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THIN SETS DEFINED BY A SEQUENCE 
OF CONTINUOUS FUNCTIONS 

ZUZANA BUKOVSKA 

(Communicated by L'ubica Hold) 

ABSTRACT. We investigate thin sets of reals defined from a sequence {/n}n
<L0 

of continuous real functions in a similar way to tha t by which the trigonometric 
thin sets are defined from the sequence {sin27rnx}n^= 0 . We show tha t all the 
important classical results on trigonometric thin sets can be proved in a somewhat 
general case under some natura l assumptions. Consequently we may conclude 
tha t the basic properties of trigonometric thin sets do not depend on some deep 
properties of the trigonometric functions. 

1. Introduction 

In [Bkl], [Bk2], generalizing the classical notion of thin sets of trigonomet­
ric series theory, L. B u k o v s k y introduced the abstract notion of a family of 
thin sets and has established some of its basic classical properties. In this paper 
we shall investigate thin sets defined from a sequence {/n}J£_0 of continuous 
real functions in a similar way to that by which trigonometric thin sets are de­
fined from the sequence {sin27rnx}n^=0. We shall show that all the important 
classical results concerning trigonometric thin sets as presented in [Ba], [BKR], 
[Ka], [Zy] can be proved for example under some natural assumptions in a some­
what general situation. As a consequence we may conclude that the fundamental 
properties of trigonometric thin sets do not depend on any deep properties of 
trigonometric functions. 

Following S. K a h a n e in [Ka], we shall work with a compact topological 
group — the circle T = R/Z with the operation of addition mod 1. We may 
identify T with the interval [0,1] identifying 0 and 1. Any real valued function / 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 42A20; Secondary 03E99, 42A28, 26A99. 
K e y w o r d s : trigonometric thin set, tr igonometric like family of thin sets, sequence of continu­
ous functions, Borel basis, permit ted set, well distr ibuted sequence, Salem theorem, Arbault-
Erdos theorem. 
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defined on T can be identified with a periodic function defined on the whole real 
line R with period 1, i.e. f(x + 1) = f(x) for every real x. When referring to 
a set A C T we assume that A C [0,1] and 0 G A if and only if 1 G A. Let 
us recall that a sequence {/n}n

<L0 °-? r e a^ v a m e ( i functions is said to converge 
quasinormally to a function / on the set X if there exists a sequence {e n } n

<
= 0 

of nonnegative reals converging to zero such that 

(Vx € X)(3n0)(Vn > n 0 ) ( | L » - f(x)\ < e n ) , 

— compare [Bu2], [CL]. If {/n}n
<

=0 converges quasinormally to 0 on X then 
oo 

there exists a sequence {n^.})^ such that ^ / n f c( x) < °° f° r e v e r v £ G X . 
fc=0 

A measure / i , defined on a a-algebra of subsets of T containing all Borel 
subsets taking values in the nonnegative reals, is called a positive Borel measure 
on T. The Lebesgue measure — which is evidently a positive Borel measure — 
is denoted by A and the corresponding integral is denoted simply by f f(x) dx 

A 
instead of f f(x) d\(x). 

A 

We shall need a rather elementary result about infinite series: 

THEOREM 1. Let {an}n
<L0 be a bounded sequence of nonnegative reals such 0 0 

that J2 a
n
 = °°* Let sn = ^2 Q>k- If m- [0, oo) —> (0, oo) is an increasing 

n=0 k=0 
unbounded function, then 

if and only if 

oo ^ 

E —7-т < OO 

n=0 ^ v ' 

oo 

E a n 
n 

m(л n=0 

< 0 0 . 
<PІ3n) 

A proof can be found, for example, in [Ba]. 

The classical Dirichlet-Minkowski theorem (see e.g. [Ba], [BKR]) can be easily 
generalized as follows: 

THEOREM 2. Let f: T —> [0,co) be a continuous function with /(0) = 0. 
Let {nrn}n^=Q be an increasing sequence of natural numbers, and let e > 0. Let 
6 > 0 be such that f(x) < e whenever \x\ < 8. Then for any xx,...,xk G T 
there are m < I < (1/5 -b l)k such that f((n{ — n^x^ < e for i = 1 , . . . , k. 

P r o o f . Let x l r . . , x f c G T. Let e > 0, 5 > 0 satisfy the condition of 
the theorem. Take the smallest natural number p such that 1/p < 5. Thus 
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p < 1/5 + 1. We divide the k-dimensional cube [0, l]k into q = pk small cubes 
of side 1/p. Using the pigeon-hole principle, among q + 1 elements 

(nixv...,nixk), i = 0 , l , . . . , q , 

of the cube [0, l]k, at least two are in the same small cube. Therefore, for some 
m < I < q we obtain \(nt — n m ) x j < 1/p < 5 for i = 1 , . . . , k. Then also 

/((nz ~ nm)xi) ^ £ f o r eyevy * = i , . . •,fc. 
It is easy to see that m < I < q = pk < (1/5 + l)k. D 

Following [Bk2] we define a family T of subsets of T to be a family of thin 
sets if the following conditions hold: 

(a) T contains every singleton {x}, re G T, 
(b) if A G T, B C A then also B G T, 
(c) T does not contain any open interval (a, b), a < b, a, b G [0,1]. 

A family Q C T is called a basis for T if every 4̂ G JF is a subset of some 
B G Q. If every set from £ is an P^-set, Borel set etc., we speak of respectively, 
an Fo -basis, Borel basis etc. 

A family of thin sets T is said to be trigonometric like if for every A G T 
the arithmetic difference 

A — _4 = {x G T; x = y — z for some y, z G A} 

also belongs to T. 
As an easy consequence of a theorem of Steinhaus, in [Bk2], the author shows 

that: 

THEOREM 3 . Every member of a trigonometric like family of thin sets with 
a Borel basis is meager ( = the first Baire category) and has Lebesgue measure 
zero. 

All classical families of trigonometric thin sets V, pV, JV0, BQ, B, M, A, 
and wV, as defined e.g. in [BKR] (see also Section 2 below), are trigonometric 
like families of thin sets with Borel bases in the sense of the above definition. 

2. Thin sets defined by a sequence of functions 

From now on, let f = {/n}^L0 ^ e a s e c m e n c e °f continuous functions defined 
on T taking values in the nonnegative reals 

/ n
 : T - > [°> °° ) f o r n = 0 , 1 , . . . . 

We shall follow classical definitions of trigonometric thin sets as presented e.g. in 
[Ba], [BKR], [El], [Ka], [Zy] and we define: a set A C T is called an f-Dirichlet 
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set (briefly a D^ -set), a pseudo ]-Dirichlet set (briefly a pD^ -set), an .A* -set if 
there exists an increasing sequence of natural numbers {nh)

(
kL0 such that the 

sequence {fnk(x)}™=0 converges uniformly, quasinormally and pointwise to 0 
on the set A, respectively. Further, a set A C T is called an NQ -set (B0 -set) if 
there exists an increasing sequence of natural numbers {TI^^LQ (and a positive 

oo oo 

real c) such that the series Y fnk(
x) converges ( ]T} fnk(

x) < c) - ° r e v e r v 

k=0 k=0 
x E A. A set A C T is called an JV* -set (B^-set) if there exists a sequence 

oo 

{an}n
<L0 of nonnegative reals (and a positive real c) such that Yl a

n = oo and 
n=0 

oo oo 
the series ]T anfn(x) converges ( J2 a

nfn(
x) < c) f° r every x E A. Finally, 

n=0 n=0 

a set A C T is called a weak f-Dirichlet set (briefly a wD^ -set) if there exists 
a Borel set B, A C B C T, such that for every positive Borel measure /i on T 
there exists an increasing sequence of natural numbers {TI^J^LQ such that 

lim [ fnk(x)dii(x) = 0. (1) 
k—>oo J * 

B 

The corresponding families will be denoted by Z>*, pV^, A^, JV0, # 0 , ./V*, #*, 
and iDX>*, respectively. 

If / n ( x ) = |sin7rnx| then we obtain the classical families of trigonometric 
thin sets V, pV, A, JV0, B0, JV, 0 , and tiLD, respectively. 

In the definitions of an N*-set and a B*-set we may assume that the sequence 
{an}n=:0 i s bounded. In fact we may assume that a0 > 1 and replace every an 
b y a

nK
ao + *' * + an) • Evidently 

£ — ûn + • • • + a 
т—n o ' ' n 

0 0 

and 

E O 0 + .°W. + o/nW--E°n/n(x) 
n =o o ^ n n = = 0 

for every i G T . 
Let us note that in the definition of a weak f-Dirichlet set we followed [HMP] 

rather than [BKR] or [Ka]. However, our results can easily be modified for the 
definition corresponding to that of [BKR] and [Ka]. 

One can easily see that each of the families V^, pV^, A^, JV0 , B0, JV*, B^, 
wV^ contains every singleton if and only if the following condition holds: 

(a) 0 is an accumulation point of the sequence {fn(x)}n=0 for every x G T . 
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We shall also need the following three properties of the sequence f: 

(P) For every open interval (c, rJ)CT there exist K > 0 and n0 G N such 
that / fn(

x) dx > K for every n>n0. 
(c,d) 

(7) The sequence f is uniformly bounded, i.e. there exists a real d such that 
fn(x) < d for all x G T and n G N. 

(s) fn(
x - y) < fn(

x) + fn(y)for e v e r y n G N a n d f o r e v e r y ^,2/ G T . 
One can easily see that the sequence fn(x) = | sin27m.z|, n = 0 , 1 , . . . satisfies 
conditions (a), (/?), (7), and (8). 

We begin with an extension of the classical results on trigonometric thin sets 
for the families of thin sets introduced above. 

T H E O R E M 4. 

(i) The following inclusions hold (an arrow "-» " means the inclusion "C "): 

.4* 

I 
p& • Ml • AT* 

I 1 I 
V* > Bl > B* 

(ii) If condition (7) holds true then also A^ C wV* and M^ C wV^. 
(iii) Assume that conditions (a) and (P) hold. Then every family X>f, pV^, 

B0, M0 , B^, Af*, A*, wV* is a family of thin sets. 
(iv) If (a), (P), and (S) hold then the families 2?f, pV^, B[, Ml, B*, M*, 

and A^ are trigonometric like. 

P r o o f . 
(i) Since a uniformly convergent sequence is also quasinormally convergent, 

we have V^ C pVK From a sequence converging quasinormally to zero, we 
may easily choose a subsequence with converging series; therefore pV^ C M0. 
Similarly, from a sequence uniformly converging to zero, we can easily choose 
a subsequence with bounded sum; therefore V* C B0. If the sequence {nk}^L0 

indicates that A is an Np-set (B^-set) just take ank = 1 and all other an = 0 
and we obtain the inclusion M0 C ;Vf (fij C 6^). Since a bounded series of 
positive functions is convergent we have B\ C M0 and B^ C M^. The inclusion 
•A/Q Q A* is trivial. 

(ii) Let A G A*, lim fnh(x) = 0 for every x G A. We denote 
k-+oo 

B = { ^ T ; l i m f ( x ) - = o ) . 
I k->ooJflk > 
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Then B is a Borel (in fact an FaS) set and A C B. Using condition (7), for any 
Borel measure on T we can use the Lebesgue dominated convergence theorem 
to obtain (1). 

00 00 

Now, let A G JVf, £ a
nfn(x) < °° f° r e v e r y x e A and J2 an = 00. As 

n=0 n=0 
above, we put 

B={xeT; Z ajn(x)< 00}. 
^ <r,=n •> n=0 

Then B is also a Borel (in fact an Fa) set. For every x G B we have 

n 

£ ak/*(-0 
lim * = - ; = 0. 

n—j>oo ---> 

£a* 
k=0 

Since by (7) 
n n 

£ <**/*(*) £ akd 

k=0 ^ k=0 1 
n < — = a» 

£ ak £ ak 
k=0 k=0 

for an arbitrary Borel measure /i on T we can again use the Lebesgue dominated 
convergence theorem to obtain 

n 
£ akl fk(x) M*) 

.. k=0 B n hm = 0 

£ a* 
A;=0 

and consequently 

liminf / fn(x) d/x(x) = 0. 
n—>oo y 

Thus, for some increasing sequence { n ^ , } 0 ^ we have (1). 
(iii) Condition (a) follows from (a). Condition (b) follows directly from 

the definition. By part (i) it suffices to show that JV*, A^, and wV^ satisfy 
condition (c). 

Assume that (a, b) G Af^, 0 < a < b < 1. Let {an}n
<L0 be a sequence of 

00 00 

nonnegative reals such that £ an = 00 and the series J2 anfn(x) converges 
n=0 n=0 

for every x G (a, b). For m G N we put 

Fm = {xe(a,b); ZaJn(x)<m\. (2) 
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oo 

Every set Fm is closed in (a, b) and \J Fm = (a, b). By the Baire category 
m=0 

theorem, at least one of the sets Fm has a nonempty interior, i.e. there exists 
m G N and an open interval (c, d) C Fm. Using (2) and condition (/5), by 
integrating we obtain 

p OO OO p oo 

m-(d-c)> J ] T a n / n ( x ) d z > Y<an J fn(x)dx>K- £ an, 

(c,d) n = 0 n = n o (c ,d) n = n o 

OO 

contradicting ^ an = oo. 
n=0 

Assume that (a, b) G ,4*, i.e. there exists a sequence {U^^LQ such that 
lim fn,(x) = 0 for every x G (a, b). Then, by the Baire category theorem, for 

k-+oo 
some m G N, the closed set 

{ x G T ; ( V f c > r o ) ( / n i > ) < l ) } 

has nonempty interior, and hence for some open interval (c, d) C (a, b) by the 
Lebesgue dominated convergence theorem we obtain 

l i m / fnk(
x) dx = 0, 

:->oo J k k 
(c>d) 

which contradicts condition (/?). 

For any 0 < c < d < 1, (c, d) £ wV*, since by (/3) 

liminf / L(ж)d.r>üf > 0 . 
n-кэo y " — 

(c,d) 

(iv) The assertion follows immediately from the corresponding definitions. 

• 
Now we present two simple examples showing that the thin sets defined above 

are different from classical trigonometric thin sets. 

E X A M P L E 1. We construct a rather trivial example of a countable set A C T 
which is not Dirichlet but for which there exists a sequence of function f satis­
fying conditions (a), ((3) and (7) such that A eVK 

For 0 < a < b < 1 we set 

na,b, x / | s i n - ^ ( x - o ) | i f x e [ a , 6 ] , 

0 if x e T \ [a, b]. 
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Then 

2(6 - a) Jg»n»(x)dx = Jga

n<
b(x)dx = ^ v 

0 a 

Now, let a 0 = 1 and an = l/2n for n > 0. Since sinn7ran = sin7r/2 = 1 for 
arbitrary n > 0, the set A = {an ; n G N} is not a Dirichlet set. 

We define 

for 0 < x < an 

l(x) for x G [aA ;,a /,_ 1], 1 < k < n. 

It is easy to check that the sequence f = {/n}n

<L0 satisfies conditions (cY), (ft) 
and (7). Since fn(x) = 0 for any x G . 4 , the set A is f-Dirichlet. 

E X A M P L E 2. Another example was given by J. A r b a u 11 [Ar], who has proved 
that the set 

/ n ( я ) " { Í>ÍГ»-Ч 

A = \ x G T; X) ( s i n 2 2 nx) <oo\ 
n=0 

is not an N 0-set. If we set fn(x) = (sin22 n7rx) then A is an N 0-set, where 

f={/»(»)C=o-

3. Borel bases and subgroups 

As in part (ii) of the proof of Theorem 4, we can easily prove the existence 
of a Borel basis for every family considered. In fact we can prove more (compare 
[Bui]): 

T H E O R E M 5. 

(i) The families V^, B'0, and B^ have closed bases. 

(ii) The families pV^, MQ, and M^ have Fa bases. If the sequence f satisfies 
condition (S) then there exist such bases which in addition consist of 
subgroups of T. 

(iii) The family A^ has an Fa5 basis. If the sequence f satisfies condition 
(8) then there exists such a basis which in addition consists of subgroups 
ofT. 

(iv) The family wV^ has a Borel basis. 

P r o o f . 
(i) If A G F>* and / , k = 0 , 1 , . . . , converges uniformly to zero on A then 

there are positive reals ek converging to zero such that fnk (x) < ek for every k 
and every x e A. Evidently A is a subset of the closed set 

{xeT; (Vk){fnk(x)<ek)}. 
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The proof is similar in the case of the families B0 and B^. 

(ii) Let A G pV^, the sequence of positive reals {^/J^Lo converging to zero 
and let {TIJJ^LQ be such that for every x G A there exists a k0 such that 
fnk(

x) < ek whenever k >k0. Let 

Bi = {xeT; (Vk>i)(fnk(x)<ek)}. 

Then every Bi is a closed set and A is a subset of the pseudo f-Dirichlet set 
oo 

U-V 
i = 0 

Now, assume that f satisfies condition (5). By induction we define: 
oo 

Co = \jBit Cn+1 = Cn-Cn. 
2 = 0 

We define the continuous mapping h: T x T —•> T by h(x,y) = x — y. Then 

oo oo 

Ci = (J U M*. x *,) 

is an F^ set. Proceeding by induction we obtain that every C n is an FG set. It 
oo 

is easy to see that C = (J Ci is an F a subgroup of T containing j4 a s a subset. 
t=0 

We have to show that C is a pseudo f-Dirichlet set. 
We shall use the following simple fact proved e.g. in [Bu2], [CL]: if a sequence 

{gn)n=o converges quasinormally to a function g on Xk, k = 0 , 1 , . . . , then it 
oo 

does so on the union (J Xk. 
k=0 

Thus we have to show that the sequence {/n/c}£L0 converges quasinormally 
to zero on every Ct, i = 0 , 1 , . . . . By definition, it does so on C 0 . By induction, 
assume that fn (x), k = 0 , 1 , . . . , converges quasinormally to zero on C{. Thus, 
there exists a sequence of positive reals (3i, i = 0 , 1 , . . . , converging to zero such 
that for every x G C- there exists a j such that fnk(x) < (3k for every k > j . 
By condition (S), for x = y — z G C i + 1 , y,z e Ciy we obtain 

/ „> )< /„> ) + /„,(*)<-0* 
for sufficiently large k. Thus, fn (x), A: = 0 , 1 , . . . , converges quasinormally to 
zero on C i + 1 and we are finished. 

oo 

The case of A/Q and jV* is simple. If A is such that XI fnk(
x) < °° f° r 

x G / 4 then the set 

B = \xeT; E/„fc(^)<°o} 
v. i ._n -1 

k=0 

k=0 
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is an Fa set of T containing A as a subset. Moreover, if condition (S) holds 
true then B is a subgroup of T . 

The proof of (iii) is almost identical with the previous one. (iv) follows from 
the definition. • 

In contrast to part (ii) and (iii) we have: 

COROLLARY 6. Assume that V^ (B0, B^) satisfies condition (c). Then every 
subgroup of T belonging to the family V^ (B0, B^) is finite. 

P r o o f . Since every infinite subgroup of T is a dense subset of T, the 
corollary follows from (i). • 

4. Well distributed sequences 

One can easily see that for a finite set A C T the four equivalent conditions 
A G V*, .4e.4f, A e Af^, A e wV^ are also equivalent to the following: for 
every e > 0 there exists arbitrary large n such that fn(x) < e for x G A. This 
suggests the definition that a sequence f = {fn}™=0 is well distributed if the 
following condition holds true 

(e) for every finite number of points x1,.. .,xk G T and for every e > 0 
there exists arbitrary large n such that fn(x{) < e for i = 1 , . . . , k. 

Condition (e) holds true for the sinus sequence by the classical Dirichlet-
Minkowski theorem on Diophantine approximation — see e.g. [Ba], [BKR]. 

THEOREM 7. If the sequence f is well distributed then every countable subset 
of J is a ptf -set. 

P r o o f . Let {xn ; n G N} be an enumeration of the countable subset A 
of T. Using (s), by induction, one can easily find an njfe+1 > nk such that 
fn (xi) < FfT f° r e v e rY i — 0 , 1 , . . . , k + 1. It is then easy to see that the 
sequence {fnk}kL0 converges quasinormally to zero on the set A. • 

COROLLARY 8. If the sequence f 25 well distributed then the families pV^, 
J\f0, ./V*. and A^ contain all countable subsets of T. Moreover, if f satisfies 
condition (7) then also the family wV^ contains every countable subset of T. 

Since the families V^, B\ and B0 each contain along with every set also its 
closure, if any of them is a family of thin sets it cannot contain every countable 
set, in fact it cannot contain the set Q fl T. 

One can easily check that Theorem 10 of [Bui] can be generalized in a similar 
way — a definition of the cardinal p may be found e.g. in [Bui], [BKR]: 
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THEOREM 9. Let Es C T be a D^-set for every s G S, \S\ < p. If for every 
finite T C S the union IJ Es is a D^ -set then the union IJ Es is a pD^ -set. 

5ET ses 

S k e t c h of t h e p r o o f . For every finite T C S and for every natural 
number m we denote 

S ( T , m ) = { ( k , n ) G N x N ; k,n>mf\(Vxe J Es) ( / n (x ) < ^ ) } . 

As in [Bui] we may show that 

F={B(T,m)] TC S finite, m G N} 

is a family of infinite subsets of N x N with the finite intersection property and 
of cardinality smaller than p . By the definition of the cardinal p there exists an 
infinite C C N x N such that C \ B(T,m) is finite for every finite T C S and 
every m. In the same way as in [Bui] one can construct two increasing sequences 

{«.}£„ a n d {*.}£<> such t h a t 

(vxe U£,)(3i0)(Vz>*0) (/„,(*) < — L - ) . 

Thus the union IJ Es is a pseudo f-Dirichlet set. D 

COROLLARY 10. If the sequence f is well distributed then the families pV^, 
Ml, M^, and J$ contain every subset of T of cardinality < p. If f satisfies 
condition (7) then the family wV^ also contains every subset of T of cardinal­
ity < p. 

5. Condition (a) is strictly weaker than (e) 

We give a rather complicated example showing that condition (a) is weaker 
than (e). In fact the example provides a counterexample for some other impli­
cations. 

We shall use the following simple fact: if A, B are disjoint closed subsets 
of T then there exists a continuous function / : T -> [0,1] such that f(x) = 0 
for x G A and f(x) = 1 for x G B. If A C T, x G T we denote the distance of 
the point x from the set A by 

d(x,A) = i n f { | x - y | ; y e A} . 

Let {rn ; n G N} be a one-to-one enumeration of the set T f l Q . Let H = 
00 

PI Hn be a G^ subset of T, Hn D Hn+1 being open, such that T f l Q C f f 
n 0 
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and X(H) = 0. The existence of such a set is evident. For an arbitrary natural 
number ra, let gn: T —> [0,1] be a continuous function such that gn(r{) = 0 for 
i = 0 , . . . , n and 9n(x) = 1 for x ^ Hn. Put 

G = ( x E T ; liminf gn(x) = o) . (3) 
I n-»oo J 

One can easily see that G is a G6 subset of H, and TflQ C G. Let Gn D Gn + 1 
oo oo 

be open sets such that G = f) G„.We denote Fn=T\G and F = IJ F . 
n=0 n=0 

Then F is a meager Fa subset of T, X(F) = 1, and hence the closure of F is 
the whole circle T. 

Let {an ; n G N} C T be a countable dense set disjoint from F. We denote 

Snym = d K ' Fm) ' dm = m i n{^0,m' • • • > ^m.mJ • 

One can easily see that for every n, {SnJm=Q is a nonincreasing sequence 
of positive reals and lim 8nm = 0, dm> 0 and dm > dm+1 for every m. 
Moreover, for every m > n we have cL < (L TO and lim d = 0 . 

~~ m ~~ n ' m 77l->00 m 

For arbitrary n, m we denote by /in m a continuous function from T into 
[0,1] such that hnm(x) = 0 if x G Fn knd hnm(x) = 1 if d{x,Fn) > dn+m. 
One can easily see that for arbitrary n we have 

l i m , n m ( x ) = / 0 * * € - " „ . 
ro^«, n,mV / \ 1 if x ^ i ^ . 

Let f = {/n}^L0 be a one-to-one enumeration of the set of functions 

{gn; n€N}\J{hmn; n ,m€N}. 

We put 

L={n€N; (3k)(fn = gk)}, Km = {n € N; (3k)(fn = hm<k)} . 

OO 

The sets L, Km, m = 0 , 1 , . . . , are pairwise disjoint and L U IJ Km = N. We 
m=0 

may assume that the enumeration f is such that there are increasing functions 
7r: N °n °> L and 7r : N on °> Km , m = 0 , 1 , . . . , such that f„(n\ = g„ and 

7n m ' ' ' ' J ix\n) «*n 
/ . m (n) = hm,n for e v e r y n, T71 G N. 
THEOREM 1 1 . Let f be the sequence of functions defined above. Then 

(i) f satisfies conditions (a) and (7) . 
(ii) In each open interval (a, b) C [0,1], there are u,v G (a, b), u ^ v, such 

that {u,v} £ wV^. 
(iii) f is not well distributed, i.e. f does not satisfy the condition (e). 
(iv) Every family X>f, pV^, A/Q , B[, JVf, S*, it/P* is a family of thin sets. 
(v) f does no£ satisfy condition (j3). 
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P r o o f . 

(i) All the functions have their values in the interval [0,1] thus (7) holds. If 
x G G then by (3), 0 is an accumulation point of the sequence {gn(

x)}n=0 and 
therefore, 0 is also an accumulation point of the sequence {fn(

x)} = 0 - If x £ G 
then x G Fn for some n. Then hnm(x) = 0 for every m and consequently, 0 is 
an accumulation point of the sequence {fn(

x)} = 0 . 

(ii) Let (a, b) C [0,1] be an open interval. Then there exists a natural 
number n such that an G (a, b). Since X(G) = 0, there is an u G F D (a, b). Let 
v = an-

Now, to get a contradiction, suppose that {ix, v} G wV^ and therefore also 
that {u, v} eVK Thus there is an infinite set M C N such that 

lim fk(u) = lim fk(v) = 0. 
keM K keM K 

Since u £ G by (3), the intersection MnL must be finite. Thus we may assume 
00 

that M C M K . Then either M n Km is infinite for some m o r M i l Km is 
^ - ^ ill TJX TTL 

m=0 
nonempty for infinitely many ra's. 

Since v £ F, if M n ifm is infinite then 

l imsup/ . (v ) > lim fk(v)= lim / i m v-i(k)(v) = 1, 
keM keMHKjl* keMnKm

 m>7r- Wv 

— a contradiction. 

On the other hand, if M C\ Km is nonempty for infinitely many ra's, then 
there are sequences { m j ~ 0 , {^}^o s u c n t n a t ^m (h) ^ ^ fl ATm. for every 
i G N. Thus / ^ ox = / im . j . . We may assume that { m i } ^ : 0 is increasing. If 
mi>n then 

d (v ,F ) = 8 >d > d , . 
V"3 m, / n,mi — m» — m.+/ j 

and for all z such that mi>n we obtain 

— again a contradiction. 
(iii) The assertion is a simple consequence of (ii). 
(iv) This is an immediate consequence of (i) and (ii). 
(v) Since X(G) = 0 we have lim X(F) = 1. Thus, for any ra we obtain 

n—>oo 

l i m fhntm(x)dx< lim A ( T \ F n ) = 0 . 
n-»oo J ' n-»oo 

T 

D 
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6. The case fn(x) = f(nx) 

We shall investigate the case when the sequence f = {/n}^L0
 ls generated by 

a single continuous non-zero function / : T —> [0, oo) by the equation 

fn(x) = f(nx), for x E T , n e N. 

Of course, we must at least assume that 0 is an accumulation point of the se­
quence {f(n0)} , i.e. /(0) = 0. However, it turns out that this condition 
implies everything necessary. To simplify our notation, in this case the corre­
sponding family T^ will be denoted simply by T*. We start with main result: 

THEOREM 12. Let fn(x) = f(nx) for n E N; x ET, / : T -> [0,oo) being a 
continuous function satisfying /(0) = 0 ; f(x) > 0 for some x G T. Then the 
sequence f = {/n}^L0

 s^sfies conditions ((3), (7) ; and (e). 

P r o o f . Denote K = J f(x) dx > 0. For a given open interval (a, b), let n0 
T 

be such that 4/n0 <b — a. For arbitrary n > nQ, let k be the smallest natural 
umber such that k/n > a and let / be the greatest number such that l/n < b. 
Evidently 

I — k b — a 

and therefore 

l f(nx) dx > / f{nx) àx 

= I lf(x)dx>1-^ I f{x)dx>\-(b-a)K. 

(a^ ( Ü . Í Ï ) 

(k,l) (0,1) 

Thus, the sequence {/n}^L0
 s a t i s r - e s condition (/?). 

Since / is continuous on a compact set, / is bounded by a real d and 
condition (7) is fulfilled. 

Now, we show that condition (s) is fulfilled. Assume that £-_,...,xfc G T, 
e > 0, and j E N. Since / is continuous there exists a i > 0 such that f(x) < e 
whenever |x| < 5. Put nm = mj. Then, by Theorem 2, there are m < I such 
that f((nt —nm)x^) < e for i = 1 , . . . , k. Evidently nl—nm = Ij —mj>j. • 

COROLLARY 13. If f: T —> [0, 00) is a continuous function, /(0) = 0 ; and 
f(x) > 0 for some x e T then 
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(i) every family Vf, pVf, Mof, Bof, J\ff, Bf, Af, wVf is a family of 
thin sets and the following inclusions hold: 

Af > wVf 

Pvf , лíof > лrf 

Vf • Bof • Bf 

(ii) every family pVf, Afof, Mf, Af, wVf contains all countable subsets 
ofT. 

If, in addition, f(x — y) < f(x) + f(y) for any x,y G T then f(x) = f(—x) for 
x G T and 

(iii) every family V,. pVf, J\fof, Bof, Mf, Bf, Af is trigonometric like 
and therefore, contains only meager and Lebesgue measure zero sets; 

(iv) f(x + y) < f(x) + f(y) for every x, y G T, and hence every family Vf, 
pVf, JVof , Bof, Mf, Bf, Af, wVf is closed under the arithmetic sums 

A + A = {x €T] x = y + z for some y,z ~ A} 

and none of them is an ideal; 
(v) there are sets A,B €Vf such that neither A — B nor A + B is in wVf . 

P r o o f , (i), (ii) and (iii) follow immediately by Theorem 4. We shall prove 
parts (iv) and (v). Evidently f(x + y) < f(x) + f(y). Thus every family consid­
ered is closed for the arithmetical sums. 

We shall follow an idea of J. M a r c i n k i e w i c z [Ma]. Let {mA.}^=0 be a 
k 

strictly increasing sequence of natural numbers. We denote nk = £) fni. Any 
i=0 

oo 
real x G T has the unique infinite binary expansion x = ]T x^1» where xi = 

2 = 1 

0,1 and there is an arbitrarily large i such that x{ = 1. We set 

A = {x G T; (Vfc)(Vi)(n2fc < i < n2k+1 -> *. = 0)} , 

B = {x G T; (Vfc)(Vi)(n2fc+1 < i < n2k+2 -> x{ = 0)} . 

Let e be a positive real. Since the sequence {m^j-^Q is strictly increasing, there 
exists a fc for which 2m2fc+1 < £. Then for arbitrary x G A we obtain (modulo 1): 

oo oo 

2n2kx = \ ^ x-2~^n2k = \ ^ x 2~^n2k < 2n2k~n2k+1 = 2m2fc+1 < £ 
i=n2k + l i=n2fc + i + l 
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Thus A is an f-Dirichlet set. Similarly, we may show that B is an f-Dirichlet 
set. 

Any real x eT can be written as x = y -f z (and x = y — z) for some y e A 
and zeB. Thus A ± £ = T and therefore .4 ± 5 £ ii;P / . 

Since A - £ C (A U B) - (A U B) we obtain AuB £Af, AuB (£J\ff. 
By [BL2; Theorem 13], the family wVf is trigonometric like and therefore 

A U B <£ wVf . • 

According to Rajchman's theorem ([Ba]), every A-set is an Ha-set and there­
fore a -porous — for the definition see e.g. [Za] or [BKR]. One can easily gener­
alize this result1 as follows: 

THEOREM 14. If / : T -> [0, oo) is continuous, /(0) = 0 and f(x) ^ 0 for 
some x e T, then every Af-set is an Ha-set and therefore a-porous. 

P r o o f . Let A = \x eT] lim f(nkx) = 0 \. Since / is continuous there 

exists an interval (c, d) such that /(x) > 0 for x e (c,d). The sets 

are H-sets and 

An = {xeT; (Vk>n)(nkx<Č(c,d))} 

OO 

n=0 
D 

7. Adding a point to a thin set 

Let T be a family of thin sets. According to [Ar], [BKR] and [Bk2] we say 
that a set B C [0,1] is permitted for the family T if for every A e T also 
AUB eT. 

The classical result concerning trigonometric thin sets says that every finite 
subset of T is permitted for trigonometric families of thin sets. We show that 
similar results hold for our generalization. 

THEOREM 15. Let f\T -> [0, oo) be a continuous function, /(0) = 0. 
f(x) > 0 for some x e T, and f(x — y) < f(x) + f(y) for every x,y e T. 
Then every finite set is permitted for the families V,, pVf , Mof, Bof , Af , 
and wVf . 

: I have proved the theorem assuming t h a t f(x) = 0 for finitely many x G T . M. Repicky 
and the referee have remarked that the theorem holds in the general form presented. 
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P r o o f . Evidently it suffices to prove the assertion for a one point set since 
then we may proceed by induction. Moreover, since all the proofs are very similar 
we shall provide them for just two cases: J\f0f and wV,. 

Let A e M0f and x €T. Let {nk}™=0 be an increasing sequence of natural 
numbers such that 

CO 

Ylf(nky) <°° for y ^ A -
k=0 

Using Theorem 2, by induction, we may construct an increasing sequence {/^}°^0 

such that 

/ ( K + 1 - % » < ^ - (4) 
Now put mi — nk. — nk_. We may assume that mi+l > mi for all i. By (4) 
we have 

CO oo 1 

z=0 i=0 

For y e A we have 
CO OO OO OO 

J2f(miy) = ]^/(K i+1 ~nki)y) < ^f(nki+iy) + Y^f{nk.y) < oo. 
i=0 i=0 i=0 i=0 

OO 

Thus the series X^ /(mz2/) converges on the set A U {x} and therefore A U {x} 
i=0 

€ . V 0 / . 
Now, let A e wVf and x £ T. We may assume that A is a Borel set. Let fi 

be a positive Borel measure on T. To simplify our computation we assume that 
fi(T) = 1. Put e — ^({x}). Let {nk}°%0 be an increasing sequence of natural 
numbers such that 

lim [ fnk(x) dfx(x) = 0. 
k-^oo J K 

A 

We construct the sequence { m j g 0 in the same way as above. Then 

J fim-y) dfi(y) < J f(m-y) dfi(y) + ^ . 
AU{x} 

Since 

1 
-voc 

A 

we have 

im / f(miV) dfi(y) < lim / f(nk y) d/u(y) + Urn / f(nk y) d/^(y) = 0 
-VOO J I—•OO J t + 1 I—>OO J r 

A A A 

lim / f(m{y) dfi(y) = 0 . 
l->OO J 

Au{x} 

As in [BB] using Theorem 9, we can easily prove: 
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THEOREM 16. Let / : T -» [0, co) be a continuous function, / (0) = 0. 
f(x) > 0 for some x G T. and / ( x — y)< f(x) + f(y) for every x , t / E T . TTien 
e^eru set A C T O/ cardinality smaller than p is permitted for pVj.. 

Now, we extend Salem's theorem [Sa], [Ba], [Zy] (finite sets are permitted for 
JV) and the Arbault-Erdos theorem [Ar], [Ba], [Zy] (countable sets are permitted 
for M). We need some restrictions in the form of a generalization of the classical 
Lipschitz and Holder condition. Let ip: (0, oo) -> (0,oo). A function / : T —> R 
is said to be I/J-continuous if for every S > 0 we have \f(x) — f(y)\ < ip(S) 
whenever \x — y\ < o", x,y G T. If ip(x) = Mxa with some positive real M we 
obtain the a-Holder condition. If a = 1 we obtain the Lipschitz condition. In 
fact, an arbitrary continuous function / : T —•> R is ^-continuous for a suitable 
function ip. 

LEMMA 17. Let ip: [0, oo) —>• (0, oo) be an increasing unbounded function such 
that 

V ^ - < o o . (5) 

Let 

^(-0 = —7T 

Assume that / : T —> [0, oo) is a ip-continuous function, / (0) = 0. f(x) > 0 
for some x G T. and f(x — y) < f(x) + f(y) for every x,y G T. Assume 

oo 

that {an}^=0 is a bounded sequence of nonnegative reals such that J2 a
n
 = °° > 

n=0 
c> 0. Let 

oo oo 

A = {xeT; ^aj(nx)<<x,}, Ac = {xeT; X ] a n / ( ^ ) < c } -
n=0 n=0 

If b0,..., bt G T then there are nonnegative reals ck, k = 0 , 1 , . . . , such that 
oo 

(i) £ ck = 00; 
k=0 
oo 

(ii) J2 ckf(kx) < oo for every x e AU { b 0 , . . . , b j ; 
k=0 

(iii) /Or euen/ n and k < n there exists an m such that 
n m 

E cjiix) < £ aj(ix) for all x G AU {b0,..., bt}; 
i=k i=k 

oo 
(iv) there is c' > 0 such that J2 ckf(^x) ^ c' for every £ G ^4cU{b0,. . . , bz} ; 

k=0 
oo 

(v) moreover, for given e > 0 we can assume that ^ ckf(kbi) < e for 
k=0 

i = 0 , . . . ,F 
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P r o o f . It suffices to prove the lemma for / = 0 and then to proceed by 
induction. 

By Corollary 13 (iv), f(x + y) < f(x) + f(y) for any rr, y e T, and therefore 
n 

for any natural number n we have f(nx) < nf(x). Put sn= ]C %• We m a y 
k=o 

assume that s0 > 1. By (5) and Theorem 1 we obtain 
oo CO 

f0
 sk to ^a*) 

By Theorem 2, for every natural number k there exists a positive natural number 
Qk < sk + 1 < 2sk such that f(qkkb0) < ip(l/sk). 

Thus 
OO OO • \ CO OO 

£?/(^o)<£^(f) = £ ? ^ T = £^T<oo. 
k=0

 sk kr'0
sk \skJ kr'0

sk ns
k) k=0 nsk) 

For any x E A we obtain 
OO OO OO OO 

£ ^-f(qkkx) < £ ^qj(kx) < 2 £ ^sj(kx) < 2 £ aj(kx) < oo . 
k=0 k k=0 k k=0 k k=0 

Therefore, if we denote 
Cn = E { 7 7 ' " = ?**}> 

k k 

(the sum of the empty set is 0) then we have immediately (i), (ii) and (iii). 

Taking c' = max] 2c, ]T) ckf(kb0) \ we obtain (iv) (for / = 0). 
CO 

Let d{ = J2 ckf(kbi) > 0 for i = 0 , 1 , . . . , /. Denote d = max{d0,..., d-}. 
k=0 

Replacing every ck by sck/d we obtain (v). • 

Using the lemma one can now easily prove: 

THEOREM 18. Let (/?: [0, oo) -» (0, oo) be an increasing unbounded function 
such that 

oo 1 

t^o *&) 
Le* 

M%) 
Assume that / : T —> [0, oo) is a ip -continuous function, /(0) = 0, f(x) > 0 for 
some x G T. and f(x — y) < f(x) + f(y) for every x,y eT. Then every finite 
set is permitted for the families JVy and B*. 

If ip(x) = Mxa, M > 0, a > 0 then condition (6) is fulfilled. 
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THEOREM 19. Let f, <p, and ip be as in the Theorem 18. If AeAff, B being 
a countable subset of T , then A\J B £ Af.. 

P r o o f . We shall follow the proof of P. Erdos as presented in [Zy]. 
Let {bn ; n = 0 , 1 , . . . } be an enumeration of the set B. Assume that 

{an}n
<L0 is a bounded sequence of nonnegative reals such that 

oo oo 

y ^ an = oo and ^ a
nf(

nx) < °° for every x e A. 
n = 0 7i=0 

We construct a sequence of sequences of nonnegative reals {aJJ^Ln a n (^ t w o 

increasing sequences of integers { n j ^ 0 and { m j ~ 0 such that for every i € N 

™t+i 

П г +1 > mť > n ť, E an > - . 
71=77lг-fl 

E ûnЯnь^-è foг J = 0'--' 
nt+l 

and 

n = 7 n i + 1 

n , + i rni + i 

E a n / ( n X ) <• E anf(nX) for -5 € -4 . (7) 
n=771 r +l 71=771t-fl 

The construction is easy. Set an = an for every n G N, m 0 = n0 = — 1 
Ti l T i l 

and take nx > 0 such that £ an > 1 and £ anf(nb0) < ̂  = 1. Set 
n=771o-|-l 71=71o + l 

mx = n - . Assume we have already defined a n , n{ and m^. Let n i + 1 be such 
™i + l oo 

that ]T a^ > 1 and we apply Lemma 17 to the series ]T) anf(nx), i.e. 
n=77i t+-l n=77i l- l-l 

we assume that an = 0 for n < m^, e = 2~z~1 and / = i. We obtain the reals 
an

+1 (= cn) and let m i + 1 be such that (7) holds. The existence of such an m i + 1 

follows from Lemma 17. 

Now, we define the sequence {cn}JJL0 of nonnegative reals as follows: 

ґ a 
c "Ҷo 

an if mi<n < ni+l for some i, 

otherwise. 

Since J ] cn = ]T a n > 1 for every i, we have Yl c

n ~ °° • 
n = 7 n . : _ i + l n = r a i _ i - | - l n = 0 

For any i and n > i we have cnf(nbi) < 2~n. Therefore 

OO ГПi OO TTlѓ c o ^ 

E cnf(nbù - E c n / ( n ò i ) + E cnf(nbù <• E c n / « + E 2 ^ < ° ° 
n = 0 n = 0 П = T П І - H n = 0 n = i 
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I f x £ A then we obtain 

OO CO ™i + l oo mi + i 

X] CJ(nX) = X] XI anf(nX) ^ X! X! an/(nx) < °° • 
n=0 i=0 n=7Tii-|-l 2=0 n = m j + l 

D 

Other results on trigonometric thin sets can be generalized in a similar way, 
for example, the reasoning presented in [BB] can be taken over almost literally 
to obtain: 

THEOREM 20. Let f, ip and i> be as in Theorem 17. If A e Mf, B C T has 
cardinality smaller than p, then AuB G N±, i.e. every subset of T of cardinality 
smaller than p is permitted for M±. 

However, note that this theorem is also a corollary of Theorem 18 of [Bk2]. 

8. Some open problems 

In the trigonometric case f(x) = |sin27rx| all inclusions in Corollary 13(i) 
are proper. We do not know what happens in more general cases, 

S. V. K o n y a g i n [Za] has constructed an N-set which is not cr-porous. We 
are not able to generalize his construction. Thus: 

PROBLEM. TO find conditions on f which imply that 

(i) the inclusions in Theorem 4(i), (ii) are proper; 
(ii) there exists a non-a -porous JV* -set. 
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