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GREEN’S RELATIONS AND REGULAR ELEMENTS
OF TRANSFORMATION SEMIGROUPS

IGOR KOSSACZKY

The characterization of Green’s relations of the semigroup J (X) of all
selfmaps of an arbitrary set X is wel known (see [2]). It is also known for the
semigroup of all linear mappings of a linear space. In paper [8] K. A.
Zareckij gave a characterization of Green’s relations and regular elements
of the semigroup #(£2) of all binary relations on a set €. The purpose of this
paper is to give necessary and sufficient conditions of &, ¢, @-equivalence and
regularity of arbitrary elements of semigroups which belong to a certain class of
subsemigroups of J (X). This class contains all regular subsemigroups of .7 (X),
but not only those (see Example 2). If X =22 then this class contains a
semigroup isomorphic to the semigroup #(£2). In paper [6] K. D. Magill gave
necessary and sufficient conditions of £, #, #, Z-equivalence of two regular
elements of an arbitrary subsemigroup of 7 (X). It is stated there [6, p. 1487]
that two regular elements f, g of an arbitrary subsemigroup S of J(X) are
9-equivalent if and only if there exists a one-to-one map ¢ from the range of
fonto the range of g such that both ¢~'and ¢ are restrictions of certain elements
of S. We shall prove (Theorem 1) that if S belong to the class mentioned above,
then this equivalence holds for arbitrary elements of S, not necessarily regular.

We shall use the following notation. The element into which the element ae X
is mapped by the mapping fe 7 (X) will be written in the form of a product af.
The product of mappings f, ge 7 (X) will be denoted by fg. Thus for any
f,2€J(X) and ae X we have a(fg) = (af)g.

Let 4 be a subset of X and fe 7 (X), then Af = {af; a€ A}, fl4 denotes the
restriction of the mapping f on the set 4. If fis an idempotent and Xf = 4, then
fis said to be a projection on the set A.

Let S be a semigroup and a€ S, then L(a), R(a), J(a) are the left, right,
two-sided ideal envelopes of a, respectively. Green’s relations will be denoted by
L, R, #,2. S will denote a semigroup equal to S if S has an identity and it
is equal to S with an externally added identity (the identity mapping if
S < J (X)) otherwiese. S* is the semigroup of all right transformations of S'
corresponding to the elements of S. Note that S* is isomorphic to S.
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4 -subsemigroups of .7 (X)

Lemma 1. Let X be a set, S be a subsemigroup of 7 (X) and f, ge S. Then the
foliowing hold:
(1) If fe L(g), then Xf c Xg.

(i) If fLg, then Xf = Xg.

(iii) If f.#g, then there are a, be S' such that Xf < Xgb and Xg < Xfu.

(iv) If f2g, then there are a, be S' such that Xf = Xgb, Xg = Xfa and both

al(Xy), bl(Xg) are bijections and (a|(Xf))~" = b|(Xg).

(v) If fis regular, then there exists a projection on the set Xf in S.

Proof. (1)—(ii1) follow immediately from definitions.

(iv) If f@g, then there exists he S such that £¥h and hAg. Thus by (ii) it
follows that Xf = Xh. Since gAh it follows that there are a, b€ S such thatgh = )
and ha = g, thus gha = g and hab = h. Hence for every ae Xg we have aba = a,
similarly for every aeXh = Xf we have aab = a. It is also clear that
Xf = Xh = Xgb and Xg = Xha = Xfa.

(v) If f is regular, then there is an idempotent i€ S such that i¥f (see
[2, Lemma 1.13]). Thus by (ii) we have Xf = Xi. It follows that i is a projection
on the set Xf.

We are going to find conditions for the validity of the converses to (i) through
(v). It is possible to prove that the validity of the converse to (i) implies the
validity of the converses to the other ones.

Definition 1. Let X be a set and S be a subsemigroup of 7 (X). S is said to be
an &L -subsemigroup of T(X) if for every [, g€ S, X, = Xg implies fe L(g).

Lemma 2. Let S be a semigroup. Then S* is an ¥ -subsemigroup of T(S").

Proof. Suppose that f*, g*eS* are right translations corresponding to
elements f, ge S and S'f* c S'g*. Since S'f* = L(f) and S'g* = L(g) it follows
that fe L(g), thus f*e L(g*).

Lemma 3. Let S be a regular subsemigroup of T(X). Then S is an ¥-sub-
semigroup of T(X).

Proof. Let f, ge S and Xf = Xg. According to the Axiom of Choice there
exists 1€ J (X) such that f = rg. Since S'is a regular semigroup there is g€ S such
that g = ggg. Thus we have f= 1g = tggg = fgg € L(g).

I. I. Valuce proved that the converse to (i) is true for the semigroup of
all endomorphisms of any free universal algebra over an equational class
(see [7]). Essential here is the folloving property of free generators.

Deffinition 2. Let S be a subsemigroup of J(X). S s said to be a V-
subsemigroup of I (X) if there exists a subset A = X with the following property:
For each mapping j: A — X there exists exactly one element s€ S such that s|A = j.
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We shall say that such a set A is a set of V-generators of the semigroup S.

Remark. It is easy to see that the semigroup of all endomorphism of an
arbitrary universal algebra X, which is free over some class, is a V-subsemigroup
of 7 (X). Any set of free generators of the algebra is clearly a set of V-generators
of its endomorphism semigroup.

Lemma 4. Let S be a V-subsemigroup of 7 (X), then it is an L-subsemigroup
of 7 (X).

Proof. Suppose that 4 < X is a set of V-generators of S. Let f, ge S and
Xf < Xg. According to the Axiom of Choice there exists t€.7 (X) such that
f = 1g. Thus there is s€ S such that

NA = (1g)l4 = (1|4)g = (s|4)g = (sg)|A.

Since sg € S and there is exactly one element of S coinciding with f€ S on the set
A it follows that f = sge L(g).

Theorem 1. Let S be an L-subsemigroup of I (X) and f, g€ S. Then the
Sfollowing statements hold.:
(1) fe L(g) if and only if Xf c Xg.
(i) fZg if and only if Xf = Xg.
(i) £ #g if and only if there are a, be S' such that Xf = Xgb and Xg < Xfa.
(iv) f@g if and only if there are a, be S' such that Xf = Xgh, Xg = Xfa, both
al(Xf) and b|(Xg) are bijections and (a|(Xf))~' = b|(Xg).
(v) fis regular if and only if there exists a projection on the set Xf in S.
Proof. The “only if” parts. follow from Lemma 1. The statements (i)—
(iii) follow from the definition of an #-subsemigroup.
(iv) Let us denote & = gb. For every ae X we have
aha = agba = ag(bl(Xg))a = ag(bl(Xg))(al(X/)) = ag,
thus ha = g. Hence h#g. Since Xf = Xgb = Xh it follows by (ii) that A2, thus
f9g.
(v) Letie S be a projection on the set Xf. According to (ii), £.Zi. Thus f'is a
regular element.

Corollary 1. Let S be an L-subsemigroup of I (X)), f, g€ S and Xf be a finite
set. Then f2g if and only if f£g.

Proof. If £#g, then there are a, be S' such that Xf < Xgb and Xg < Xfa.
Thus Xf and Xg have the same cardinal number and Xf = Xgb, Xg = Xfa. It is
clear that gj(XJ) is a bijection on Xg and b|(Xg) is a bijection on Xf. Let us denote
h = ab. Thus h|(Xf) = a|(Xf)b|(Xg) is a bijection from Xf onto Xf. Since Xf'is a
finite set it follows that there is an integer n such that [A|(Xf)]" is the identity
mapping on the set X/. Denote a’ = h"~'aand b = b. Hence we have Xfa’ = Xg,
Xgb = Xf, (@'|(Xf))~' = b’|(Xg). According to (iv) of Theorem 1, /@g.
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Corollary 2. Let S be a semigroup and f, ge S, then the following holds. fZg
if and only if there are a, be S' such that:

a*: L(f) — L(g); xa* = xa
b*: L(g) — L(f); xb* =xb

are bijections such that (a*)™"' = b*.
Proof. It follows immediately from (iv) of Theorem 1 and Lemma 2.

Corollary 3. Let S be a semigroup, f, g€ S and L(f) be a finite set. Then f2g
if and only if f#g.

Proof. It follows immediately from Corollary | and Lemma 2.

Corollary 4. Let X be a universal algebra such that the semigroup End (X) of
all endomorphisms of X is regular. Then for every f, g € End (X) the subalgebra Xf
is isomorphic to the subalgebra Xg if and only if fZg.

Proof. The “only if” part follows from (iv) of lemma 1. Let h: Xf— Xg
be an isomorphism of algebras. Since f, g are regular it follows by (v) of
Lemma 1 that there are i, je End (X) such that i is projection on the set Xf and
j is a projection on the set Xg. Denote a = ih and b = jh~', it is clear that
a, be End (X). Thus Xf = Xgh™' = Xgih~' = Xgb and Xg = Xfh = Xfih = Xfa.
since a|(Xf) = h and b|(Xg) = h~" it follows by (iv) of Theorem 1 that fZg.

The endomorphism semigroup of a finitely generated abelian group

We are going to describe all finitely generated abelian groups G such that the
endomorphism semigroup End (G) is an ¥-subsemigroup of 7 (G).

Let G = @ G, be a direct sum of abelian groups. Let us denote a projection
1

from G onto G, by ;. We shall use a correspondence between the endomorphism
semigroup End (G) and a certain semigroup of matrices. Let A be a matrix, the
element in the /" row and the /* column of A will be denoted by A,. Consider
the set M of all n x n matrices A such that 4, is a homomorphism from G, to
G,. The set M with respect to the operation of multiplication of matrices forms
a semigroup isomorphic to End (G). Let fe End (G), the matrix corresponding
to the endomorphism f will also be denoted by f. This matrix has the following
property: {= (m)\G..

We shall use the following notation. If G is a group and & is a positive integer,
then EkB G = .Ekk)l G, where G, = G foreach i, if ae G, then ka = Gk-)1 a;where ¢, = «

for each i and kG = {ka; ae G}.
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Lemma 5. Let f: G— H be a homomorphism of abelian groups. If G is
indecomposable and H is not trivial, then f has no left inverse or G =~ H.

Proof. Suppose that gf =1, for some g: H— G. Then fg is an idem-
potent. Since G is indecomposable fg = 1, or fg = 0. Since H is not trivial we
have fg = 1,4, thus G =~ H.

Theorem 2. Let G be a finitely generated abelian group. End (G) is an £-sub-
semigroup of 7 (G) if and only if G = (-P ZorG=x i(-_ijal (? Z,, where n; are powers
of prime numbers p; such that p; # p; if i # J. l

Proof. The “if” part. If G = @ Z, then it is a free abelian group. Thus
according to Lemma 4 End (G) is ;n Z-subsemigroup of 7 (G).

Let G = iCi'-)l G,, where G, =~ ? Z, and n; are powers of different prime num-

i

bers. It is easy to see, that for every i # j and fe End (G), we have f; = 0. Let
/. g€ End (G) and Gf = Gg, thus for every i, Gfr; = Ggn, hence we have:

Gfi=Gfrm = ,él Gfrm, = Gfm, < Ggr, = ,6"9l Ggm = Ggnm, = Gg;.
J= Jj=

Note that G, is a free group over a certain equational class, thus by Lemma 4
End (G)) is an Z-subsemigroup of 7 (G)). It implies that there exists 4;€ End (G,)
such that f, = h,g,;. Hence there is # € End (G) such that h; = h, for each i. Thus:

(hg)i = j@] hijgji = hig; = hg; = fi

for every i. It implies that hg = f.
The “‘only if”” part. Every finitely generated abelian group G is a direct sum
of cyclic groups G, such that G; =~ Z or the order of G, is a power of a prime

number (see [5]). Suppose G = 6"9 G; and there are integers a, be{l, 2, ... n}
i=1

such that G, = Z,, and G, = Z, where r > m or G, = Z. It is easy to see that
there exists a homomorphism @ from G, onto G,. Define f, g€ End (G) in the
following way:

fi=0if i#b or j#a and f,, = D,

g;,=0if i#a or j#a and g, =1, the identity mapping on G, Clearly
Gf = G, = Gg, thus if End (G) is an Z-subsemigroup of 7(G), then by Theorem
1 there is 1€ End (G) such that hf = g. Hence we have

1= 8 = (W = @ hofsy = hu®,
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but by Lemma 5 it is impossible. Thus End (G) is not an .#’-subsemigroup of
7 (G).

Using this result it is possible to prove the following well known statement
(see [4]).

Theorem 3. Let G be a finitely generated abelian group. End (G) is a regular

n
semigroup if and only if G = @ Z, where p; are prime numbers.
=1 !

Proof. The “only if”” part. Suppose that G = é G, where G, are cyclic
A .

groups and thereisie{l, 2, ... nysuch that G, = Zor G, = Z,, where m = 2. We
shall show that End(G) cannot be regular. Let us suppose that End (G) is
regular. Let ®: G, — G, be a homomorphism such that for every ae G, a® = ka
where k = 2if G, = Zand k = pif G, = Z,,.. Denote f = n,®, clearly fe End (G).
It follows by l.emma 1 that there is a€ End () such that Ga = Gf = kG, and
a|l(kG)) is an identity mapping. If G, >~ Z, then G, = Gu < Ga = 2G, but it is a
contradiction. Let G, ~ Z ,, suppose that G, # Ga. The subgroup pG, is the

P

biggest proper subgroup of G,, thus G,a < pG,. It follows that
kG, = (kG)a = (pG)a < p°G, = k’G,,

but it is impossible. Suppose that G; = Ga. It implies that G, = Ga < Ga = kG,
but it is also impossible.
The “if” part. Let G = é—) Z,. It follows by Theorem 2 that End(G) is an

i=1

Z-subsemigronp of 7 (G). Let fe End (G). Since Z, has no proper subgroups it

follows that there is a subset /< {l.,2, ... n} such that Gf = @ Z,. Denote

el
a = @ . Clearly, ae End (G) is a projection on the set Gf. It follows by (v) of
iel

Theorem 1 that f'is regular.

It follows by Lemma 3 and Lemma 4 that if S is either regular or
a V-subsemigroup of 7 (X), then it is an ¥-subsemigroup of J (X). We shall
show that there exists a group G such that End (G) is not an ¥-subsemigroup
of 7 (G). There exists also a group G such that End (G) is an £-subsemigroup
of 7 (G), but it is neither regular nor a V-subsemigroup of 7 (G). There exists
also G such that End (G) is not regular, but it is a V-subsemigroup of .7 (G) and
on the other hand there is G such that End (G) is not a V-subsemigroup of 7 (G),
but it is regular.

Example 1. Let G =Z,® Z,. End(G) is not an #-subsemigroup of
7T (G).

Example 2. Let G=Z,® Z,® Z,. End(G) is an #-subsecmigroup of
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7 (G), but it is not regular. We shall show that it is not a V-subsemigroup of
J (G) either. Elements of G will be written in the form of triplets (a, b, ¢) where
a, be Z, and ce Z,. The subgroup generated by an element a¢e G will be denoted
by [a]. Let us suppose that End (G) is a V-subsemigroup of 7 (G) and A = G is
a set of V-generators. For every a€ 4 and te 7 (G) the order of at is a divisor
of the order of @, it implies that the order of ais 18. Thus [¢] is equal to [(0, 1, 1)]
or [(1,0,1)] or [(1, 1, 1)]. Let us suppose that a, Be 4 and a # B. Thus there is
feEnd (G) such that af = (0,0,0) and gBf = B. It follows that & = (0,0,0) if
Eela] and &f = & if E€[f]. Thus [a] n[B] = (0,0,0). Since

[(0, 1, D] [(1,0, 1)] # (0,0,0),

[0, 1, DI (1,1, D] # (0,0, 0),

[(1,0, D]~ [(1,1,1)] 5 (0,0,0) it follows that 4 has no more than one ele-
ment. Let 4 = {a}. Let us define f, g€ End (G) in the following way:

{(a, b, c)g = (a, 0, 0) if [a] = [(0, 1, 1)]
(a, b, ¢)g = (0, b, 0) if [a] =[(, 0, 1)]
(a,b,c)g =(a+b,0,0)if [a] =[(1, 1, 1)]

and &f = (0,0,0) for each £€G. Clearly f # g, but af = (0,0,0)=ag, thus 4 is
not a set of V-generators.

Example 3. End(Z,) is a V-subsemigroup of Z(Z,), but it is not re-
gular.

Example 4. Let G = Z,® Z,. End(G) is regular, but it is possible to
prove in a way similar to that in Example 3 that it is not a V-subsemigroup of
T (G).

The semigroup of binary relations

In paper [8] K. A. Zareckij characterized the Green’s Z-relation and
regular elements of the semigroup 4(£2) of all binary reletions on a set 2. We
can obtain the same result in another way, using Theorem 1.

A(£) is isomorphic to a subsemigroup of 7 (2%). Indeed, one can define the
mapping @ from #(£) to 7 (2%) such that the relation r e 2(£2) will be mapped
by @ into the mapping r*eZ (2% such that for each ae2%
ar* = {xe$2,Jaea;arx}. Clearly @ is a one-to-one mapping. For every
r,qe#() and each ae2? we have a(rq)* ={xe Jaca;argx}=
={xeJaeca and be2; arb and bgx} = {xe 2, Ibear*; bgx} = (ar*)q*.
Hence @ is a homomorphism of semigroups.

Each r* e &(#(£2)) preserves arbitrary set unions. Indeed, for every re Z(£2)
and each system a;€2% ie ] we have:

<U a,)r* = {XE-Q, dae U a; arx} =J{xe2 Jaea; arx} = ) (ar*).

iel iel iel iel
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It also follows that for every r € Z(£) the set 2°c* forms a complete subsemilattice
of the semilattice (2%, U, 0).

Lemma 6. &(#(Q)) is an ¥-subsemigroup of T (29).

Proof. In virtue of Lemma 4 it is sufficient to prove that @&(%(£2)) is a
V-subsemigroup of 7 (29). Let A < 29 be a system of all single element subset
of 2. Let 1: A — 292, define a relation re #(£2) such that xry if and only if y € {x}r.
Clearly {a}r* = {xe€ £, arx} = {a}t for each ae . Thus ¢ = r*|A4. Suppose that
there are r, ge #(€2) such that r*|4 = ¢*|A hence for every ae {2 we have
{xe €2 arx} = {a}r* = {a}q* = {x€ £, agx}, thus r = q. It implies that 4 is a set
of V-generators of @&(£(£2)). Thus &(A(£2)) is a V-subsemigroup of 7 (29).

Lemma 7. Let (A, ) be a complete subsemilattice of the semilattice (29, L)
containing the empty set. if a mapping f: A — 29 preserves arbitrary set unions,
then there is a relation re B(Q) such that r*|A = f.

Proof. Define the set I, = {ae 4; xea} for every xe£2 and the relation

re 2(£2) such that for each pair x, ye 2, xry ifand only if xe U = |_) a (it means

ac A

I, #0)and ye () of. Let ae 4 and a # 0, hence we have:

ael,

ar* = ) {xeQ arx} = (ﬂ ﬂf) = <m ,Bf) cJa =0

7
aca aelUna \Pel, aca \Pel, aca

Suppose that there is m € af such that m¢ ar*. Thus there is no ae a such that

arm. Hence for every ae a there is f§,€ I, such that m¢ B,f. Denote = () B, It

aea

is clear that @ = B. Since f preserves the union, it preserves the inclusion as well.

Thus of = ff. Hence m¢ | ) (B,) = ff > of, but it is a contradiction, thus

aea

af = ar*. At last, clearly, 0r* = 0 = 0f.

If (4, U) is a complete subsemilattice of (2% U) containing the empty set,

then one can define an operation A in the natural way, /\a =

iel
=N {,BGA; Bc N a,}. (4, U, A) is a complete lattice, but not necessarily a
iel
sublattice of the lattice (22 U, N).

Definition 3. (See [1]) A complete lattice L is said to be completely distributive
if for every system a;€ L, i€ I and je J; the following equation is true:

\ (/\ a,.j) = /\<\/ a,lq,“.,>, where A = {(o: 1>\ )J; (P(i)GJ,}-

iel \jeJ, peA \iel iel
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Lemma 8. Let (4, U) be a complete subsemilattice of (2%, L) be a containing
the empty set. The lattice (A, U, A) is completely distribytive if and only if there
exists a relation re #(02) such that
2%* = Aandr*|4 = 1,.

Proof. The “if” part. Let ;e 4, jeJ, it is clear that /\ ¢ = (") @, thus

jed jeJ

alrt c a. |r*. Since a Jr¥ed and a )r* < ar* it follows that
et jed J j) J ) 7 7
je € € €
(ﬂ a,)r* < N\@*)=/\e= (/\ a,-)’*, thus (ﬂ %-)r* = </\ %)r*-
jeJ jeJ jeJ jeJ jedJ jeJ

Hence, for each system q,, i€l and je J; we have:

U =lulaes) F=ul(asr]=ul(ge)]-

iel L\jeyJ,

-lu(0e)) =[ (Y aw) b =[A(Y )l =

=/\ (U ai.«»m)' 'e

ped \iel

The “only if” part. Define the set I, = {a¢e 4; xe a} for every xe 2, and
relation re () such that for every x, ye Q xry if and only if xe U = | ) @ and

ac A
ye/\ a Clearly, 0r*=0. Let ae2? a#0, thus we have ar*=

ael,

= U{er, arxy= (/\ﬂ)c—A.

aca aeUna \Pel,

Let ae A, a # 0, denote J = {j: @ > A such that j(a)e I,}. Hence we have

o= (/\ﬂ)= U(/\ﬂ)=/\(uj(a>):>/\a=a~

aeUna \pel, aea \Pel, jeJ \aea jelJ

On the other hand, since ael, for each ae a, we have

ar* = () </\,B)=U(/\,B)CUa=a.Thusar*=a.

aeUna \pel, aea \fel, aea

The following statements proved by K. A. Zareckij are immediate consequen-
ces of Theorem 1 and Lemma 6, Lemma 7, Lemma 8.

Theorem 4. (Zareckij [8, Theorem 2.8)]) Let r, g B(£2), then r2q if and only
if 29*, L) and (2%*, V) are isomorphic semilattices.

Theorem 5. (Zareckij (8, Theorem 3.2]) Let re #B(S2), then r is regular if and
only if the lattice 2°r*, U, A) is completely distributive.
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