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A CONSTRUCTION OF REALIZATIONS
OF PERTURBATIONS OF POINCARE MAPS

MILAN MEDVED

We present in this paper a construction of a C’-vector field, the flow of which
generates a C"-perturbation of a given C’-Poincaré map by the first intersections
of its trajectories with a given transversal. This vector field is called the C"-realizat-
ion or simply realization of the C’-perturbation of the Poincaré map. The
C'-realizations are useful for the study of generic properties and generic bifurca-
tions of vector fields (see, e.g., [5, 7]).

D. B. Crespin [2] proved a result of the existence of a smooth realization of
a given perturbation of a smooth Poincaré map, which is C°-close to a given vector
field. In the book of J. Palis and W. de Melo [7] there is a result (see Lemma 2.5)
of the existence of a smooth realization of a special linear perturbation of a given
Poincaré map, which is sufficient for the study of generic properties of vector fields.
One of the possible constructions of a C'-realization C'-close to a given vector
field can be obtained by applying the result of J. Palis and F. Takens (see [8,
Appendic, Lemma]). This result is used here in the construction of a suspension of
a C'-diffeomorphism (for the definition of the suspension, see, e.g., [7]). The
suspensions are useful for the study of generic properties of vector fields near
closed orbits (see, e.g., [7]), but they are not quite convenient for the study of
generic bifurcations near closed orbits. A result of the existence of the C"-realizat-
ions of C’-perturbations of a given parametrized C’-Poincaré map is given in [5],
but unfortunately its proof is not quite correct. To correct this proof, it is necessary
to use a special surjective mapping theorem for smooth maps instead of the
ordinary one for C"-maps (1 =r < »). We apply here a surjective mapping theorem
for mappings of Fréchet spaces, which is a corollary of some new version of the
Nash-Moser implicit function theorem (see, e.g., [9]) published by R. S. Hamilton
[3] in 1982. We shall give a somewhat different formulation of the result from that
given in [5, Lemma 6]. This result is also important in the construction of
realizations of given perturbations of the Poincaré maps in the space of paramet-
rized second order ordinary differential equations on differentiable manifolds
presented in the paper [6].

Let X be a compact Cr+!-manifold, P a compact C"-manifold, r=1 and
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V'(P, X) be the set of all parametrized C’-vector fields on X depending on
a parameter in P. We denote the set of all C"-vector field on X by I''(X). If
Fe V'(P, X) and p € P, then we define F, e I'"(X) by F,(x)=F(p, x), xe X. We
denote by ¢ (x, p, t) the parametrized flow of Fe V'(P, X) and by ¢°(x, t) the
flow of G € I'"(X). We can endow the sets I'"(X) and V'(P, X) with the structure
of a Banach space with norms induced by the C"-norms of local representations
(see, e.g., [4, Appendix A, III]).

Using the implicit function theorem one can prove the following theorem (see,
e.g., [10]).

Theorem 1. Let X be a compact C'*'-manifold, P a compact C"-manifold,
1=r<ow and let Fe V' (P, X). Suppose that the vector field F,, e I'"'(X), po€ P,
has a periodic trajectory y through a point x, with the prime period 1, and let X be a
local transversal to vy at the point xo. Then there exists a neighbourhood B, X U, X
Vo X Wy of the point (F, xo, po, To) in V'(P,X)XXZXPxR and a unique
C’-function t: BoX Uy X Vo— W, such that t(F, xo, po) =1, and ¢°(x, p,t)eX
for (G, x, p)e BoX Uyx Vy if and only if t =1t(G, x, p).

CorollarylLet X be a compact C™*'-manifold and FeI'"(X) (1=r<). Suppose
that F has a periodic trajectory y through a point x, with the prime period 7, and let
X be a local transversal to y at x,. Then there exists a neighbourhood Dy X Uy X W,
of the point (F, xo, To) in I'"(X) X X X R and a unique C’-function t: Dy X Uy—
Wo such that ©(F, xo) =1, and @°(x, t)e X for (G, x)e DyX U, if and only if
r=1(G, x).

Definition 1. Let the assumptions of Theorem 1 and its corollary be satisfied.
Then for every G € Do I'"(X) the mapping 7ig: Uy— Z, 16(x) = @°(x, 1(G, x))
is defined. This mapping is called the Poincaré map and we shall also denote it by
nw6lF, v, Z, xo, Uo]. We shall often write r, or n[F, v, 2, xo, U] instead of ne[F, v,
2, xo, Uy). For every GeByc V'(P,X) the mapping Hg: UyX Vo> X,
Hs(x, p)=@°(x, p, ©(G, x, p)) is defined. This mapping is called the paramet-
rized Poincaré map and we shall denote it by Hg[F, v, Z, X0, po, Us, V). We shall
also write H, or H[F, v, X, xo, po, U,, Vo] instead of He[F, v, X, xo, Po, Uo, Vo].

The mappings Hs and 7 are C’-differentiable. Moreover, ng is a C”-diff-
eomorphism onto its image (see [4], or [7]).

Definition 2. Let X, P be as above, poe P, Ge V'(P, X), |=r=w, y be a
periodic trajectory of the vector field G,, through a point x, € X, let M, c P be an
open neighbourhood of p, and N, = X be an open neighbourhood of y. Then we

define the set:
V&(PIM, ], X[N,)={Ge V' (P, X): G(x, p)=G(x, p) forall

(x,p)e XX P\(N,xM,)}.

Let X be a local transversal to y at x, and Uc X, V < P be open sets such that
Xo€ U, po€ P and the parametrized Poincaré map H= H|[G, v, Z, xo, po, U, V] is
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defined. Let K< U, I < V be such open sets that Kc U, Lc V, x0€K, poeL.
Then we define the set:

Zy(UI[K], VIL])={HeC'(Ux V, X): H(x, p)= H(x, p) forall
(x,p)e Ux V\(K X L)}.

Theorem 2. Let X be a compact C'*'-manifold, P a compact C'-manifold,
1SsI=wo, Ge V(P, X), 1=r=1l, r<w, poe P, y be a periodic trajectory of the
vector field G,, through x,€ X. Then there exists a local transversal X to y at x,
such that for the parametrized Poincaré map H = H[G, v, X, xo, po, U, V] the
following holds: There exists an open neighbourhood K of the point x, in X,
K c U, open neighbourhoods M,,, L of p, in P, L c M,,c V, an open neighbour-
hood N, = X of y, a neighbourhood V' (H) of the mapping H in Z;(U[K], V[L])
and a continuous map ¥x: V(H)— V5(P[M,,], X[N,]) such that for every
H e V(H) the parametrized vector field G = x(H) is such that the parametrized
Poincaré map Hs = Hs[G, v, =, xo, U, V] is defined and Hg = H.

. Definition 3. Let X be as above, y be a periodic trajectory of the vector field
F eI’ (X) through x,€ X and let N, be a neighbourhood of y. Then we define the
set:

Te(X[N,])={FeI"(X): F(x)=F(x) forall xeX\N,}.

Let X be a local transversal to y at xo and U c X be an open neighbourhood of x,
in X such that the Poincaré map wt==n[F, y, X, xo, U] is defined. Let K c U be
a neighbourhood of x, in X such that K c U. Then we define the set:

Zy(UK)={feC (U, 2): A(x)=n(x) forall xe U\K}.

As a consequence of Theorem 2 we have the following theorem.

Theorem 3. Let X be a compact C'*'-manifold, 1 =l/=® and y be a periodic
trajectory of the vector field Fe I'"(X), 1 =r =1, r <, through x,€ X. Then there
exists a local transversal X to y at x, such that for the Poincaré map = =n[F, vy, X,
Xo, U] the following holds : There exists an open neighbourhood K < U of the point
x, inZ, K< U, an open neighbourhood N, c X of v, a neighbourhood V(i) of the
mapping  in Z,(X[N,]) and a continuous map x: V(st)— F'r(X[N,]) such that for
each 7 € V() the vector field F = x(st) is such that the Poincaré map me = e[ F, v,
3, xo, U] is defined and mp =7t

Now we recall some definitions from Hamilton’s paper which are necessary for
the formulation of his surjective mapping theorem.

Similarly to the definition of the Gateaux derivative of mappings between
Banach spaces, it is possible to define the derivative f'(x):F,— F, of a mapping
f: U F, at x e U, where F,, F, are Fréchet spaces U is an open set in F, (see e.g.
[9], or [3]). For the Gateaux derivative we shall use the same notation.
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Definition 4. We say that a Fréchet space F is graded If its topology is defined by
a countable collection of seminorms {||.||.}n-o satisfying ||x||, =||x|l.+: for each
n=0, xeF.

Definition 5. Let F, G be graded Fréchet spaces. We say that a linear map
L: F— G is a tame map if there exists a natural number r and a number b such that
ILfll. = C|lf|lss, for all fe F, nZb, where C is a positive constant which may
depend on n.

Let B be a Banach space with norm ||.||s and let £(B) denote the space of all
def 2

sequences { X}~ of elements in the B such that [[{x.} i_dl. = > e™ [[x]la <

A -0

for all n=0. The space Z(B) with the topology defined by the system of seminorms
{Il.Ila}5=0is a graded Fréchet spacc.

Definition 6. We say that a graded Fréchet space F is tame if there exists
a Banach space B and linear tame mappings L: F— 2(B), M: 2(B)— F such that
MoL: F—F is the identity.

From [3, Lemma 1.3.4, Lemma 1.3.6] we have

Proposition 1. If Uc R" is an open set with compact closure, then C*(U, R™) is
a tame Fréchet space.

Definition 7. Let F, G be graded Fréchet spaces, Uc F an open set and
P: U—> G a nonlinear map. We say that the map P is tame if the following
conditions are satisfied :

(1) P is continuous

(2) For each fy€ U there exists its neighbourhood V < U, a natural number r and
a number b such that ||P(f)||, = C(1+ ||f||.+,) forallf e Vand alln Zb, where
C is a constant which may depend on n.

Proposition 2 ([3, Theorem 2.1.6]). The composition of two tame maps is a tame
map.

Theorem 4 (the Hamilton surj. mapping th.; [3, Th. 1.1.3]). Let F, G be tame
spaces, U c F an open set, P: U— G a smooth tame map and let P': UX F— G,
P'(g, f)=P'(g9)f be a smooth tame map. Suppose that for each g € U the map
P'(g9): F— G is surjective and there exists a smooth tame map RP: UXx G—F
such that P'(g)oRP(yg, f)=f for all ge U and fe F. Then for any goe€ U there
exists its neighbourhood W < U such that the set P(W) is open in G. Moreover,
there exists a smooth tame map Q: P(W)— W such that PoQ(w)=w for all
we P(W).

Lemma 1. Let E, F be Banach spaces, Uc E a convex compact set and
® e C'(U, F), r=2. Then there exists a mapping He C''(U x U, L(E, F)) such
that

P(y)—P(x)=(dP+H(x, y))(y—x)
for all x, y e U, where ||H(x, y)|li=||®@|.]ly — x|, |- ||« is the norm on L*(E, F)
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(L*(E, F) denotes the set of continuous k-multilinear maps from E into F),
||<D||2=ma&( (|ld@||s + ||d2®||2, did is the i-the Frechet derivative of ® at x.

Proof. Let ®@'(z)e L(E, F) be the Gateaux derivative of & at z and g(t)=
®(x+t(y—x)) for x,ye U, 0=t=1. Then

2= 2(1)=9(D) =g =([ &'(c+ 1y =) de)(y-x)
= @)+ ([ 10+ 1y~ )~ 2 ()] )y ~x).

Lect us define
H: Ux U= L(E, F), H(x, y) = j [@'(x+ 1(y = 1))~ @' ()] dr.
Using the mean value thcorem we obtain '
IHG IS [ 10+ 1y =0) = @@l de S [ ]ally -l

Since @'(x)=d,®, our lemma is proved.
Lemma 2. Let X be a C*'-manifold, r=1, dim X =n and x,€ X be a regular
point of the vector field F € I'"(X). Then there exists a chart (U, a) on X such that

(1) xoe U, a(x)=0eR", a(U)={(t, 21, 22, ..., Za-1) € RX R" "1 1| <1, |z| <1,
i=1,2,..,n-1}.

(2) If f, is the main part of the local representative of F with respect to the local
chart (U, @), then f,(t,z) = (1,0, ..., 0) € R" for all (t, z)e a(U).

Using this so called flow box lemma one can easily prove the following lemma.

Lemma 3. Let X, P be as above, dim X=n,dim P=k, let G e V'(P, X), x, be
a regular point of the vector field G, po€ P. Then there exists a chart (W, h) on
X X P such that

(1) (x0, po)€ W, h(xo,pe) = (0,0)eR"XR*, W=W,x W,, where W,cX,
W,c P are open sets, h: Wy x W,— R" X R*, h(x, p) = (h(x, p), h:(p)),
hl: W]X Wz——>R", hz: Wz—) Rk.

(2) If pe W,, then the map h,,: W,— R", h,,(x) = hi(x, p), is a C'-diffeomorphi-
sm of W, onto I", where I=(—1,1).

(3) The map h, is a C’-diffeomorphism of W, onto I*.

(4) The main part of the local representative of the parametrized vector field
G with respect to the chart (W, h) has the form g,(t, z, u)=(1,0, ...,0) e R"
for all (t, z, p) € IXI"7"x I*.

Let us consider a parametrized vector field G € V'(P, X), where dim X =n,
dim P = k. Suppose that y is a periodic trajectory of the vector field G,,, po€ P. Let
(W, h) be a chart on X X P having the properties (1)—(4) from Lemma 3. By the
property (4) of this lemma the main part g, of the local representative of G has the
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form g,(y, z,u)=(1, 0, ..., 0) for all (¢, Z’ﬁ)elx I"~' x I*, which defines the
system of

(1)

Let B.(r)={veR™: ||v||<r}, where |lv|l=max|v]. The set W==

{feC(R™* R"™"): f(v)=0 for all v € R"**\ B,.«(1/2)} is a Fréchet space with
the topology defined by the system of seminorms {|.[;}72, |f];=

max (“Er;??k)((’/z) Hd;’f||.-> and the set Wi ={fe W>: |f|;<1/2,j=0,1, ...} is its open
subset.

Let us consider the following system of differential equations depending on the
parameter p € R*:

dy_, dz_
dt_l’ dt~g(y,z,u), ()

where ge W=, ye R, ze R"™', ue R*. This system defines a parametrized flow

@*(y. 7, 1, )=(Y"(y, 2, s 1), Z%(y, z, , 1)) on R", where Y*(y, z, i, )=y +1
and Z* satisfies the following integral identity:

Z(y, 7, 1, t)=z+f g(y+s, Z°(y, z, 4, 8), ) ds. 3)
0
Let 0<T< 1. For g e W* we define the mapping
Qf {0y X I" "X I* 5 {T} X R"*,
Q(0, z, p)=@°(0, z, u, T)=(T, Z*(0, z, 1, T)).

Let Z=={heC>(I"**', R"™"): h(w)=0 for all we R""*""\B,,1(1/2)}.
Define the map

FWSZ* FgNz,n)=2°0,z,p, T)—z.
Lemma 4.

(1) Q*eC™, ¥(g)e C* foreach ge W=,
(2) If ge Wy, then Q°({0} X I"' X I*) (T} x I"™".
(3) F(Wg)c C=(I"' X I*, I"™).

Proof. The assertion (1) follows from the smoothness of @*. Since g(v) =0 for
all v e R+ \B,,(1/2) we have Z%(0, z, u, t)=z for all te R and ||(0, z, , p)||=
1/2. Therefore |20,z p, D[ =|lzlIS1. 1 (0, 2o w)]|<1/2.  then

N

1240, z, w. DI =zl + J lg(s. Z4(0, z. u, s), p)|| ds =1 for cach g € W5 and
0

so the assertion (2) is proved. The assertion (3) is obvious.
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Lemma 5.

(1) #/W53 is a smooth tame map.

(2) The derivative ¥'(g)f exists for each f, g e W= and ¥'(9)f(z, u) = co(T, z, u,
g, f) for (z, u) e I""' x I*, where co(t, z, U, g, f) is a solution of the differential
equation

@) = AY(t, 2, ww + b 2, 1),

3g(v)
9z

satisfying the initial condition w(0)=0, where A°(t, z, u)=

zZ°(0, z, u, t), p), b®'(t, z, u)=£(t, Z°(0, z, u, t), u).

Proof. Letusdenote B(t,v,z, 4,9, f) = Z**(0, z, u, t) — Z%(0, z, u, t) for
tel0, TJ, zeI" '"uel*, vel0,€], e>0 and let K,=|g|, (C'-norm of g),

K2=max max j Ilf(s, Z#*(0, z, u, s), w)|| ds) The mean value theorem and

, v=(t,

the equality (3) imply ||B(t, v, z, u, g f)|| = I llg(s, Z#*(0, z, u, s), w) — (s, Z%(0,
0

z, 1, ), Wllds + V,[ If(s, Z**(0, z, u, s), wll ds = K,J IB(s. v. z, n. g,
0 0
)|l ds + YK,. Applying the Gronwall lemma we obtain

max || B(t, v, z, u. 4. )l =vK, (5)

where K=K, exp K,. If b(v, ¢, f)=(max) ||B(t, v, z, u. g, )|l then from (5) we
Z. ;. t

obtain
lim b(7. g, f)=0. (6)
By Lemma 1 there exists a map He C>(I"** x I"**, L(R"**, R""")) such that for
any u, vel*
g(v)—g(u)=(dug + H(u, v))(v — u), (7)
IH(u, )L =R|lv —ull (8)
where R =|g|,. For each f, ge W=, t€[0, T], ve[0, €], ze R"" and pel* we
d
have = B(t, v, z, 1, g, f) = g(t, Z°*(0, z, . 1), u) = g(t. Z°(0, z, . 1), )

+ vf(t, 2270, z, u, t), 1) = (M(g, z, 1. 1) + N(t.v, 2.1, g, ))B(t, v, 2, 1, g,
f) + vf(t, Z**(0, z, u, t), u), where M(g, z, u, t) = dug, N(t, v, z, 1, g, f)
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= H(u,v),u = (t, 20, z, u, t), u), v = (¢, Z°*(0, z, u, t), u). Using (8) we
obtain the inequality

[IN(t. v. z. . g, DIERIB(t, v, 2,1, 9, . 9)

For C(¢t, v, z, u, g, f) = v'B(t, v, z, U4, g, f) we obtain

%=(M(r)+N(t))C(I)+F(t), (10)

where C(t)=C(t, v, z, u, g, f), M(t)=M(g, z, u, t), N(t) = N(t,v, z, u, g, f),
F(t) = f(t, Z°*(0, z, u, t), u), C(0, v, z, u, ¢, f) = 0. The inequalities (5), (9) and
(6) imply

lim a(v, 9, f)=0, (1)

where o(v, ¢, f) = max [IN(£)C(2)||. Let co(t, z, u, g, f) be the solution of the
Lz, p

linear differential equation (4) satisfying the initial condition ¢y(0, z, i, ¢, f)=0.
From (10) and (4) we obtain ||C(t, v, z, i, g, ) — colt, 2, 1, g, )|l = a(v, g, f)

+ M(.q)jo' ICGs, Vo 20 1y gy f) — cols, 2o 1 go )l ds. where M(g)=

max IM(g, z, u, t)||. Applying the Gronwall lemma we have max IC(t, v, z, u,

zomut Lz, pn

g, f) — colt, z, 1, g, Ol = o(v, g, f) exp M(g) and therefore (11) implies
lim max ||C(t, v, z, . g, f) = colt, 2, 1, 9, f)|| = 0. (12)

v=0 (12, )
Let us define the maps:
co(g, f); I"' X I 1" eolg, f)(z, w)=coT, 2z, 1, 4, f),
c(v,g, ) "' x> I e(v, g, )z, )= C(T, v, z, 1, 9, f).

These mappings are obviously smooth and for any (z, u)e I"™' X I* we have
Iv="[F(g +v)(z, 0) = F(g)(z, w)] = colg, )z, )| =
=|lv'[Z**(0, z, p, T) = Z°(0, z, 1, T)] = colg, f)(z, u)ll =
=llc(v, g, )z, w) = culg, )z, u) Sa(v, g, f) exp M(g)

and so the equality (11) yields
lim v='[F(g +vf) = F(9)] = colg, f) (13)

(the limit with respect to the seminorm |.|,). It is necessary to prove the existence
of the limit (13) with respect to every seminorm |.|,,, m =0. However, this is not
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difficult to prove now. The partial derivative of co(g, f)(z, 1) with respect to z and
u, respectively, also the higher order one, is a solution of a linear differential
equation in a corresponding Banach space, satisfying the zero initial condition,
which can be obtained by differentiating the equation (4) with respect to z and y,
respectively. Therefore one can use the same procedure as that we have used in the
case of m=0. Since Lemma 1 is formulated for mappings of Banach spaces, we
may also use it for m = 1. Therefore all estimations are analogous to these we have
performed in the case of m =0 and we omit them. It suffices to prove the asserrtion
(1) of our lemma. From the form of the linear differential equation (4) there
follows the smoothness of the map %/Wj. It remains to show that this map is
tame. The assertion (3) of Lemma 4 implies that F(f)(I""'x [¥)c I"~" for all
fe W3 and so |F(f)|o=1=1+|f|o. Applying the operator 3/3z to the integral
identity (3) and using the Gronwall inequality one can show that

OF(f)(z, 1)

3z =exp [f]:.

(z. u)sl"_l’dk

Using the same procedure one can prove that for any natural number m and
natural numbers i, j, i+ j=m, there exists a continuous nonnegative function
&7 (uo, Uy, ..., Un) defined for u, =0, s=0, 1, ..., m, nondecreasing in each
variable and such that

MF(f)(z, 1)

dz' ou'

for all fe W3. Since |f|;<1/2 for all fe W5, j=0, 1, ..., m, we obtain from the
above inequality that for any natural number m there exists a positive constant C,,
(independent of f) such that | F(f)|. = C,=C,(1+|f|.) for all fe W§5. Thus we
have proved that the mapping ¥/ W5 is tame.

Remark. We have used the mean value theorem in the proof of the existence of
the limit (13) with respect to the seminorm | .|, and we needed the C'-differentiab-
ility of g. This means that the C’-differentiability of g is not sufficient for the
existence of the limit (13) with respect to the seminorm |.|,. Therefore it is
necessary to work with the class C*.

||éd>.-".',-(|f Flis -eos 1f]m)

« 0y
(z.wel"'xIk

Lemma 6.

(1) The mapping F': Wi x W=— Z=, F'(g, f)= F'(9)f is a smooth tame map.
(2) There exists a smooth tame map R¥F:Z— Wgix W> such that
F'(9)oRF(g)h=h for all ge W35, he Z~.

Proof. The smoothness of ' follows from Lemma 5 (1). From Lemma 4 2)
and the variation of constants formula we obtain

F(9)f(z.p)= J; D (T. 5. z. w)f(s. Z*(0. 2, 5). p) ds (14)
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for all ge W, fe W=, (z,u)el ~'x I*, where ®*(t, s, z, 1) is the resolvent of

the equation
d
A, z, p)w (15)
dt
(A"’ is defined in Lemma 5). The mapping s — @(T, s, z, i) is a solution of the
equation (15) and so by a procedure similar to that we have used in the proof of the
inequality [#(f)|. = C, (see the proof of Lemma 5), one can prove that for any

natural number m there exists a positive constant L,, such that

|®°|, <L, (16)

for all ge W35, where L, is independent of g. Let us define the mapping
Z: W5 C(I""x I*X I, R"™") Z(9)(z, u, t) = Z°(0, z, u, t). From the definition
of # and from (3) we have that Z(g)(z, u, T)= #(g)(z, u)— z and therefore

1Z(g)|m=C,+1 forall ge W5. (17)

Using the formula (14), the inequalities (16), (17), the Leibnitz formula and
Proposition 2, one can easily prove that there exists a sequence {R,,}m-; of such
constants that | 7'(g, f)|. = R.(1+ |f|.) for all ge W5 and f e W=. We leave the
details to the reader. Now it suffices to prove the assertion (2). Let us define the
mapping R¥: Wi X Z>— W=,

Ro}(q‘ f)(s, Z, u): T_lw“(Ty S, Z, u)h(zg(()’ Z, U, —S)’ “’)’ (18)

where yé(t,s, z, u)=[D*(t, s, z, u)]”'. From the properties of the resolvent it
follows that map t— y?(T, t, z, 1) is a solution of the equation

‘%:—xm(t,z,u). (19)

Therefore the smoothness of the mapping (g, s, z, u) — Y*(s, z, u) is obvious.
The mapping R# has the same structure as the mapping %’ and therefore using the
same procedure as that in the proof of the assertion 1 one can prove that R% is
a tame map. From the formulae (14), (18) we obtain that

F'(9)eRF(g)h(z, u)=
T
=f ®(T, s, z, W) T '9*(T, 5, 2, Wh(Z(0, Z°(0, z, . s), —s), 1) ds =
0

r
=I T 'h(z,u)ds=h(z,pn) forall (z,u)el"'xI* heZ"
0

and this completes the proof.
As a direct consequence of Lemma 4, Lemma 5 and Theorem 4 we obtain the
following lemma.
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Lemma 7. There exists a neighbourhood U, W3 of the zero map 0€ W7 such
that ¥ = F/Uy: Up— F(U) is surjective, where F(Uo)c C*(I"~'x I*, I"~") is an
open neighbourhood of the mapping hy: I"™' X I*— I""' ho(z, u) = z. Moreover,
there exists a smooth tame map G: #(U,)— U, such that #.G(h)=h for all
h e F(Uy,).

Proof of Theorem 2. Let (W, h) be a chart on X X P having the properties
(1)—(4) from Lemma 3. Let W=, W3, Z~ be the Fréchet spaces defined as above.
Let us recall that @? = (Y?, Z?) is the parametrized flow defined by the system (2)
for ge W= and ¥: W Z=, F(g9)(z, u)=2°(0, z, u, T)—z, where 0<T<1.
The set X = h,,({T} x I"™") is the global transversal of the vector field G,/ W, and
h(ynW,)=1x{0}. If H=H[G, v, A, xo, po, U, V] is the parametrized Poincaré
map, then Lemma 3 (4) implies that for each (x,p)e UX YV there exists
(z, u) e I""* x I* such that

h1p°H(x’ p)= q)O(O’ 1, T)=(T’ Z)' (20)

The flow @? defines in the coordinates of the chart (W, h) a parametrized vector
field G* on W, where G* =G on W\h™!(B,+(1/2)). Let us define the paramet-
rized vector field F* on X x P as follows: F*=G* on Wand F*=G on X X P\ W.
This is obviously C’. From Theorem 1 it follows that there exists an open
neighbourhood U, of the zero map 0 € W7 such that if U X V is a sufficiently small
neighbourhood of the point (xo, po) in £ X P, then for each g € U, the mapping
H?=Hps[G, v, Z, xo, po, U, V] is defined and for such (x, p) e U X V for which
the equality (20) is valid we have

h,,,oH‘(x, p)=(p"(0, Z, U, T)=(T1 00(29 #)‘*‘ fi(g)(z, “))? (21)

‘where goe C*(I""' X I*, I"™"), 0o(z, ) =z for all (z, u). If Up is sufficiently small,
then by Lemma 7 there exists an open neighbourhood V,c Z~ of the zero map
0 € Z~ such that #/U,: Uy,— V, is surjective. Moreover, there exists a smooth map
Q: U,— V, such that %, Q(o)=o0 for all o€ V,. This means that for arbitrary
o € V, there exists g € U, such that #(g) = 0. Therefore for arbitrary o € U(0y) =
{00+ 0: 0 € Uy} there exists g € U, such that

hipoHO(x, p) = 99(0, 2, u, T) = (T, 6(z, 1)) (22)

for all (x, p)e Ux V. Let K=hi'(B.+(1/2))nU, L = h;'(Bi(1/2))nV, M=V
and let N, be an open neighbourhood of y such that |J hi,(IX I""")< N,. Let

pev

9(H) = {He Z;(U[K], V[L]): there exists 6 € U(g,) such that hi,oH(x, p)
= (T, 6(z,pn)) for all (x,p)eUX V}. Let us define the map x: V(H)—
V'(P[M,,], X[N,]) as follows: If He ¥(H) and hy,oH(x, p) = (T, (z, 1)),
where 6 € U(0o), then x(H) = F?, where g € U, is the map for which the equality
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(22) is valid. From the construction of F? it follows that x is continuous and from
the equality (22) we have that Hes[G, v, X, xo, po, U, V]=H.
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KOHCTPYKLIUA PEAJIU3ALIMM BO3MYIIEHUN OTOBPAXEHUWUN [MTYAHKAPE
Milan Medved

Pesiome

B cTaTbe 1aHa OfHA KOHCTPYKUMA BeKTOpHOro nons kiuacca C’, NOTOK KOTOPOro MOPOXKAaeT
C’-BO3MyLIEHHe 1aHHOrO oToGpaxeHus [laynkepe knacca C'.
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