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UNIQUELY EDGE COLOURABLE GRAPHS 

JURAJ BOSAK 

Dedicated to Academician Stefan Schwarz on the occasion of his 70th birthday 

The aim of this paper is to extend known results concerning the (finite simple) 
uniquely edge colourable graphs into further classes of graphs. All finite uniquely 
k-edge colourable graphs (including multigraphs) with 4 ^ k <K„ are constructed 
and enumerated. Similarly, all uniquely k-edge colourable graphs with k "^K,, are 
described. Cases k < 3 and k = 3 are considered as well. The results were presented 
at the Third Czechoslovak Symposium on Graph Theory held in Prague, 1 982 [3]. 

1. Introduction 

All graphs considered in this paper are undirected and loopless ( = without 
loops), but we admit multigraphs (= graphs with multiple edges) as well as infinite 
graphs. A graph is said to be simple if it contains no multiple edges. Isomorphic 
graphs are usually not considered as different. By the order [size] of a graph we 
mean the number of its vertices [edges, respectively]. 

Let k be a cardinal number. A graph G is said to be uniquely k-edge colourable 
if 1. G has chromatic index k ; 2. every admissible edge colouring (adjacent edges 
have always different colours) of G by k colours induces the same partition of the 
edge set of G. (In other words, G has a unique decomposition DG into k factors of 
maximum degree one and no decomposition into less than k such factors.) 

The class of all uniquely k-edge colourable graphs will be denoted by J*. A graph 
is said to be uniquely edge colourable if it is uniquely k-edge colourable for 
a cardinal number k. 

Finite simple uniquely edge colourable graphs were treated in papers [5, 6, 8,13, 
14, 16, 17] and in books [1, 7]. Our aim is to describe all uniquely edge colourable 
graphs but this aim at the present time is reached only partly. Evidently, we may 
restrict ourselves to graphs without isolated vertices. 
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2. The case k<3 

For k<3 the situation is very simple: 
Proposition 1. For k < 3 all uniquely k-edge colourable graphs without isolated 

vertices are: 
1. the empty graph if k = 0, 
2. 1 -regular graphs if k = 1, 
3. even cycles and all paths (finite, one-sided infinite, two-sided infinite) of 

length ^ 2 if k=2. 
Only one of these graphs, the cycle of length 2, is not simple. 
Proof. This follows directly from the definition (see also the papers cited 

above). 

3. Examples and auxiliary general results 

Examples of uniquely k-edge colourable graphs for k^3 can be easily con­
structed as graphs G satisfying the following conditions C(/\ k), where i and k are 
cardinal numbers, l ^ / ^ 5 and 3 ^ k . Moreover, if 3 = ^ / ^ 5 , we suppose that k is 
finite and the vertices of G are denoted by vt, v2, th, ... 

к= 3 к - - > к - 5 

C ( 1 , к J 
N / V 

Ф 
wv 

V Фt # 
C ( 2 , к J A A & љ 
C ( 3 , к J IZ C ÍZ c ш. e <ĽZ 
C ( 4 , к J *Ф> <5> <$> 

C ( 5 , к J <п <c <c 
Fig. l 

Condition C(l , k). G has size k and contains at least one vertex incident with all 
edges of G. 

Condition C(2, k). G has order 3, size k and contains at least one triangle. 
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Condition C(3, k). G has order 4 and size k + 1 ; it contains edges ?',?': and ?><?'4; 
each of the remaining k — 1 edges joins ?h to ?>, or ?tj. 

Condition C(4, k). G has order 4 and size k + 2 ; it contains edges ?>,?'*, ?',?'«, 
v2*h, v2v4 and k—2 edges joining vx and v2. 

Condition C(5, k). G has order 5 and size k + 2 ; it contains edges ?>,?M, ?>,?',, 
v2ih, ?>:?N and k—2 edges joining ?>, and v2. 

It is easy to show that for every admissible / and k there exists at least one graph 
G satisfying Condition C(/\ k) and that all these graphs are uniquely k-edge 
colourable. For ke{3,4, 5} all graphs G satisfying Conditions C(i, k), 
i e {1, 2, 3, 4, 5} are drawn on Fig. 1. Evidently, no graph can fulfil two different 
Conditions C(/\ k). 

Denote by p(k) the number of partitions of a positive integer k (i.e., the number 
of unordered decompositions of k into a sum of positive integers). The values of 
p(k) for k = 1, 2, ..., 100 are given in [9]. They can be easily calculated using the 
following recurrence formula (whose validity follows also from [9]): 

p(k) = 'Z(-iy-,(p(k-,
is(3s-l)) + p(k-\s(3s + l))) = 

= p(k-l) + p(k-2)-p(k-5)-p(k-7) + 
+ p(k- 12) + p(k- 15)-p(k -22)-p(k -26)+ ..., 

where we put p (0 )= 1 and p(jc) = 0 for x<0. Evidently, in the infinite series for 
p(k), given a fixed k, only finitely many (exactly [(V(24/c + 1)+ l)/6]) indices s 
produce a non-zero term. We need here only some small values of p(k) given in 
Table 1. 

k 0 1 2 

Table 1. 

3 4 5 6 7 8 9 10 

P(k) 1 1 2 3 5 7 11 15 22 30 42 

k 11 12 13 14 15 16 17 18 19 20 

P(k) 56 77 101 135 176 231 297 385 490 627 

Lemma 1. Let k be an integer, k^3. Then there exists exactly 

N«>^H^]+m 
graphs fulfilling one of Conditions C(l , k), C(2, k), .... C(5, k) and all these 
graphs are finite, connected, planar and uniquely k-edge colourable. 

Proof. Determine the number of (nonisomorphic) graphs fulfilling Conditions 
C(i, k). For i = 1 this number is obviously equal to p(k), for i = 2 this number is 
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equal to the number p*(k) of partitions of k into 3 parts, which by [8] equals 

k2 + 3' M»-\^}. 
If i = 3, then the number of enumerated graphs is equal to the number of 
expressions k — l = a + 6 with nonnegative integers a^b, i.e. to the number 
p2(k + 1) of partitions of k + 1 into two (positive) parts and we evidently have 

Jt + r „,<*+, ) =[*±i] . 
For i = 4 and / = 5 Condition C(/, k) is fulfilled by exactly one graph. Thus 

N(k) = p(k) + p*(k) + p2(k + l)+1 + 1 = 

k2 + 3i rk + 5 
=p(k)+ n 

The second assertion can be proved by the systematic examination of the 
possibilities allowed by Conditions C(/, k). The proof follows. 

In Table 2 we give the values of N(k) for k = 3 , 4, ..., 20. 

k 3 4 

Table 2. 

5 6 7 8 9 10 

N(k) 

k 

8 

11 

10 

12 

14 19 25 33 44 57 

13 14 15 16 17 18 19 20 

N(k) 74 97 124 160 205 262 332 423 532 672 

Note that for k = 3 Lemma 1 does not determine all (even finite, connected and 
planar) uniquely k-edge colourable graphs. There exist finite connected planar 
uniquely 3-edge colourable graphs satisfying none of Conditions C(/, 3), e.g. K4, 
the complete graph on 4 vertices. The case k = 3 will be studied in detail in the next 
section. The question whether the converse to Lemma 1 is true in the case k^4 
will be dealt with in Section 5. 

Lemma 2 (cf. [8]). Lef; and k be cardinal numbers such that l^j^k and let 
GeJk. Then every subgraph of G generated by the edges of fixed j colours belongs 
to J,. 

Proof. This is obvious. 
As already mentioned, studying the class Jk we need not consider graphs 

containing isolated vertices. The following lemma allows us to restrict ourselves to 
connected graphs. 

208 



Lemma 3. Let k ^ 2, GeJk. Then G is connected if and only if G has no isolated 
vertices. 

Proof. Let G have no isolated vertices. It is sufficient to prove that any two 
edges of G are in a path or in a cycle of G. But this follows from Lemma 2 (for 
7 = 2) and the last assertion of Proposition 1. The converse assertion is trivial. 

Lemma 4 (cf. [5]). Let k^2, GeJk. If A and B are the sets of the edges of two 
different colours in G, then either |A | = |B | , or A and B are finite and 
| A | - | B | e { l , - l } . 

Proof. This also follows from Lemma 2 (j = 2) and the last assertion of 
Proposition 1. 

Lemma 5. Let k^2, GeJk. Then we have: 
(i) If G has multiple edges, then their colours occur in G exactly once. 

(ii) Supposing (i), the colours of all other edges occur in G exactly once or twice. 
(iii) The edges of any two different colours generate a connected subgraph of 

G (cf. [8]). 
Proof, (i) Let ex and e2 be different edges of G with the same end vertices. By 

Lemma 2 (7 = 2) and Proposition 1 the edges of colours of ex and e2 generate 
a subgraph of G that is a cycle of length two. 

(ii) This follows from Lemma 4, 
(iii) This follows from Lemmas 2 and 3. 

Lemma 6. Let kbe a positive integer, k ^ 2 and let Gbe a finite connected graph 
from Jk. Then for every positive integer i < k the number s, of vertices of degree i in 
G is finite wd we have: 

(0 | i ( k - i ) ^ t ( t - l ) . 

(ii) l-£s, + s2 + ... + s*-i*-=fc. 

Proof, (i) By Lemma 2 the edges of arbitrary two different colours generate 
a subgraph of G belonging to J2 which will be called a bicoloured subgraph of G. 
Every vertex having degree i<k in G has degree 1 in exactly i(k — i) bicoloured 

subgraphs of G. As the number of bicoloured subgraphs of G is ( ] and each of 

them has at most two vertices of degree 1, the sum of the numbers of vertices of 
degree 1 in bicoloured subgraphs of G is at most k(k — 1) and (i) follows. 

(ii) The inequality ^ follows from (i) and the trivial inequality i(k — i)^k — l 
holding for every / e { l , 2 , ..., k — 1}. If si + s2 + . . . + s*-i = 1, then in G there 
exists a bicoloured subgraph with only one vertex of degree 1, which is impossible 
in a finite graph. 
Lemma 7. Let k be a positive integer, k^2 and let G be an infinite connected 
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graph from Jk. Then G is simple and all vertices of G have degree k with a possible 
exception of a unique vertex of degree i e (1 , 2, ..., k — 1}. 

Proof. The first assertion follows from Lemma 5. As G has chromatic index k, 
G cannot have a vertex of degree >k . Suppose that G has two vertices, say u and 
v, of degree <k . Let DG be the decomposition of G into factors of (maximum) 
degree 1. Denote by F(u) [F(v)] the set of factors from DG containing at least one 
edge incident with u [v, respectively]. Evidently, 

D G = D , u D 2 u D 3 u D 4 , 
where 

Do = F(u)nF(v), 
Dx=F(u)-F(v), 
D2 = F(v)-F(u), 
D, = DG-(F(u)uF(v)). 

It is easy to see that at least one of the following two cases must occur: 
(i) D.^-0 and D2^-0. 

(ii) D„±0 and D39-0. 
Pick factors F,, F2eDG so that if (i) holds, then F, eD,, F2eD2; otherwise let 

F, e Dlh F2 e D3. In both cases F ,uF 2 is a finite path so that F, and F2 have a finite 
number of edges. By Lemma 4, all factors from D G have the same property. As 
| D G | = k <K0, it follows that G has a finite number of edges, which is impossible 
because G is infinite and (by Lemma 3) connected. 

4. The case k = 3 

In the case k = 3 a complete description of the uniquely k-edge colourable 
graphs is known neither for finite graphs nor for infinite ones. Therefore we show 
here only how our investigation can be reduced and we formulate main open 
problems. In fact, the content of the most of this section is known (usually in 
a slightly different formulation) from the quoted sources [1, 5, 6, 7, 8, 13, 14, 15, 
17]. 

The next result shows that for k = 3 Lemma 1 gives all connected uniquely 
k-edge colourable multigraphs. Moreover, we determine how many vertices of 
degree < k a graph from Jk can have (evidently, it cannot have vertices of degree 
>fc>. 

Proposition 2. Let G be a connected uniquely 3-edge colourable graph with 
exactly s vertices of degree <3. Then we have: 

(i) 7/ G is a multigraph, then G is isomorphic to one of three multigraphs drawn 
for k = 3 in Fig. 1. 

(ii) / / G is finite, then s e {0, 2, 3}. 
(iii) / / G is infinite, then s e {0, 1}. 
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Proof, (i) easily follows from Lemma 5, (ii) from Lemma 6, and (iii) from 
Lemma 7. 

The problem of constructing all graphs from J3 is thus reduced to connected 
simple graphs with a "small" number of vertices of degree < 3 . Moreover, we can 
suppose that this degree is 2. In fact, deleting a vertex of degree 1 (and the edge 
adjacent to it) in a graph G from J3 leads to a graph G' with the same number of 
vertices of degree < 3 , but instead of a vertex of degree 1 we get a vertQx of 
degree 2. Evidently, G' eJ3, or G is one of the first two graphs of Fig. 1. In such 
a way the vertices of degree 1 can be successively deleted from the graph. Thus our 
problem in the case k = 3 for infinite graphs can be formulated in the following 
way: 

Problem 1. Find all infinite connected uniquely 3-edge colourable graphs in 
which all vertices are of degree 3 with a possible exception of one vertex of 
degree 2. 

According to Lemma 7 every such graph is simple. Examples of these graphs are 
in Fig. 2. 

Fig.2 

The following two reductions, namely reductions to cubic and cyclically con­
nected graphs will be applied only to finite graphs although the second one is in 
a certain sense applicable also to infinite graphs. 

The reduction to cubic graphs is based on the following Lemma 8. The symbol 
G — v [G — e] will denote the graph formed from G by deleting vertex v [edge e, 
respectively]. (If we delete a vertex v from G, then we must delete also ajl edges 
incident with v.) 

Lemma 8. Let v [e] be a vertex [an edge, respectively] of a finite cubic simple 
graph G. Then the following three assertions are equivalent: (i) GeJ 3 . (ii) 
G-veJy. (iii) G-eeJ*. 

Proof. G i s a cubic graph of order 2n and size 3n (where n is an integer, n ^ 2) 
and every factor of the decomposition D G of G into factors of (maximum) degree 1 
has size n. The graph G — v has order 2n — 1, size 3/t — 3, 3 vertices of degree 2, 
2n — 4 vertices of degree 3 and every factor of DG~" has size n — 1. The graph 
G — e has order 2n, size 3n — 1, 2 vertices of degree 2 and 2n — 2 vertices of 
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degree 3 . Two factors of D G e have size n and the third one has size n - 1. Using 
these facts the equivalences (i)<^>(ii) and (i)o(i i i) can be easily established. In 
every case it is sufficient to prove the validity of two conditions from the definition 
of uniquely k-edge colourable graphs, which is easy. The lemma follows. 

It is evident that each graph having all vertices of degree 3 with an exception of 
exactly two [three] vertices of degree 2 can be represented in the form G — e 
[G — v], where G is a cubic graph with an edge e [a vertex v, respectively]. Thus 
the problem of finding all finite uniquely 3-edge colourable graphs is reduced to 
cubic graphs. 

A connected graph is ^aid to be cyclically A-connected \{ the removal of less than 
4 edges from it cannot yield a graph with two components each containing a cycle. 

Suppose that G is a finite simple uniquely 3-edge colourable graph that is not 
cyclically 4-connected. Let E be a set of less than 4 edges whose removal yields 
a graph with two components Gx and G2, each containing a cycle. As G e Ft, we 
cannot have |£j -= 1 or \E\ = 2 (evidently — cf. [10] — two edges of E must belong 
to the same factor of D G ) . In both cases mutual exchanging of two colours in G2 

leads to a new edge colouring of G by 3 colours. Therefore |E | = 3 and the three 
edges of E have 6 end vertices (otherwise there would be a set E ' of less than 
3 edges whose removal would yield a graph with two components each containing 
a cycle, a contradiction to previous considerations). Evidently there exist cubic 
graphs H\ and H2 with vertices V\ and v2, respectively, such that H, — v, is 
isomorphic to G, (i = 1, 2). Obviously, the three edges of E belong to mutually 
different factors of D G (cf. [10] or the proof of our Lemma 8). Therefore H\ and 
H2 are finite simple cubic graphs from J3 of an order smaller than that of G. Thus 
the graphs that are not cyclically 4-connected need not be considered and we can 
formulate the next problem. 

Fig. 3 

Problem 2 (cf. [5, 6, 8, 13, 17]). Describe all finite, simple, uniquely 3-edge 
colourable, and cyclically 4-connected cubic graphs. 

Only two examples of such graphs are known: The first one is planar, namely K4, 
the complete graph on 4 vertices. The second one is nonplanar, namely the 
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generalized Petersen graph on 18 vertices denoted usually by P(9, 2) or F(9, 4) 
whose two diagrams are given in Fig. 3. 

This graph has been found independently by three authors [5, 6, 12, 15]. 
Nincak [12] constructed it in connection with the following related problem. 

Problem 2' (cf. [2, 8, 12, 13, 14, 15]). Describe all finite simple cyclically 
4-connected cubic graphs with exactly 3 hamiltonian cycles. 

T h o m a s o n [14] proved that the classes of graphs determined by Problems 2 
and 2' are different (in fact, the first class is a proper subclass of the second). 
However it is possible that in the case of planar graphs these two classes coincide 
and they consist of a unique graph K4. This is equivalent to the conjecture that 
every finite simple cubic planar graph that has exactly 3 hamiltonian cycles 
(especially, every finite simple cubic planar uniquely 3-edge colourable graph) 
contains a triangle so that it can be obtained from K4 by successively replacing 
a vertex by a triangle (cf. [2, 8, 13, 17], or C a n t o n i ' s conjecture in [15]). 

5. The case 4 ^ k < K„ 

R. J. Wilson [16] formulated a conjecture that for every integer k^4 every 
finite connected simple and uniquely k-edge colourable graph is isomorphic to the 
complete bipartite graph K(l, k) (i.e., the star of size k). This conjecture has been 
proved by A. G. T h o m a s o n [13]: 

Lemma 9 [13]. Lef k be an integer, k^4. Then every finite connected simple 
uniquely k-edge colourable graph is isomorphic to K(l, k). 

Our aim is to extend this result to graphs with multiple edges (multigraphs). 

Theorem 1. A connected multigraph is uniquely 4-edge colourable if and only 
if it is isomorphic to some of 9 multigraphs given for k = 4 in Fig. 1. 

Proof. According to Lemma 1 all 9 multigraphs given in Fig. 1 for k = 4 are 
connected and uniquely 4-edge colourable. To prove the converse, let G be 
a connected uniquely 4-edge colourable multigraph. Denote by m the multiplicity 
of G, i.e., the maximum multiplicity of an edge of G. Evidently me {2, 3, 4}. 
Distinguish 3 cases: 

1. m = 4. Then, according to Lemma 5, G is the 5th graph of case k = 4 in Fig. 1. 
2. m = 3. Then, according to Lemma 5, G is the 4th or the 8th graph of the case 

k = 4 in Fig. 1. 
3. m = 2. Pick a 2-cycle in G. According to Lemma 5 the colours of its edges 

occur in G only once and the remaining two colours once or twice; thus the number 
of the corresponding edges is 2, 3 or 4. By Lemma 2 and Proposition 1, these edges 
generate a path of length 2, 3, or 4, or a cycle of length 2, or 4. Using Lemmas 3 
and 5 it is easy to show that G is isomorphic to one of the remaining 6 multigraphs. 
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Corollary. A finite connected graph is uniquely 4-edge colourable if and only if 
it is isomorphic to one of 10 graphs given in Fig. 1 for k=4. 

Proof. This follows from Lemma 9 and Theorem 1. 
R e m a r k . This Corollary can be proved also without using Lemma 9, but then 

the proof is longer. 

Theorem 2. Let k be an integer, k^4. A finite connected graph G is uniquely 
k-edge colourable if and only if G fulfils some of Conditions C( l , k), C(2, k), ..., 
C(5, k). 

Proof. If G fulfils a condition C(i, k), then, according to Lemma 1, G is 
uniquely k-edge colourable. The converse assertion will be proved by induction. 
For k = 4 this follows from Corollary to Theorem 1. Let n be an integer, n ^ 4 and 
suppose that each finite graph from Jn fulfils one of Conditions C(i, n), i e {1, 2, 3, 
4, 5). Let G be a finite connected graph from Jn+i and suppose that its edge 
colouring by colours 1, 2, ..., n + 1 is given. Let G(j), j = 1, 2, ..., n + \ be the 
subgraph of G generated by the edges of colours =£ /. If we denote the size of G by 
q and the size of G(j) by q,, we have: 

q\ + q2 + ... + qn + \ ^ ^ , ~ 
q= , n^q, ^ n + 2, 

(n + \)n^, ^,(n + \)(n + 2) 

It follows that 

n n 

n + \^q^n + 3. 

As G has at most n + 3 edges coloured by n + 1 colours, there exists a colour 
used only once. If we delete the corresponding edge (and, may be, also an isolated 
vertex), we get a finite connected graph G'. By Lemma 2 we have G'eJn. 
According to the induction hypothesis, G = G' fulfils a condition C(i, n), ie{\, 2, 
3, 4, 5}. Add an edge to G' in such a way that we get a graph G" that belongs to 
Jn + i. It is easy to check that G = G" fulfils either Condition C(/, n + 1), or (if / = 1), 
may be, Condition C(i + 1, n + \). The theorem follows. 

Corollary 1. For every integer k^4 there exist exactly N(k) nonisomorphic 
finite connected uniquely k-edge colourable graphs, where N(k) is defined in 
Lemma 1. 

Proof. This follows from Lemma 1 and Theorem 2. 
R e m a r k . For k =3, Theorem 2 and its Corollary 1 are not valid (see Section 4 

of this paper). 

Problem 3. Describe all infinite connected uniquely k-edge colourable graphs 
for 4 ^ k < K ( ) . 
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R e m a r k s . 1. If graphs of Problem 3 exist, they must satisfy necessary condi­
tions given in Lemma 7. 

2. No example is known and we do not know if it exists. 
The following result is a contribution to the question which graphs have the 

chromatic index equal to the (maximum) degree [7, 17]. 

Corollary 2 (for finite simple graphs see Theorems 3 of [5] or [8]). Lef k be 
a positive integer. Let G be a uniquely k-edge colourable graph. Then G has 
(maximum) degree less than k if and only if k ^ 3 and G fulfils Condition C(2, k). 

Proof. For k ^ 3 the assertion is obvious, for k ^ 4 and finite graphs it follows 
from Theorem 2, for infinite graphs from Lemma 7. 

Note that the only simple graph satisfying C(2, k) for k = 3 is K3, the complete 
graph of order 3 ; for k ^4 no such simple graphs exist. 

6. The case k 22= Ko 

The case of an infinite k (k^K ( )) is relatively easy, even for vertex colourings 
(see Proposition 3 below). 

Given a cardinal number k, a graph G is said to be uniquely k-vertex colourable, 
if G has chromatic number k and every admissible vertex colouring of G by k 
colours induces the same partition of the vertex set of G. Evidently, a graph is 
uniquely /c-edge colourable iff its line graph is uniquely k-vertex colourable. 

Proposition 3. Lef k be an infinite cardinal number. Then every connected 
uniquely k-vertex [k-edge] colourable graph has exactly k vertices [edges] and 
these vertices [edges] are mutually adjacent. Only one of these graphs, the 
complete graph of order k [the star of size k, respectively], is simple. 

Proof. Let G be a connected uniquely k-vertex[k-edge]colourable graph. As G 
has chromatic number [chromatic index] k, G has at least k vertices [edges]. We 
assert that in every vertex [edge] colouring of G by k colours the vertices [edges] 
have mutually different colours. Otherwise, taking two vertices [edges] of the same 
colour and changing the colour of one of them into a new colour a new vertex 
[edge] colouring of G by k colours could be obtained inducing a different partition 
of the vertex [edge] set, a contradiction. Therefore G has exactly k vertices [edges] 
coloured in every admissible colouring by different colours. If there exist in G two 
non-adjacent vertices [edges], the identification of their colours leads to a different 
partition of the vertex [edge] set, a contradiction again. The rest of the proof is 
obvious. 

Corollary. Lef k be an infinite cardinal number. Then a connected graph G is 
uniquely k-edge colourable if and only if G satisfies Condition C(l , k) or 
Condiction C(2, k). 

Proof. This is a consequence of Proposition 3. 
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ОДНОЗНАЧНО РЕБЕРНО ОКРАШЕННЫЕ ГРАФЫ 

1ига] В о з а к 

Р е з ю м е 

В статье построены и перечислены все конечные /с-реберно окрашенные графы для произ­
вольного натурального числа к^4 и охарактеризованы все однозначно /с-реберно окрашенные 
графы для любого бесконечного крадинального числа к. Случаи к ^ 3 также исследуются. 
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