x. From the 
convexity of A in (H, ^ ' ) we infer that ye A. Hence A is a convex subgroup of 
(//, 5^). Similarly we can obtain, that if B is a convex subgroup of (H, ^ ) , then 
B is a convex subgroup of (H, ^ ' ) . 

5.5 Lemma. Let (G, —^)be an isolated factorially rational abelian group. Then 
(Z(G), ^ ) is an isolated divisible factorially rational abelian group. 

Proof. Let (Al,A^ be a pair of pure convex subgroups of (Z(G), ^ ) such 
that Ai covers At and (A{\Ah ^ ) is nontrivially ordered. From 2.12 we have that 
(G n A', G n At) is a pair of pure convex subgroups of (G, = ) such that G n A1 

covers G nAt. 
Let a + Ah b + A^A'/A^ a + At> At. Then na + d > 0 form some neN, 

deAj. Since aeA\Ah be A1, deAh we get that kaeGnA\GnAh ldeA(nG, 
mbeGnA1 for some k, I, meN. Then kl(na + d) = nlka + kld> 0. Thus 
nlka + GnAt> GnA{. Hence GnAi/GnAi is nontrivially ordered. Since 
(G, ^ ) is factorially rational, from 5.3 we get rnlka + G nAt = smb + G nA( 

for some r,seZ, s / 0. Then rnlka + gx = smb + g2 for some g b g 2 e 
eGnAt^ Z(Gn A). From this we get rnlka + Z(Gn A,) = smb + Z(Gn A). 
From 2.9 and 5.3 it follows that (A'/Aj, ^ ) is o-isomorphic to a subgroup of 

(G, =)-
From 5.5 we obtain the following corollary 

5.6. Corollary. The hypothesis that (H, ^ ) , (H, ^ ' ) are divisible can be omitted 
in 5.4. 

5.7. Theorem. Nontrivial isolated finite valued abelian groups (H, ^ ) , (H, ^ ' ) 
have the same convex subgroups if and only if there exists a po-set T and for each 
ie T there exist ordered groups (C„ ^,) and (C„ ^ 0 such that 
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(i) (C„ ^ , ) , (C„ 5^9 have the same group operation and card C, > 1, 
(ii) The following conditions (1)—(4) are satisfied: 
(1) there exists a mapping (p of H into V\T, C] such that (p is a v-isomorphism of 

(H, ^ ) into V\r, (C„ ^/)] and also a v-isomorphism of (//, <^') wto 
VIE(G„<0], 

(2) for each ie T we have either that 
(a) both (C/, ^ , ) and(Ch ^ 9 are trivially ordered and each of them is isomor­

phic to a subgroup of Q 
or (b) both (C„ ^ , ) arzd (C„ 5^9 are linearly ordered and each of them is 

o-isomorphic to a subgroup of (R, ^ ) , 
(3) there exists no element 0 < he// such that (h(p)i > ' 0 , (h(p)t <'0 for some 

maximal components (h(p)„ (h(p)j of hep, 
(4) there exists no element 0 <'geH such that (g(p)k > 0, (g(p)t < 0 for some 

maximal components (g(p)k, (g(p)i of g(p. 
Proof . In view of 2.3 and 2.20 it suffices to show the sufficiency of the 

conditions. 
Let A be a convex subgroup of (//, ^') and let 0 < y < x for some ye H, 

xeA. Then 0 yep < x<p, —2x < y < 2x, ( — 2x)(p < y(p < (2x)(p. 
Let ((2x)(p)i = 0 for some ie Mi2x)(pv(p. Then also (( — 2x)(p)=0. In view of 

Lemma 4.4 from ( — 2x)(p < y(p <(2x)(p we have 0 <j(y(p)„ (y(p), < ,0 , a con­
tradiction. 

Hence ((2x)(p), 7- 0 for each ieMi2x)(p}(p. Since for each ieMi2x)(pv(p (C„ <;,9 is 
o-isomorphic to a subgroup of (R, ^ ) , for each ieMi2x)(pvip there exists nteZ such 
that n,((-2x)(p)l <;0^) f . <'ini((2x)(p)l. 

Since (p is a v-isomorphism, / is a value of 2x — y if and only if ieMi2x_ v)(p. 
Then from the relation Mi2x x)(p = Mi2x)(pi(p and from the fact that (//, ^ ' ) is 
finite valued we obtain that Mi2x)(pv(p is a finite set. Then there exists neZ such 
that n((-2x)(p)i <,'(y<p), <;rz((2x)<p), for all ie Mi2x)ipv(p = M{_2x)(pv(p. Thus 
n(( — 2x)(p) <'y(p <'n((2x)(p) and hence n( — 2x) <'y <'n(2x). From the con­
vexity of A in (//, 5^') we get ye A. Hence A is a convex subgroup of (//, 5^'). 
Analogously we can prove that if B is a convex subgroup of (//, ^ ) , then B also 
is a convex subgroup of (//, ^ ' ) . 

5.8. Corollary. Nontrivial abelian linearly ordered groups (//, ^ ) , (//, 5^') have 
the same convex subgroup if and only if there exists a linearly ordered set r and 

for each ie T there exist nontrivial linearly ordered groups (C„ 5^,), (C„ 5^9 with 
the same group operation such that 
(1) lhere exists a mapping (p of H into V[K, C,] such that (p is a v-isomorphism of 

(//, 5^) into V\r,(C„ :§/)] and also a v-isomorphism of (//, 5^') into 
V[E(c,,<0], 

(2) for all ie Teach of the groups (C„ ^ , ) , (C„ 5^9 is o-isomorphic to a subgroup 

of(R, _). 
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Proof. Since the set of all convex subgroups of a linearly ordered abelian 
group is lilnearly ordered by inclusion [5, p. 80], each of its nonzero elements has 
only one value. 

The necessity of the conditions in view of 5.7 follows from the fact that the 
set rin Theorem 5.7 is linearly ordered in the case when (//, ^ ) , (H, ^ ' ) are 
linearly ordered (see the description of rin the proof of Theorem 2.3). 

In view of 5.7 sufficiency of the conditions follows from the fact that for each 
heH, h # 0, hep has only one maximal component. 
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ПАРЫ ЧАСТИЧНО УПОРЯДОЧЕННЫХ ГРУПП С ОДИНАКОВЫМИ 
ВЫПУКЛЫМИ ПОДГРУППАМИ 

МПап 1 а з е т 

Резюме 

В статье исследуются пары изолированных абелевых групп (Я, ^ ) и (Я, ^ ' ) 
определённых на одном и том же множестве с одной и той же групповой операцией, причём 
система всех выпуклых подгрупп (Я, ^ ) совпадает со системой всех выпуклых подгрупп 
№-Г). 
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