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PAIRS OF PARTIALLY ORDERED GROUPS WITH
THE SAME CONVEX SUBGROUPS

MILAN JASEM

Conrad [3] studied the system of all convex 1-subgroups of a lattice
ordered group G. Jakubik and Kolibiar [7] investigated pairs of distri-
butive lattices L, and L, with the same underlying set such that the system of all
convex sublattices of L, coincides with the system of all convex sublattices of L,.
They proved that L, and L, can differ only by duality of a direct factor.

The paper presented is a contribution to the investigation of an analogous
question concerning partially ordered groups. In the paper there are studied
pairs of isolated abelian partially ordered groups (H, <), (H, £’) with the same
underlying set and the same group operation such that the system of all convex
subgroups of (H, <) coincides with the system of all convex subgroups of
(H, £7). It will be shown that instead of direct factors (as in the case examined
by Jakubik and Kolibiar in [7]) we have now to deal with certain sub-
direct factors of (H, <) and (H, <’), respectively, which are either linearly
ordered or trivially ordered. For the main results concerning partially ordered
groups cf. 2.2, 2.3 and 2.20. A related question for abelian lattice ordered groups
is dealt with in Theorem 3.1.

In Section 4 there are investigated mixed products with factors which are
either linearly ordered or trivially ordered.

In Section 5 we obtain necessary and sufficient conditions for certain par-
ticular cases.

1. Preliminaries

First we recall some notions and denotations which will be used in the paper.
Throughout this paper let £ ~ denote for a partially ordered group (notation
po-group) (G, <) the dual of <. The group operations in po-groups will be
written additively.

(R, £), (Q, =) and (Z, =) will denote additive groups of all real numbers,
rational numbers and integers with the natural order. The set of all positive
integers will be denoted by N.
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Let (G, £) be a po-group. A subgroup C of (G, =) is said to be convex if
a,ceC,beGand a £ b £ ¢ imply beC.

We say that a po-group (G, <) is isolated if e G and na = 0 for some ne N
imply a = 0.

A subgroup A of an abelian group G is called pure if the equation nx = g,
where ge A and ne N, is solvable in 4 whenever it is solvable in the whole group.

Let I"be a partially ordered set (notation po-set) and for each ie I'let (H,, <))
be a nontrivial po-group. Let V' = V][I, H] be the following subset of the large
direct sum of the H, An element v = (..., v, ...) belongs to V if and only if
S, = {ie I'; v; # 0} contains no infinite ascending sequence. This is equivalent to
the maximum condition. V is a subgroup of the large direct sum of the H,. If
veV,v; # 0 and v, = 0 for all j > i, then v; is called a maximal component of ¢.
A nonzero element of V'is positive if each maximal component t; of v is positive
with respect to the partial order on the group H, Then V]I, H] is a po-group
[4, Th. 2.1]. We shall denote this po-group by V[I, (H, <)]. The po-group
VII, (H, £))] is called the mixed product of po-groups (H, <. For x, ye
eV[F (H, =), x#ylet M ={iel, x;#0 and x; =0 for all j >/} and let

o =€l x;# y and x; = y, for all j > i}.

Unless otherwise stated, in this section (G, <) will always denote an isolated
abelian po-group and I" will be the set of all pairs of convex pure subgroups
(G, G) of (G, £) such that G’ covers G, (i.e. G, = G' and for any pure convex
subgroup K of G, G, = K < G' implies K = G'). We shall frequently identify the
pair (G', G)) with i. For i and j in I"define that i < jif either G' = G’ and G, = G,
or G'c G, Then I'is a po-set [4, p. 148].

For Xe G'/G, we define X > G, if and only if X # G, and nX contains an
element p > 0 for some positive integer n. Then G'/G, is a po-group for each i
in I'[2, p. 22]. For ie I, G'/G; is order isomorphic (notation o-isomorphic) to a
subgroup of (R, <) unless it is trivially ordered, and in this case it is isomorphic
to a subgroup of the additive group Q of all rational numbers [2, p. 23].

Let (G, £) be an isolated abelian po-group and let I be as above. (G, <) is
said to be factorially rational if each nontrivially ordered group G'/G,, ie I, is
o-isomorphic to a subgroup of (Q, =).

If ge G\G,, ie T, then iis said to be a value of g. (G, <) is finite valued if each
g€ G has only a finite number of values.

An isomorphism ¢ of G into V[I,G'/G] is said to be valuation preserving
(notation v-isomorphism) provided that it satisfies
(v) ieI'is a value of ge G if and only if (g¢), is a maximal component of go,
and in this case (gp),=g + G..

From [2, p. 23] it follows that each v-isomorphism ¢ of (G, £) into V][I, (G’
/G, £))] is an o-isomorphism.

For the remainder of this section let (G, <) be a divisible isolated abelian
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po-group. Then G is a rational vector space. We need the following result
(cf. [4, p. 148], where we find the remark that this result goes back to Ban-
aschewski [1]).

(T) There exists a mapping z of the set of all subspaces of G into itself such
that for all subspaces 4 and B of G
(i) G=A® n(A), and
(i1) if 4 < B, then n(A) 2 n(B).

In the paper of Conrad, Harvey and Holland [4, p. 148—149] there
was investigated the mapping ¢ of G into V[I, G'/G] such that for xe G x¢ is
defined as follows: for each ie I'let (x¢), = x; + G, where x = x; + ¢;, x;,€ G' and
c;em(G'). It was proved that ¢ is a v-isomorphism of (G, <) into
VT (GG, <))

2. Partially ordered groups with the same convex subgroups

In this section there are studied pairs of isolated abelian po-groups (H, <),
(H, £’) with the same underlying set and the same group operation such that
the system of all convex (directed convex) subgroups of (H, <) coincides with
the system of all convex (directed convex) subgroups of (H, <’). Such po-groups
will be called groups with the same convex (directed convex) subgroups.

2.1. Lemma. Let (H, £), (H, £’) be isolated abelian po-groups with the same
convex subgroups. Assume that ae H. Then a is comparable with 0 in (H, <) if and
only if a is comparable with 0 in (H, £").

Proof. Without loss of generality we may assume that a = 0. Let 4 be
the subgroup of H generated by the element 2a and let (C(A4), =) be the convex
subgroup of (H, £) generated by A. Since (H, <), (H, £’) have the same convex
subgroups, (C(4), £’) is a convex subgroup generated by 4 in (H, <’). Let P’
be the positive cone of (H, <’). Then from [5, Chap.II, p.32] we have
CA)y=(A+ P)n(A+ (—P)). Since aeC(4), we obtain a = m(2a) + u,
where u <’0, meZ. From this we get a=m(a)+ u <'m(2a)). Thus
05'2m — Da. If 2m — 1)e N, then 0 <’a, because (H, <’) is isolated. If
(2m — 1) is a negative integer, then (1 — 2m)e N. Since (H, <’) is isolated, from
the relation 0 <’ (1 — 2m)(—a) we get a <’0. Thus a is comparable with 0 in
(H, £’). The sufficiency of the conditions can be verified analogously.

2.2. Proposition. Let (G, <) and (G, £’) be abelian po-groups with the same
group operation. Then (G, <) and (G, <) have the same convex subgroups if and
only if
(1) x,yeGand 0 < y < x imply mx <’y <’ nx for some m, ne Z and
(2) z,teGand 0 <’z <’ t imply kt < z < It for some k, le Z.

Proof. The conditions are obviously sufficient, we now show their necess-
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ity. Let (G, £), (G, £’) have the same convex subgroups and let 0 < y < x for
some x, y€ G. Denote by A4 the subgroup of G generated by the element x. Let
(C(A), £) be the convex subgroup of (G, <) generated by A. Since (G, <),
(G, £’) have the same convex subgroups, (C(4), £’) is a convex subgroup
generated by 4 in (G, =’). Let P’ be the positive cone (G, <’). Then from
[5, Chap. 11, p. 32] we have C(4) = (4 + P’)n (A4 + (— P’)). Since ye C(A), we
obtainy = mx + u, y = nx + v, where u £’0,0 <’v, m, ne Z. From this we get
nx <’y <" mx. Assertion (2) can be verified analogously.

2.3. Theorem. Let (H, <), (H, £’) be nontrivial isolated divisible abelian
groups with the same convex subgroups. Then there exists a po-set I and for each
ie I there exist ordered groups (C,, <)) and (C,, £)) such that
(1) (C,, £). (C;, ) have the same group operation and card C; > 1,

(i) the following conditions (1)—(4) are fulfilled:
(1) there exists a mapping ¢ of H into V[I', C] such that ¢ is a v-isomorphism of
(H, £) into VIT, (C,, £))] and also a v-isomorphism of (H, <7) into Vi, (C,, =),
(2) for each ie I" we have either that
(a) both (C, <)) and (C,, <)) are trivially ordered and each of them is isomor-
phic to a subgroup of Q
or (b) both (C, <) and (C, <)) are lincarly ordered and each of them is
o-isomorphic to a subgroup of (R, <),
(3) there exists no element 0 < he H such that (hg), <’0, 0 <’ (ho), for some
maximal components (ho),, (hy), of ho,
(4) there exists no element 0 <’ge H such that (gp), <0, 0 < (g@), for some
maximal components (go),, (g9); of go.

Proof. If (H, £). (H. £’) have the same convex subgroups, then they also
have the same pure convex subgroups. Let I"be the set of all pairs of pure convex
subgroups (H', H) of (H, <) and (H, <’) such that H' covers H,. For each ie I,
(H'/H,, £,)is o-isomorphic to a subgroup of (R, <) unless it is trivially ordered.
and in this case it is isomorphic to a subgroup of Q. The same is valid for
(H/H, <), ie'[2, p. 23].

If ie "and (H'/H,, <)) is linearly ordered, then there exists # > 0. henX for
some neN, Xe H/H,, X # H,. In view of 2.1 we have 0 <’/ or i/ <’0. Thus
H,</Xor X </H;. Hence (H/H,, <)) is linearly ordered. Thus (2) is valid. I"can
be partially ordered as shown in Section 1. Then the mapping ¢ of H into
VII, H/H] defined as in Section 1 is a v-isomorphism of (H, <) into
VT, (H'/H,, £))] and also a v-isomorphism of (H, <’) into V[I',(H'/|H, <)),
because (x¢); is determined by group properties of H' for each ie I

(3) and (4) are consequences of 2.1.

It is easy to verify (cf. e.g. [6, Section 1.3]) that if (G, <) is an isolated abelian
po-group, then there exists an isolated divisible abelian po-group (Z(G), <)
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such that (G, <) is a po-subgroup of (Z(G), £) and if ze Z(G), then there exist
x€ G and me N such that mz = x.
In the present paper Z(G) has the same meaning as in [6, Section 1.3}, i.e.,

Z(G) is the set of all expressions of the form f, where xe G, ne N, subject to the

n
rules of:
wewmwzf=fﬁmdeKknﬂm
n Kk
b) addition: d + Y- kx——{—ny’
n k nk

¢) partial order: for ze Z{G) we have - > 0 if and only if there exists xe G, x > 0

X
such that z = = for some ne N.
n

If Cis a subgroup of G, then we can assume that Z(C) is a subgroup of Z(G).

2.4. Lemma. Let B be a subgroup of a po-group (A, <) and let C be a convex
subgroup of (A, £). Then Cn B is a convex subgroup of (B, ).
Proof. The assertion is obvious.

2.5. Lemma. Let (G, <) be an isolated abelian po-group and let C be a convex
subgroup of (G, £). Then Z(C) is a convex subgroup of (Z(G), <).

Proof. Let 0 =y <x for some xeZ(C), yeZ(G). Then there exist
m, ne N such that mye G, nxe C. Thus mnye G, mnxe C. From the relation
0 < mny < mnx and the convexity of C in (G, £) we obtain mnyve C. Hence

yeZ(0).

2.6. Lemma. Let (G, <) be an isolated abelian po-group. Then for each ge G
the equation g = nx, where ne N, has at most one solution.

Proof. Let x,, x,, 2€G and let nx, = nx, =g for some neN. Then
n(x, — x,) = 0. Since G 1is isolated, we have x, — x, = 0. If x, # x,, we obtain
0 < n(x, — x,), a contradiction. Thus x, = x,.

As a consequence of 2.6 we obtain

2.7. Lemma. Let (G, £) be an isolated divisible abelian pogroup. Then for each
g€ G the equation g = nx, where ne N, has a unique solution.

2.8. Lemma. Let (G, £) be an isolated abelian po-goup and let C be a pure
convex subgroup of (G, £). Then Z(C) is a pure convex subgroup of Z(G) and
Z(CO)nG = C.

Proof. Let ae Z(C), be Z(G) and a = nb for some ne N. Then there exist
k, le N such that kae C, Ibe G. Since klb is a solution of the equation kla = nx,
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from 2.6 and the purity of C in G we get klbe C. Thus be Z(C). The convexity
of Z(C) follows from 2.5. Hence Z(C) is a pure convex subgroup of Z(G).
Clearly C < Z(C)n G. Let ae Z(C) n G. Then a is a solution of the equation
nx = b for some be C, ne N. From 2.6 and the purity of C in G we get ae C.
Remark. If we do not assume that C is pure in 2.8, then the relation
Z(C)n G = C need not be valid.

2.9. Lemma. Let (G, £) be an isolated abelian po~group and let C be a pure
convex subgroup of (Z(G), £). Then C G is a pure convex subgroup of (G, <)
and Z(Cn G) = C.

Proof. Let aeCn G, be G and a = nb for some ne N. Since a, be Z(G),
from 2.7 and the purity of Cin Z(G) we get be C. Thus he C n G. The convexity
of Cn G follows from 2.4.

Let xeC. Then nxeGn C for some ne N. Thus xeZ(Gn C). Hence
CcZ(GNnC). Let ye Z(GN C). Then mye G n C for some me N. Since C is
pure in Z(G), from 2.7 it follows that ye C. Thus Z(Gn C) < C.

2.10. Lemma. Let (G, <) be an isolated abelian po-group and (A', A,) be a pair
of convex pure subgroups of (G, <) such that A' covers A,. Then (Z(A'), Z(A)) is
a pair of convex pure subgroups of (Z(G), <) such that Z(A") covers Z(A)).

Proof. In view of 2.8 it suffices to verify that Z(A") covers Z(A,). Let
Z(A) < B< Z(A) for some pure convex subgroup B of Z(G). Then
Z(A)NnG<=BNnG< Z(A)NnG. From 2.8 we also have Z(4)nG = A,
Z(A)n G = A'. By 2.9 G n Bis a pure convex subgroup of G and Z(G N B) = B.
Since A’ covers A, we get GNnB= A, or GAnB= A" Thus Z(A)= B or
Z(A") = B. From 2.8 we get Z(A') # Z(A,). Hence Z(A’) covers Z(A)).

2.11. Corollary. Let (G, <) be an isolated abelian po-group, ge G and (A', A))
be a value of g in (G, ). Then (Z(A"), Z(A)) is a value of g in (Z(G), ).

2.12. Lemma. Let (G, <) be an isolated abelian po-group and let (B', B) be a
pair of convex pure subgroups of (Z(G), <) such that B covers B, Then
(G B, Gn B) is a pair of convex pure subgroups of (G, £) such that GN B'
covers G N B,

Proof. In view of 2.9 it suffices to verify that G B' covers G B,. Let
GNnB, A= Gn B for some pure convex subgroup 4 of G. Then
Z(GNnB)= Z(A) = Z(GNA B). From 29 we also have Z(Gn B)=B8B,
Z(GNnB)=PB. By 2.8 Z(A) is a pure convex subgroup of Z(G) and
Z(A)n G = A. Since B covers B, we obtain Z(4) = B' or Z(A) = B,. Thus
A=BnNnG or A=B,NnG. From 2.9 we get GNnB'# Gn B,. Hence GNn B’
covers G N B,

2.13. Corollary. Let (G, £) be an isolated abelian po-group, g€ Z(G) and let
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(B',B) be a value of g in (Z(G), £). Then there exists neN such that
(G B, GnN B) is a value of ng in (G, <).

Proof. In view of 2.12 it suffices to show that nge G n B\G N B,.

If ge Z(G), ge B, then there exists ne N such that nge G N B'.

If ngeG B, then ge Z(Gn B). From 2.9 we get Z(G n B,) = B, Hence
g€ B, a contradiction. Thus ng¢ G N B,

From 2.8 and 2.9 we obtain the following corollary

2.14. Corollary. If (H, <), (H, £’) are isolated abelian po-groups with the same
pure convex subgroups, then (Z(H), <), (Z(H), £’) have also the same pure convex
subgroups and the mapping o of the set P, of all pure convex subgroups of (H, <)
into the set P, of all pure convex subgroups of (Z(H), <) such that Aa = Z(A) for
each A€ P, is one-to-one and onto.

2.15. Lemma. Let (H, <), (H, £’) be isolated abelian po-groups with the same
convex subgroups. Then (Z(H), £), (Z(H), £’) also have the same convex sub-
groups.

Proof. Let C be a convex subgroup of (Z(H), £). Let 0 £’y <’ x for
some xeC, ye Z(H). Then there exist m, ne N such that mx, nye H. Thus
mnxe C N H. In view of 2.4 C n H is a convex subgroup of (H, £). Thus Cn H
is also a convex subgroup of (H, £’). Then from 0 <’ mny <" mnx we get
mnye C n H. Hence mny e C. Since 0 £’ mny, from 2.1 it follows that 0 < mny
or mny < 0. Since (Z(H), <) is isolated, we infer that 0 < y < mny or
0 < —y < mn(—y). From this and the convexity of C in (Z(H), <) we obtain
yeC. Hence C is a convex subgroup of (Z(H), £).

2.16. Lemma. Let (H, <), (H, <) be isolated abelian po-groups with the same
convex subgroups. Then (H, £), (H, £’) have the same directed convex subgroups.
Proof. Let C be a directed convex subgroup of (H, <). Then C is a con-
vex subgroup of (H, £’). Let ye C. Then there exists an element x € C such that
0x,y<x.Inviewof 2.1 weget x<’0or0<="x,y<"xorx="y.
1) If0<'xand x <’y or x £’0 and y <’x, then 0, y are comparable.
2) Ifx<’0and x <’y, thent =y — xisanelement of Cand 0 <'t, y =’ 1.
3) If 0 £’x and y £’x, then x is an upper bound of 0, y in (H, £’). Thus C is
a directed convex subgroup of (H, <’).

The following example shows that if two isolated abelian po-groups have the
same directed convex subgroups, then they need not have the same convex
subgroups and if some element is comparable with 0 in one group, then it need
not be comparable with 0 in other group.

Example. Let (G, £) be the direct product (R, )@ (R, £) and let (G, £)
be the direct product (R, <)@ (R, £ ~). Then (G, =), (G, £’) have the same
directed convex subgroups (cf. Th. 4.3). The H = {(x, —x); x€ R} is a convex
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subgroup of (G, =), but H is not a convex subgroup of (G, £’). The element
a = (1,1)e G is comparable with 0 in (G, <), but it is not comparable with 0 in
(G, 2.

2.17. Lemma. Let (G, <) be an isolated abelian po-group and let C be a directed
convex subgroup of (Z(G), £). Then Cn G is a directed convex subgroup of
(G, =).

Proof. From 2.4 it follows that C G is a convex subgroup of (G, ).
Let xe Cn G. Since C is a directed subgroup, there exists y € C such that 0 < v,
x = y. Then there exists ne N such that nye G. Thus we get 0 < ny, x < ny,
nye CnG. Hence Cn G is a directed convex subgroup of G.

2.18. Lemma. Let (G, <) be an isolated ubelian po-group and let C be a directed
convex subgroup of (G, £). Then Z(C) is a directed convex subgroup of (Z(G). £).
Proof. This follows from 2.5.

2.19. Proposition. Let (H, <), (H, £’) be isolated abelian po-groups with the

same directed convex subgroups. Then (Z(H), £), (Z(H), £’) also have the same
directed convex subgroups.
Proof. Let C be a directed convex subgroup of (Z(H), <). Let 0 £’y <'x
for some xe C, ye Z(H). Then there exist m, ne N such that mxe H, nye H.
Thus mnxe C ~ H, mnye H. From 2.17 it follows that C n H is a directed convex
subgroup of (H, £). Since (H, £) and (H, <’) have the same directed convex
subgroups, C  H is also a directed convex subgroup of (H, <’). Then from
0 <’'mny <’'mnx we get mmye Cn H. Since C is a directed subgroup of
(Z(H), £), there exist elements u, ve C such that 0 < v, mny <v, u<0,
u < mny. Then we obtain mny < mnv, mnu < mny. Since (Z(H), <)is anisolated
group, we obtain u < 3 < v. From the convexity of C in (Z(H), <) it follows that
yeC. Thus C is a convex subgroup of (Z(H), £).

Let ze C. Then there exists ke N such that kze Cn H. Since Cn H is a
directed conve x subgroup of (H, <), there exists te C such that 051, k- <7t
Then kz <" kt. Since (Z(H), £’) is an isolated group, we obtain - <’t. Hence C
is a directed subgroup of (Z(H), £’).

From 2.11. 2.13, 2.14 and 2.15 we obtain

2.20. Corollary: The hypothesis that (H, <), (H, £’) are divisible can be
omitted in 2.3.

3. Lattice ordered grouips with the same convex l-subgroups

In this section there are studied pairs of abelian lattice ordered groups
(notation l-groups) (H, £), (H. £’) with the same underlying set and the same
group operation such that the system of all convex I-subgroups of (H, <)
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coincides with the system of all convex I-subgroups of (H, <’). Such I-subgroups
will be called I-groups with the same convex l-subgroups.

A convex l-subgroup A4 of an abelian I-group (G, <) is said to be regular if
it is maximal with respect to not containing some element of G.

A po-set M is called a root system if no pair of incomparable elements of M
have a common lower bound.

Let I, be the set of all pairs of convex l-subgroups (H', H) of (H, £) and
(H, £’) such that H' covers H. If (H, <), (H, <’) have the same convex
l-subgroups, then they also have the same regular l-subgroups. Let I’ =
= {iel,, H,is regular}. For i and j in I" define that i <j if either H' = H’ and
H, = H, or H'cH. Then I is a root system and V[I, (H/H, <)),
VII,(H'/|H,, £))] are 1-groups [4, Th. 2.2, Lemma 4.2].

For each ie I'(H'/H,, £,), (H'/|H,, <)) are nontrivial linearly ordered groups
each of which is o-isomorphic to a subgroup of (R, <) [4, p. 143].

In view of (4, Th. 4.2] the mapping ¢ of H into V[I', H'/H] defined similarly
as in Section 1 (i.e. for xe H x¢ is defined as follows: for each ieI let
(x9), = x; + H,, where x = x; + ¢, x;€ H' and c;e n(H')) is an l-isomorphism of
(H, £) into V[I,(H'/H, £))] and also an /-isomorphism of (H,<’) into
VI (H'|H,, 7).

Thus we have

3.1. Theorem. Let (H, £), (H, £’) be nontrivial divisible abelian I-groups with
the same convex [-subgroups. Then there exists a root system I and for each ie I’
there exist nontrivial linearly ordered groups (C;, <,, (C,, <)) such that
(1) there exists a mapping @ of H into V[I, C] such that ¢ is an /-isomorphism
of (H, £) into the 1-group VI, (C;, £))] and also an /-isomorphism of (H, <)
into the l-group V[T, (C,, £))],

(2) for all ie I each of the groups (C, <)), (C,, £/) is o-isomorphic to a sub-
group of (R, £).

Let (G, £) be an abelian l-group. Then (Z(G), £) is a divisible abelian
l-group and (G, <) is an l-subgroup of (Z(G), <) [6, 1.4].

3.2. Lemma. Let (G, £), (G, £’) be abelian I-groups with the same convex
(-subgroups. Then (Z(G), <), (Z(G), £’) also have the same convex [-subgroups.
Proof. This is a consequence of 2.19.

3.3. Corollary. The hypothesis that (H, <), (H, £’) are divisible can be
omitted in 3.1.

4. A Hahn-type po-group

Let I" be a po-set and for each ie I let (H,, <)) be a nonzero linearly or
trivially ordered group.
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When no misunderstanding is likely to arise we shall omit index / in the
notation of the partial order on H,. We shall denote the neutral elements of all
po-groups by 0, because in all cases it will be clear which po-group is considered.

Let /< I Foreachiellet £/= <,ifiel\landlet </= < ifiel

Let VI, (H. <)] (VI (H;, £))]) be the mixed product of po-groups (H,, <))
((H, £)), ie I'. We shall also denote V(I', (H,, £ )] and V[I',(H, <)l by (V, £)
or (V, £), respectively.

If x, yel’, x #y, then y < x(y <’x) if and only if y, < x,(y, <’x,) for all
ieM,,.

Throughout this section for aeV let @ denote the clement of V' whose
components are defined as follows: @, = 2q; if either ie M, ie [, a, < O or ie M,
i¢ I, a,> 0 and all other components are zero. From the definition of @ we infer
that 0 <" g, for all ieI'. Thus 0 =’ a.

4.1. Lemma. Let C be a directed convex subgroup of (V,<) and let xe C. Then
xeC.

Proof. Since C is a directed subgroup of (V, <) there exist elements
a,beCsuchthat0<a,x<u,3x < a,b £0,b < x,b < 3x. We shall show that
Xx<Za.

Let a # X, ie M. Then q, # X, and a, = X, for all j > i.

1) Let i¢ M,. Then we have ¥, =0, a; # 0.

If a, # 0 for some j > i, then there exists ke M,, kK = j. From 0 < a we get
0 < @;. Thus X, = a, > 0. Since ¥, > 0 only in the case whenke M, x;, > 0,k ¢,
whereby we get X, = 2x, = q, > 0. Thus ke M,,. Since a = 3x, we obtain
a, > 3x,, which contradicts the relation 2x; = a, > 0.

Therefore a; =0, X, =0 for all j> i Then ie M,. Since 0 =< a, we have
a,>0 =X,

2) Letie M. Then X; = x; = a,= 0 for all j > i.

a) Assume that x; > 0, i¢ I If ¢, = 3x,, then we obtain g, = 3x; > 2x; = X,
a; # 3x, then from the relations a = 3x, ie M;,,, we get a, > 3x;, > 2x, = X,.

b) If x; <0, iel, then X, = 2x, < 0. Since a4, = 0, we get g, ZO>2x = X,

¢) In other cases ¥, = 0. Since ¢, # X, = 0, from the relation a = 0 we obtain
a,>0=Xx,.

Thus X; < g, for all ie M ;. Hence X < a. Analogously we can obtain b < X.
From the convexity of C in (V, £) we have xeC.

If

4.2. Lemma. Let C be a directed convex subgroup of (V, <) and let xe C. Then
there exists y € C such that x <’y, 0 <’y

Proof. From 4.1 we have xe C. Since C is a directed subgroup of (V, <),
there exists z€ C such that 0 < z, x < z. Then Z; + (=z);# 0 for all je M. and
Z 4+ (=z),='0forallierl. Let} =X+zZ+ (—”) Since Z, (—z)e C, then we get
y€C and the relation y; 2"x, 20 is valid for all je I
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Now we shall prove that x <’y.
Let x # y and ie M,,. Then x; # y, and x; = y; for all j > i.
1) Let i¢ M,. By way of contradiction we shall prove that x; = 0. Suppose
x; # 0. Then there exists j > i, je M.
a) Let x; >0, jel

If z; —0 then z; = (— v) = 0. Since X; =0, we get x; > 0 = y;, which con-
tradlcts the assumptron that x; = Yy

Ifz;#0and je M., thenz;> 0, =0, (—z), = —2z;. Since X; = 0, we obtain
yi=-27<0<x,a contradiction.

If z; # 0 and j # M., then there exists k > j, ke M.. Then we get z, > 0,
x, =0, Z, + (—2), # 0. From this we obtain y, # 0 = x,, a contradiction.
b) Let x; <0, jel.

Ifz -—0 then z; = (—z); = 0. Since X; = 2x; < x; < 0, we obtain y; = 2x; < x,
a contradrctlon

If z;# 0 and jeM_, then z;,> 0, Z,=0, (— ~) = —2z,From the relations
X,=2x,<x,<0,5 4+ (— z) —2b < 0 we get y; = 2x; — 2z; < x;, a contradic-
tion.

If z; # 0 and j ¢ M., then there exists k > j, ke M.. Thus z, > 0. Since x;, = 0,
% =0, Z, + (—z), # 0, we obtain y, # 0 = x,, a contradiction.
¢) Let x;> 0 and j¢/I. Then x; = 2x; > x; > 0.

Ifz; =0, then Z; = (—-4) = O From thls we get ¥; = 2x; > x,, a contradiction.

If z;#0 and jG M., then z;>0. Thus z; =2z, (—z);=0. Then we get
v = 2x +2z,>x,a contradrctlon

If z;#0 and ]¢M then there exists k > j, ke M.. Thus z, > 0. From the
relations x, = 0, X, = 0, Z, + (—2z); # 0 we obtain y, # 0 = x,, a contradiction.
d) Let x; <0, j¢ 1. Then X, = 0.

Ifz; = 0, then Z; = 0, (—z);, = 0. From this we obtain y, = 0 > x;, a contradic-
tion.

If z; # 0 and je M., then z; > 0. Hence Z, = 2z;> 0, (—z); = 0. From this we
get y, = 2z; > 0 > x;, a contradiction.

If z; # 0 and j¢ M., then there exists k > j, ke M.. Then z; > 0. From the
relatlons x, =0,% =0,z 4+ (—2z), # 0 we get y, # 0 = x,, a contradiction.
e) Let x; be incomparable with 0 in (H), <)). Then (H,, <)) is trivially ordered.
Suppose that z; = 0 for all k > j. If z; # x;, then je M, which contradicts the
assumption that z = x. If z; = x; # 0, thenjeM Thus z;, 0 are incomparable in
(H;, £,), which contradlcts the assumption that z = 0. Therefore there exists
k > j, ke M.. Thus z, > 0. Then we obtain x, = 0, X, = 0, Z, + (—z), # 0. Thus
» # 0 = x;, a contradiction.

Therefore x; = 0. Then from the relations y, # 0, 0 <’y, we infer x;, = 0 <’y,.
2) Suppose that ie M.
a) If x, <0, iel, then X, = 2x,, x; >’0. From this we have X, = 2x, > ",
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c) If x;,>0,iel, then x; =0, x, <’0. Thus ¥
d) If x; >O 1¢1 then x;, = 2x,, x, >"0. Hence.,—Z.\‘,>’x,.
Smce v, ='x; forall ie F we obtam y; >".x; in all the cases above.
e) Suppose that x, is mcomparable with 0 in (H, £)). Then (H, £)) is trivially
ordered. Since x; # 0, x < =, 0 < z, then there exists j > i, je M.. Thus z, > 0,
x,=0,2Z+ (- h) # 0. From this we obtain y; # 0 = x;, a contradiction.
Hence y;i>'x, for all ie M,,. Therefore y >’ x. From the definition of the
element ) we have y =’0.

b) If x; <0, i¢ ], then X, =0, v, <’0. Thus %, >"x
X; =0, X, >

4.3. Theorem. (V, <), (V, £') have the same directed convex subgroups.

Proof. Let C be directed convex subgroup of (V, £). From 4.2 we ob-
tain that C is a directed subgroup of (¥, <’). Thus it suffices to verify that C is
a convex subgroup of (V, <’).

Let 0 <’y <’x for some ye V, xe C. Since (C, £) is a directed subgroup of
(V, <) there exist elements u, ve C such that 2x < v, —2x <0, 0=, x <,
U =2x, us2x,us<0,u=x.

We shall prove that u < y < v
Let y # vand ie M,,.. Then v, # y, and v, = y, for all j > i. By contradiction we
shall show that v, = y; = x, = 0 for all j > i.

Suppose that v, # 0 for some j > i. Then there exists kX = j, ke M,. Thus
keM,.

If x, # 0 for some / > k, then there exists me M _m = [. Thus x,, >’0. Hence
meMg,,., meM_,,. From v=22x, vZ —2x we obtain 0=v, > 2x
0=r,> —2x,, a contradiction.

Suppose that x, = 0 for all / > k. Since t; # 0, we have v, = y, >’0. If x, = 0,
then ke M. Thus x; <’),, a contradiction. If x, 3 0, then from x > "0 it follows
that x, >’0. Since x, ="y, we get x, =y, = v, >'0. Since ke M,, v = 0, the
relation v, = 0 is valid. Thus ke I'\I, hence 0 < v, = y, < x;, < 2x,. From the
relations ke M,,,, v = 2x we have v, > 2x,, a contradiction.

Thus v; = 0 and also y, = 0 for all j > i, je I'. Suppose that x, # 0 for some
J > i. Then there exists k = j, ke M. Thus x, >’0. From the relations ke M,,,,,,
keM _,y, t 2 2x, v 2 —2x we obtain 0 =v, > 2x;, 0 =01, > —2x;, a con-
tradiction. Hence x; = 0 for all j > i.

If y, tv; are incomparable in (H, <)), then H, is trivially ordered. From the
relation 0 <’y we get 3, = 0. Then v, # 0, ie M,, which contradicts the assump-
tion that ¢ 2 0. If v, > ¢; and i€/, then from v = 0 it follows that y; > v; = 0.
Thus ie M, y; <’ 0, which contradicts the assumption that y >"0.

If y, > r,and i¢ [, then y; > v; = 0. From the relations i¢ 7, x>y, x; = y, for
all j > i we have x; = 3, > v, 2 0, ie M, which contradicts the assumption that
r> X.

m m>
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Theorefore y; < v, for all i€ M,,. Hence y < v. Similarly we can prove that
u < y. From the convexity of C in (V, <) it follows that ye C. Hence C is a
convex sugbroup of (V, <).

4.4. Lemma. Let x, ye(V, <) and let 0 < y < x. Then M, = M_,,,, and if
ieM,,,, then y; = x; =0 for all j > i.

Proof. Let O<y<x for some x, yeV. Then we have
—2x<0<y<x<2x LetieM,,. Then 2x; >y,

Suppose that y; # 0 for some j > i. Then there exists k = j, ke M,. Thus
»i > 0. Since ie M,,,, we have 2x, = y, > 0. From this we obtain 2x, > x;, > 0
and x;, = 0 for all / > k. Since x > y, we get x, = y,. Thus 2x, > x, =2 y, > 0, a
contradiction.

Therefore y; = 0 for all j > i. Then we have y, 2 0 > —2x,. Thus ie M _,,,.

Conversely, assume that ie M_,,,. Then —2x; < y,. Suppose that y; # 0 for
somej > i. Then there exists k = j, ke M,. Then y, > 0. Since ie M_,,,,, we have
—2x, =y > 0. Thus —2x, > —x, > 0 and x, = y, = 0 for all / > k. This con-
tradicts the assumption that x > 0.

Thus y; =0 for all j>i. Then also x;=0 for all j>i If y,=0, then
—2x; # 0. Therefore 2x; # y. If y; # 0, then y; > 0. Assume that 2x; = y,. Then
y; = 2x; > x; > 0, which contradicts the assumption that x > y. Thus 2x; # y,.
Hence ie M,,,,.

Remark. Lemma 4.4 is true for an arbitrary mixed product of po-groups
(i.e., need not suppose that for each ieI', H; is linearly ordered or trivially
ordered).

Let I', = {ie I'; H, is linearly ordered}.

4.5. Theorem. (V, <), (V, £’) have the same convex subgroups if and only if
there are no incomparable elements i, j in I'; such that ie I'\I, jel.

Proof. 1) We first shall prove the sufficiency of the conditions. Note that
ifa, be Vand i, je M,, i # J, then i, j are incomparable in I.

Suppose that C is a convex subgroup of (V, <’). Let 0 < y < x for some
yeV, xeC. Then we have —2x <0<y <x<2x. From 4.4 we have
My, = M_,,,. By the assumptions we obtain M,,,, = I or M,,,, < I'\L

If My,,< 1, then 2x,<’y,<’—=2x; for all ieM,, = M_,,,. Thus
2x <’y <’ —2x.

If My, < I'\l, then —2x,<’y,<’2x; for all ieM,, = M_,,,. Thus
—2x <’y <’2x.

From the convexity of C in (V, <) it follows that y e C. Hence C is a convex
subgroup of (V, £).

2) Suppose that there exist incomparable elements i, j in I'; such that ie I'\/,
Jjel.Since H,, H;are nontrivial linearly ordered groups, then there exist elements
ae H,, be H; such that a >,0, b <;0.
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Let v be the element of V' such that v, = 2a, v;=2b and v, =0 for all
keI'\{i,j}. Let A = {mv; me Z}. Clearly A is a subgroup of V.

Let 0 £y < x for some yeV, xe 4. Then x, = m(2a), x, = m(2b), where
meZ. Since 0 < x, 'we get x;, = m(2a) = 0, x, = m(2b) = 0. From this we have
m = 0. Thus x, = 0 for all ke I'. Suppose that y, # 0 for some A € I'. Then there
exists [ = k, le M. Since y = 0, we obtain y, > 0 = x,, which contradicts the
assumption that x = y. Therefore y, = 0 for all ke I"'and hence ye€ A. Thus A4
is a convex subgroup of (V, <).

Let = be the element of }"such that z; = a,z, = band 2, = O forallke I" {i, j}.
Let ¢ be the element of }" such that 1, = 2a, t, = 2b and ¢, = O for all Ae I'\{i, j}.
Thenz¢ A, te A. From0 <’z;, <" 2a,0 <'z, <'2b,M_ = {i,jfweget0 <’z <'r.
Since z¢ A. A is not a convex subgroup of (}, £’).

5. Isolated factorially rational groups and isolated finite valued groups

5.1. Lemma. Let Q, be a nontrivial subgroup of the additive group Q of all rational
numbers. Then there exist only o different linear orders on Q,, which are dual
to each other.

Proof. Let <, be a linear order on Q, and let P(Q ) be the positive cone
of (Q,, =)). Then P(Q)) is the positive cone of a partial order on Q. Since Q is
a torsion-free group, from [5, Chap. I11, Coll. 13] it follows that each partial
order on Q can be extended to a linear order on Q. Since there exist only two
different linear orders on Q which are dual to each other [8. Chap. 11, Sec. 2,
Proposition 1], the same holds for Q,.

5.2. Lemma. Let (G, £), (G, £7) be nontrivial linearly ordered groups with the
same group operation and let (G, £7) be o-isomorphic to a subgroup of (Q, <).
Then <’ = < or £ = <7,

Proof. This follows from 5.1.

5.3. Lemma. Let (G, £) be a nontrivial linearly ordered abelian group and let
aeG, a>0. Then (G, £) is o-isomorphic to a subgroup of (Q, <) if and only if
for each be G there exist elements m,ne Z, n # 0 such that ma = nb.

The proof is obvious.

5.4. Theorem. Nontrivial isolated factorially rational divisible abelian groups
(H, £), (H, £’) have the same convex subgroups if and only if there exists a po-set
I and for each i€ I there exist linearly or trivially ordered groups (C,, <), (C, <))
with the same group operation such that
(1) there exists a mapping @ of H into V[I', C] such that ¢ is an o-isomorphism
of (H,=Z) into VII,(C, £)] and also an o-isomorphism of (H, <) into
VI (G =)
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(2) for eachieI’ <{= <,0or <{= =7,
(3) there exists no element 0 < he H such that (h9);>"0, (hp), <’0 for some
maximal components (ho),, (hg); of ho,
(4) there exists no element 0 <’ge H such that (€9) > 0, (89), < 0 for some
maximal components (g0),, (g9), of go.

Proof. In order to prove the necessity of the conditions in view of 2.3 it
suffices to show that for each ieI’ <, = <, 0or <= <.

Since (H, <), (H, £’) are factorially rational, the required relations follow
from 5.2.
Now we show the sufficiency of the conditions. Let 4 be a convex subgroup of
(H,<’)andlet0 < y < x for some y€ H, xe A. From this we get —2x < y < 2x
and 0 <yp<x@. Then (—2x)p <yp < (2x)p. In view of 4.4 we have
Miyore = M(_209px Thus ((—2x)9); < (y9); < (2x)e); for each ie M,,,,,
From (2) and (3) it follows that (—2x)p<’yp<’'(2x)¢ or
(=2x)p >"yp >"(2x)9. Thus —2x <’y <’2x or —2x >’y >’2x. From the
convexity of 4 in (H, £’) we infer that ye 4. Hence A4 is a convex subgroup of
(H, £). Similarly we can obtain, that if B is a convex subgroup of (H, <), then
B is a convex subgroup of (H, £’).

5.5 Lemma. Let (G, <) be an isolated factorially rational abelian group. Then
(Z(G), £) is an isolated divisible factorially rational abelian group.

Proof. Let (4, 4;) be a pair of pure convex subgroups of (Z(G), £) such
that A’ covers 4, and (4'/A,, <) is nontrivially ordered. From 2.12 we have that
(GN A',Gn A) is a pair of pure convex subgroups of (G, <) such that G n 4'
covers G N A,.

Let a+ A, b+ A,e A'/A,, a+ A, > A, Then na + d > 0 form some ne N,
de A,. Since ae A\A,, be A', de A,, we get that kacGn A\GN A, lde A,n G,
mbeGn A" for some k, I, meN. Then kl(na + d) = nlka + kld > 0. Thus
nlka+ G A;> Gn A, Hence G A'/G N A; is nontrivially ordered. Since
(G, £) is factorially rational, from 5.3 we get rnlka + G N A, = smb + G N A;
for some r,se€Z, s#0. Then rnlka+ g, = smb+ g, for some g, g,€
€GN A, < Z(Gn A;). From this we get rnlka + Z(G N A) = smb + Z(G ~ A).
From 2.9 and 5.3 it follows that (4'/A,, £) is o-isomorphic to a subgroup of
©, ).

From 5.5 we obtain the following corollary

5.6. Corollary. The hypothesis that (H, £), (H, £’) are divisible can be omitted
in 5.4.

5.7. Theorem. Nontrivial isolated finite valued abelian groups (H, <), (H, <)
have the same convex subgroups if and only if there exists a po-set I and for each
ie I there exist ordered groups (C, <)) and (C,, £)) such that
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(1) (C,, £), (C,, £)) have the same group operation and card C, > 1,

(1) The following conditions (1)—(4) are satisfied:

(1) there exists a mapping ¢ of H into V]I, C] such that ¢ is a v-isomorphism of
(H,Z) into VII,(C, £)] and also a v-isomorphism of (H,<’) into
VT (G, =7,

(2) for each ie I we have either that
(a) both (C, £)) and (C,, £)) are trivially ordered and each of them is isomor-

phic to a subgroup of Q

or (b) both (C, <) and (C, <)) are linearly ordered and each of them is

o-isomorphic to a subgroup of (R, <),

(3) there exists no element 0 < he H such that (hg), >"0, (hp), <’0 for some

maximal components (he),, (he), of ho,
(4) there exists no element 0 <’ge H such that (g¢). > 0, (g9), < 0 for some

maximal components (o), (g¢); of go.
Proof. In view of 2.3 and 2.20 it suffices to show the sufficiency of the

conditions.

Let A be a convex subgroup of (H, £’) and let 0 < y < x for some ye H,
x€A. Then 0 yp < x¢p, —2x <y < 2x, (—=2x)p < yp < 2x)p.

Let ((2x)¢), = 0 for some ie M,,),,,. Then also ((—2x)¢),=0. In view of
Lemma 4.4 from (—2x)¢ < yp <(2x)¢ we have 0 <,(y¢), (v¢), <,0, a con-
tradiction.

Hence ((2x)g), # 0 for each ie M,,,),,,. Since for each ie M5, ., (C,, <)) is
o-isomorphic to a subgroup of (R, <), foreach ie M,,,,,,, there exists n,e Z such
that n((—2x)¢), </(ye); </n((2x)9),

Since ¢ is a v-isomorphism, i is a value of 2x — y if and only if ie M,, _ ),
Then from the relation M, ,,,= M,,,,, and from the fact that (H, £’) is
finite valued we obtain that M,,, , is a finite set. Then there exists ne Z such
that n((—2x)), <,(ve), </n((2x)p), for all ieMy,,,, = M_,,,., Thus
n((—=2x)p) <’ ye <’n((2x)p) and hence n(—2x) <’y <’n(2x). From the con-
vexity of A in (H, <’) we get ye A. Hence A is a convex subgroup of (H, <°).
Analogously we can prove that if B is a convex subgroup of (H, <), then B also
is a convex subgroup of (H, £’).

5.8. Corollary. Nontrivial abelian linearly ordered groups (H, <), (H, £’) have

the same convex subgroup if and only if there exists a linearly ordered set I" and
for each i€ I there exist nontrivial linearly ordered groups (C,, <)), (C,, <) with

the same group operation such that

(1) there exists a mapping ¢ of H into V]I, C] such that ¢ is a v-isomorphism of
(H, L) into VII,(Cy, £)] and also a v-isomorphism of (H,<’) into
VI (G, =),

(2) for all ie I" each of the groups (C,, <)), (C,, £)) is o-isomorphic to a subgroup
of (R, £).
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Proof. Since the set of all convex subgroups of a linearly ordered abelian
group is lilnearly ordered by inclusion [5, p. 80}, each of its nonzero elements has
only one value.

The necessity of the conditions in view of 5.7 follows from the fact that the
set I"in Theorem 5.7 is linearly ordered in the case when (H, <), (H, £’) are
linearly ordered (see the description of I"in the proof of Theorem 2.3).

In view of 5.7 sufficiency of the conditions follows from the fact that for each
he H, h # 0, hg has only one maximal component.
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MAPbBI YACTUYHO YINOPAAOYEHHBIX I'PVIIIT C OJNHAKGBbBIMH
BBINYKJILIMU TTOAI'PYIIITAMU

Milan Jasem

Pe3omMme

B cratbe wuccnenyrorcs mnapel M30auMpoBaHHBIX abeneBrix rpynn (H,<) u (H,=Z’)
onpeAeaEHHBIX HA OTHOM U TOM e MHOXECTBE C OJTHOM U TO#H Xe rpynnoBoii onepauueit, mpu4éM
CHCTEMa BCEX BBIMYKJbIX moAarpynn (H, <) cOBNajaeT co CHCTEMOH BCeX BBIMYKJIBIX MOArPYIN
(H, £7).
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