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THE ENTROPY ON F-QUANTUM SPACES 

DAGMAR MARKECHOVA 

Introduction 

A usual mathematical model for the quantum statistical mechanics is the 
quantum logic theory, i.e. the theory of orthomodular lattices [1]. A state m on 
an orthomodular a-complete lattice L( v , A , 1 , 0, 1) is a maping m: L -» <0, 1 > 
satisfying the following two conditions: 
l . m ( l ) = 1 

( oo \ oc 

\ / a, J = ]T m(a,). 
/ - 1 / / = i 

Riecan and Dvurecensk i j pointed out in [2] and [3] that the Piasecki 
P-measure has the same algebraic structure. The Piasecki P-measure 
m: M -> <0, 1 > (cf. [4]) is defined on an appropriate set of real functions 
M cz <0, 1)* and satisfies the following conditions: 
1. m(f v f1) = 1 for every fe M. 

( 00 \ 00 

V1/)= I m(f)-
1=1 / 1=1 

Of course, heref1 = 1 — f and \/ fn = supf. 
n n 

Riecan and D v u r e c e n s k i j introduced a new mathematical model of 
the statistical quantum theory based on the Piasecki measure, the so-called 
F-quantum space ([2], [3]). The aim of the present paper is to give a characteriza­
tion of an informational ability of an F-state and of an F-dynamical system (X, 
M, m, T). The main properties of such a quantity are stated. The connection 
with the classical cases is also mentioned. 

1. Some definitions and notations 

Definition 1.1. By an F-quantum space we mean a couple (X, M), where X is 
a non-empty set and M is a subset of<0, \}x satisfying the following conditions: 

If\(x) = lfor any xeX, then l e M . (1.1) 
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Iff*K thc«f' = 1 - f e M . (1.2) 

IffneM(n = 1, 2, ...), then \J fneM. (1.3) 
n = l 

If 1/2CY) - 1/2for any xeX, then 1/2£M. (1.4) 

If we define f\fn: = inff, then the meet A and the join v are related to 
n 

each other by simple relations: 

i-A/» = Vo-/ , ) .W c^ 

i-Vf>Ao-/n),{/;}c:M 

f ; : v h ) = ( f A g ) v ( f A h ) , f g , h G M . 

We say thatf r * . orthogonal (we write fig) iff< g'. 

Definition 1.2. b ; :/ n an F-quantum space (X, M) we mean a mapping 
m: M -» <0, 1 > sa> r \ \ ir following conditions: 

:i*'• v '* - f ) ) = \ for every feM. (1.5) 
/ 00 \ oo 

If feM (n- L2 , .. > , f l f (/ #y), ,/hen m I V f J = I m(f). (1.6) 

Lemma 1.1. An F-siate m on an F-quantum space (A, M) has the following 
properties: 

'11(f) + m(f') = 1 for every feM. (1.7) 

Iff geM,f< g, then m(g) = m(f) + m(g Af '). (1.8) 

Iff g e M, f < g, then m(f) < m(g). (1.9) 

Proof. Since flf for every feM by (1.6) we obtain 1 = m(f) + m(f'). 
Let f g e M , f<g. Then fig' and m(fvg') = m(f) + m(g') by (1.6). 
Therefore m(f' A g) -= m((f v g')') = 1 — m(f) — m(g') = m(g) — m(f). The 
property (1.8) implies the property (1.9). 

Example 1.1. Let (X, <?, P) be a probability space. Put M = {xA, 
/ 4 e ^ } , where XA is the characteristic function of the set Ae£f and 
m(XA) = ^(^)- Then (X, M) is an F-quantum space and m is an F-state on (X, 
M). 
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Example 1. 2. Let M be the set of all functions f: X-* <0, 1> and m be 
the Piasecki P-measure. Then (X, M) is an F-quantum space and m is an F-state. 

2. Definition of the entropy of an F-state 

Let (X, M) be an F-quantum space and m an F-state on (X, M). A finite set 
si = {f, . . . , f}, feM, is called an orthogonal resolution of the unit if for each 

n 

fhfiesi9 i # j , there holds f If and \/ f = 1. Let us consider the set of all 
/ = i 

orthogonal resolutions of the unit and denote it by 0. Each si e 0 in the sense 
of the classical probability theory represents the random experiment with a finite 
number of outcomes with the probability distribution p{ = m(f),fe *$/, p{ > 0, 

£>,-= I m(f) = m(Vf) = m(l)=l. 
1=1 / = 1 \ / = 1 / 

Definition 2.1. Let si be an orthogonal resolution of the unit, si = {f, . . . , f } . 
We define the entropy Hm(si) of a resolution si in the F-state m by the Shannon 

formula: 

Hm(si) = - £ F(m(fi)), where F: <0, oo) - i?, F(x) = j * l o g x ^ * > ° 
/ = i ( 0 i/ x = 0. 

(2.1) 

We define the entropy of an F-state m as the maximal information which one 
can gain performing all experiments from the set 0. 

Definition 2.2. We define the entropy of an F-state m on an F-quantum space 
(X, M) by 

h(m) = sup {Hm(si) :,sie 0}. (2.2) 

In the following example there is mentioned the connection with the Shannon 
entropy of a probability distribution. 

Ex a mpl e 2.1. Let (X, Sf9 P) be a finite probability space, i.e. X = {xl9 

..., xn}9 if = 2X, p = {pi, ...,/?„} is a probability distribution on X. If A e Sf9 then 

P(A)= I />/• 
/': Xj G A 

We define the F-quantum space (X, M) and the F-state m as in Example 1.1. 
Then the set 0 contains all resolutions of the type {%Ax, ..., #AJ, where A; c X 

k 

(i = 1, ..., k), Ajn Aj = 0 (i # j) and ( J ^, = X. The entropy of a resolution 
i = i 
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k 

stf = {xA , ..., XA } m the F-state m is the number Hm($$) ------ ]T F(P(Ai)) and 
/ = i 

the entropy of an F-state m is h(m) = sup {Hm($#)\ s#e®}= - ]T Ffo), which 
/ = i 

is in fact the Shannon entropy of the probability distribution p = {pu ..., pn}. 
We shall now consider a cr-homomorphism U.M-+M, i.e. a mapping 

preserving the lattice operations as well as the mapping f-+f9 i.e. 

v[\/ fn) = V W - ) for every fneM (n = 1, 2, ...) (2.3) 

t/(l _ / ) = 1 _ £/(/) for every feM (2.4) 

and furthermore 

1/(1) =-1. (2.5) 

We define f/2 = (/»[/ and by the mathematical induction U" = U°U"~\ 
n = 1, 2, . . . , where U° is the identical mapping on M. It is easy to see that U has 
the following properties: U"(\)=\, U"(0) = 0, U"(\ - / ) = 1 - U"(f), 

V" ( \ / / ) = V U"(f),f< g implies t/"(/) < t/"(g) for every/ ^ e M and for 

each sequence {/•} a M(n = 0, 1, 2, ...). 

Lemma 2.1. Let stf be an orthogonal resolution of the unit and U: M -> M be 
a a-homomorphism. Then U"s4': = {U"(f);festf} is also an orthogonal resolu­
tion of the unit (n = 0, 1, 2, ...). 

P r o o f Let sJ = {f, . . . , / } , st e <Z>. Then f J V = {U"(f), ..., U"(fk)} 

and \ / U"(f) = U" (\/f\ = U"(\) = 1 (n -= 0, 1, 2, ...). Since for i *j 

have'/ < 1 - /;, for i ^j we obtain U"(f) < U"(\ - / ) = 1 - £/"(/) (n = 0, 1, 
2, ...). 
So, f/"js/ is an orthogonal resolution of the unit (n = 0, 1, 2, ...). 

Lemma 2.2. Let m be an F-state on an F-quantum space (X, M) and U:M -* M 
be a a-homomorphism. Then the mapping m°U":M'-* <0, 1>, defined by 
(mo U") ( /) = m(U"(f)),feM,. (n = 0, 1, 2, ...) is an F-state on (X, M). 

Proof. For every feM we get 

(mo U") (fvf) = m(U"(fvf')) = m(U"(f) v £/"(/')) = 

= m(U"(f)v(U"(f))')=\. 

L e t / e M , / < 1 - / ( / / / ) . Then £/"(/) < 1 - £/"(/) for / # j and 
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(iff o u-) (y /) = m (v ( y /)) = m ( y U"(j;)) = 

00 00 

= I « ( U " ( / ) ) = I (m°U")(fi). 
i = 1 / = 1 

The basic properties of the entropy Hm are stated in the next theorem. 

Theorem 2.1. The entropy Hm:&~+ R has the following properties: 

Hm (stf) > 0 for every s^e®. (2.6) 

HmoUn(srf) = Hm(Uns/)for every srfe 0 , n = 0, 1, 2, . . . . (2.7) 

Proof . The property (2.6) is evident. Let i e ( P , -a/ = {/,, . . . , / } . Then 

#„.c-tflO = - I FdmoU") (/)) = - I F(m(U*f,)) = / /m(f/W). 
/ = i / = i 

Corollary 2.1. h(m o [/") = sup{Hm(Uns#); stf e ®). 
In the set & of all the orthogonal resolutions of the unit one can define the 

operation v in the following way: if ja/, ^ e ®9s/ = {f, . . . , f} , M = {#,, ...,&,}, 
then we put J / v ^ = {f A gy; i = 1, ..., r,j= 1, ..., s}. 
We shall read the symbol i v l the common refinement of s£ and M. If s/l9 

2 

s/2> ...e<2>, then instead -s/, V S42
 w e write \ / -a/,, and we define by the 

/ = i 

induction 
A + l k 

\/ sft=\/ s*ivsfk+l9 for k = 2, 3, 4, .... 
/ = 1 i = 1 

Lemma 2.3. Let -a/, ,# be the orthogonal resolutions of the unit. Then stf v $ 
is an orthogonal resolution of the unit, too. 

Proof . Let s/, ^e<P, si = {/, ..., / } , m = fe„ ..., &}. Then 

j / v m = {f A g,-, i = 1, ..., r,j = 1, ..., s} and V V ( / A Sj) = 
7 = 1 / = ! 

= V M V/ j A Sj) = V «/ = -• s i n c e f o r ' *jf<fj, we obtain gk Af< 

<f <fj<fj v g,' = (£ A g,)'. Therefore gk AflfA g, for i ^j and /, A: = 1, 
2, ..., 5. 
Analogously we prove that f A gk If A g, for / ^ k and i,j= 1, 2, ..., r. 

The posibility of the definition of the entropy of the system (X, M, m, T) is 
based on the following theorem. 
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Theorem 2.2. Hm(^ v SI) < Hm{s$) + Hm(^)for every s/,^G0. 
Proof. The function F: <0, oo) -> i?, 

{ x logx if x > 0, 

0 if i = 0, 
k 

is convex and therefore for any convex combination £ afx, (i.e. such that au 
/ = - 1 

..., a* > 0, £ a,- = 1 ) of the elements xu ..., x^e<0, 1> there holds 
1 = 1 / 

E(l «,*,)< £ «,E(x,). (2.8) 

Let sd = {/„...,/„}, # = {g,, ..., g*}. Put a, = m(gi) (i = 1, ..., k), x, = m(fj/gi) 
(i = 1, ..., k,j fixed), where we define 

r^L±IiL if m(g,)>0, 
mtfj/g,): = <( . w(g,-) 

0 if m(g,) = 0. 

Then 

X щx, = X ifife) • mЦj/g,) = I iиfe) • TІŮЛlà = £ iиtø л g,) 
i = l ř = l ŕ : m ( g , ) > 0 m(gi) '=1 

n>^л(y«|-mф. 

By (2.8) we obtain E(m(/)) < I m(gi). E(m(//g,)), for/ = 1, ..., n. If m(g,) = 
i = i 

= 0, then also m(g,). F(m(fj/gf) = 0. If m(/ A g,) > 0, then w(g,). 
CV If I \\ , \ m(fi A gi) 1 m(fi A gi) , r x 

• F(m(fj/gf) = m(gi) • '; & " • log KJJ s" = m(fj A g,). 
m(gi) m(g.) 

• logm(f A g,) - m(f A g,). logm(gf 

Denote by 

a = {(ij); \<j<n,\<i<k, m(fi A g,) > 0}, 

P = {i; \ <i<k, m(gi) > 0}. 
Then 

HmCO = - I EM/)) > - I Z m(g,).E(m(j;/g,)) = 
7 = 1 ./' = 1 i = 1 
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= - I m(fjAgi)\ogm(fjAgi)+ X m(fjAgi))\ogm(gi) = 
V,fiea V,j)ea 

= - Í í EÍM/ A g;)) + I logmGr,.) £ ml/ A gi) = Hm(st v <%) + 
j=l i = l iefi j=l 

A: 

+ £ m(gï logmfe) = Hm(^ v ář) - ( - £ E(m(g/)) = Hm(«s/ v Я) - H„ 
IЄB \ / = ! / 

3. The entropy of the F-dynamical system 

By an F-dynamical system we mean the quadruple (X, M, m, F), where (X, 
M) is an F-quantum space, m is an F-state on (X, M) and T is an F-state m 
preserving the transformation, i.e. F:X-» X satisfies the following condition: 

feM implies foTeM and m(foT) = m(f). (3.1) 

E x a m p l e 3.1. Let (X, if, P, F) be a dynamical system in the sense of 
the classical probability theory, i.e. (X, if, P) is a probability space and T is a 
measure preserving transformation (i.e. Eeif implies T~\E)eif and 
P(T~\E)) = F(F)). Then the quadruple (X, M, m, F), where (X, M) and m are 
defined as in the Example 1.1, is an F-dynamical system. It is easy to see that 
satisfies also the condition (3.1). Namely, ffeM, then f=;£E , Where E G 5 ^ 
m(fo T) = m(XEo T) = m(*r- l (£)) = P(T~\E)) = P(F) = m ( ^ ) -= m(f). 

Lemma 3.1, Let (X, M, m, T) be an F-dynamical system. Then the maping 
U.M ~* M, U(f) =fo T,fsM, is a o-homomorphism of M. 

Proof . Since for every xeX 

00 \ ~| / ° ° \ °° °° 

V/»)°T (*)= V/»)(-"(*)) = V (/.(-"(*))) = V (j>m*), 
n = 1 / J V? = 1 / « = 1 « = 1 

we obtain 

( 00 \ / 00 \ 00 00 

V/« = (V/«V r = V(/-°-0 = V w.)-
n = 1 / \ n = l / n = l n = 1 

Moreover, for every x e l 
[(1 - / ) o T\ (x) = (1 - / ) (T(x)) = 1 -f(T(x)) = 1 - (/o T) (x) 

and therefore C/(l - / ) = (1 - / > T= 1 - / ° T= 1 - U(f). It is easy to see 
that U fulfils also the condition (2.5). 
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Lemma 3.2. Let si = {/,, . . . , / } be an orthogonal resolution of the unit. Then 
Tn s$': = {/, ° f , . . . ,/ko J1"} (n = 0, 1, 2, ...) is an orthogonal resolution of the 
unit, too. 

Proof. 

y (foTn) = (\Jf)or=\or^\. 
/ = ! V = 1 / 

Since ( /o T«) A (1 -fjo T-) = ( / A (1 -E ) )o T« = / o T» (/ -£/) there holds for 
/ # ;/.o T" < 1 - / . o T". So that T".p/ is an orthogonal resolution of the unit. 

Lemma 3.3. Hm(T"s/) - Hm(s/), where T"s/ = {/ » T", ...,fk°T"} (n = 0, 1, 
2, . . .)/or every s/e®,s/ = {/,, . . . , / } . 

Proof . Since m(f°Tn) = m(f) for « = 0, 1, 2, ... and every feM, we 

obtain Hm(TW) = - X P(/*(j> T")) = - Z F(m(fd) = HmCO-
I = 1 / = l 

Lemma 3.4. ([5]) Let (an)™=, be a sequence of nonnegative numbers such that 

ar + , < ar + asfor each r, s = 1, 2, .... Then tbere exists lim - an. 

n~*co n 

/ « - 1 Lemma 3.5. For every si e 0 there exists lim - Hm [ V Tjsi \ 

n-^n \ / = 0 / 

Proof. Put an = Hml V -Ty^/V According to Theorem 2.2 and Lemma 

3.3 we obtain 

*r+, = Hm( V ^ ) = Hm(y vsi v ' \ 7 - rv )<# w f \ / r w ) + 
\ y - o / v=o j=s J v=o / 

+ #m( V ^ ) = «, + Hm(l* ( V r w j j = as + Hm(\J Vsi\ = 

= a, + ar 

By the preceding lemma there exists lim - an. 
n -> co ft 

Definition 3.1. Let (X, Af, m, 7) be an F-dynamical system. Then for every 

sie<Pwe define hm(T, si) = lim - Hm [ V Tjsi \ The entropy of the F-dynami-
"~*°°n V-o / 

ca/ system (X, M, m, 7) is defined by hm(T) = sup{hm(T, si); sie@}. 
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In the following we shall see that the Definition 3.1 is a generalization of the 
classical Kolmogorov-Sinaj entropy of a dynamical system (X3 £f, P, T). A 
starting point in its definition is the notion of the entropy of a measurable 
partition. If A = {Ax, ..., An} is a measurable partition of the space (X, 5^, P), 

n 

then the entropy of the partition A is defined by H(A) = — £ F(P(A)). If we 
/ = i 

consider the F-quantum space (X, M) and the F-state m from Example 1.1, then 
for every measurable partition A = {Ax, ..., An} of the space (X, -9̂ , P) there 
exists the partition s/e <P, stf = {%A , ..., %A } and there holds further Hm(s$) = 

= - i F(m(A)) = - i F(P04,.)) = //(/<). If A = {Au ..., ^ } , B = {*-, ..., 
i = i / = i 

J5J are two measurable partitions of the space (X, £f, P), then the common 
refinement of A and B is defined as the set A v B = {AfnBj; i = 1, ..., n, 
j = 1, ..., k}. If we put ^ = {xAi, ..., ^ } , ^ = {xBi, ..., ^ } , then the following 
equality holds: 

HJst v a) = - i X F(mCfc, A *.)) = » i I F(P(AinBj)) = 
/ = 1 j = l / = ! j=l 

= H(A v £). 

The Kolmogorov-Sinaj entropy of the dynamical system (X, £f, P, T) is 
defined by h(T) = sup{h(T, A); A is a finite measurable partition of X}, where 

h(T A) = lim -H(\/ T-1A) and finally T~lA = {T~\AX), ..., P" 1 ^ )} for 
"-°°n Wo / 

every measurable partition A = {Ax, ..., 4̂̂ }. Since Hm(s/v Ts/) = 
k k 

= - I F(m(%Ai A ^ , W ) ) ) = - X W ^ n T~{(Aj)) = H(A v P" lA% by 
iJ=i _ u = = 1 

induction we obtain Hm(\/ Tsrf\ = H(\J T~lA\ hence 

hm(T *<) = lim I /fm f\/ P<v) = lim ^HCS/T-'A) = h(P, A) 
»->°° n \/ = o / w^°° n \/ = o / 

and finally 
hm(T) = sup{hw(P, J / ) ; srfe<P} = sup{h(P, Al); .4 is a finite measurable par­
tition} = h(T). 

Lemma 3.6. Let (X, M, m, P) be an F-dynamical system. Then the function 

To m: M -» <0, 1 > defined by 

(Pom)(f) = m(foP) 

is an F-state on (X, M). 
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Proof. For every fe M there holds 

(Tom) (f vf ') = m((f vf')o T) = m(fo T v f '° T) = m(fo T v (fo TV) - 1. 

Let feM, f l /} (/ #7). Then for every jceX and i^j f(x) < 1 -ftx) and 
therefore we obtain 

(fo T) (x) =f(T(x)) < 1 -fj(T(x)) = 1 - (fo T) (x). 

(Tom) (\/ f) = m (Y \ / f) o T) = m ( V (f,° T)) = £ m{fl°T) = 
co 

= Z (T°m)(f) 
1 = 1 

Lemma 3.7. For every stf e@ there holds HTom(s$) = hm(Ts$) = Hm(s$). 

Theorem 3.1. hTom(T) = hJT). 
Proof . For every s$e 0 we have by the preceding lemma 

hTom(T, si) = lim I //row f\/ ^Tw) = lim - Hm f\/ -T^) = Am(r, s/). 
w-*°°n V = o / ""°°« V = o / 

hTom(T) = sup{hrow(r, sf); s/e0} = sup{hm(T, sf); stfe®} = /iw(r). 

4. The connection with the general scheme 

Riecan in [6] notices some common properties of the topological and the 
Kolmogorov-Sinaj entropy and introduces a general scheme which includes the 
mentioned entropy. A similar character have also the papers [7], [8] and [9]. 
Grosek in [7] pays first of all attention to algebraic aspects of the entropy. In this 
section we give the definition of the so-called generalized base of the /-entropy 
(see [7]). At the same time we show that the entropy of the system (X, M, m, T) 
is a special case of the /-entropy. First we give the definitions of some algebraic 
notions which we shall use in the following. 

A triplet (S, v , < ) is called a quasi-ordered semigroup if the couple (S, v ) 
is a semigroup, the set S is quasi-ordered by relation < and for every x, y, ze S 
there holds 

x < y implies x v z < y v z and z v x < z v y. (4.1) 

The set S is called a strong quasi-ordered semigroup if S is a quasi-ordered 
semigroup and the ordering < on the set S satisfies the condition 

x<xvy for every x, yeS. (4.2) 
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Lemma 4.1. If the quasi-ordered semigroup S contains the unit-element such 
that it is at the same time also the minimum of the set 5, then S is a strong 
quasi-ordered semigroup. 

Proof . Let x, yeS. Then l < y and by (4.1) x v 1 < x v y. Since 
x v 1 = x, we obtain x < x v y. 

A mapping T: S -> S is called an isotone endomorphiom if for every x, ye S 
the following conditions hold: 

T(x v y) = T(x) v T(y) (4.3) 

x < y implies T(x) < T(y) (4.4) 

Definition 4.1. Let S be a strong quasi-ordered commutative semigroup, T be 
an isotone endomorphism on S. By a generalized entropy with respect to the 
endomorphism T we shall mean a function H: S -• <0, oo) satisfying for every x, 
yeS the following conditions: 

x < y implies H(x) < H(y) (4.5) 

H(T(x)) < H(x) (4.6) 

H(x v T(x) v ... v Tn(x))<H(x v T(x) v ... v Tj(x)) + / / ( F + *(x) v ... v Tn(x)) 
(4.7) 

for ei?ery j, n G IV, 0 < j < n. 

Definition 4.2. By a generalized l-entropy of the element xeS with respect to 
the isotone endomorphism T we mean a function hT:S-*^0, oo) defined by 

hT(x) = lim - Hn(x\ where Hn(x) = H(x v T(x) v ... v Tn~x(x% xeS. By a 
n-+cc n 

generalized base of the l-entropy hT we mean an ordered triplet (S, T, if), where 
S is a strong quasi-ordered commutative semigroup, T is an isotone endomorphism 
on S and H is a generalized entropy. We define the generalized entropy of the 
endomorphism T at the base (S, T, H) by 

h% = sup{/?r(x); xeS). 

Let (X, M, m, T) be an F-dynamical system. Let &be the set of all orthogonal 
resolutions of the unit. In the set <f> we define the relation < in the following 
way: for every s/, M e <P, s/ < 3$ iff there exists ̂  e 0 such that J = ^ v ^ . W e 
say then that St is the refinement of stf. 

Proposition 4.1. The set 0 of all orthogonal resolutions of the unit is a strong 
quasi-ordered commutative semigroup. 
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Proof . Evidently, the operation v is commutative and associative and 
according to Lemma 2.3 the set 0 with the operation v is a commutative 
semigroup. We prove that the relation < is a quasi-ordering on 0 as well as the 
condition (4.1) holds. For every sf G 0 there exists ^ e 0 such that sf = sf v (€. 
Indeed, it suffices to put ^ = $: = {1}. The relation < is reflexive. We prove that 
it is transitive, too. If sfx, sf2, sf3e 0 such that sfx<sf2 and sf2< sf3, then 
there are if, c€e0 such that sf2^sfxv^S, ^ 3 = sf2v

 c€. We have 
sf3 = (s^x v m) v ^ = sfx v (m v <%). Hence sfx < sf3. We prove (4.1). If sf, 
0S, c€e0, where sf < $, then there exists 9e 0 such that 0$ = sf v 9. We 
obtain 
M v ^ = (sf v 9) v ^ = sf v (9 v ^) = sf v (^ v 9) = (sf v ^) v 9. 
Hence sf v <€ < $ v c€. The partition # = {1} is the unit-element and at the 
same time the minimum of the set 0. For every sfe0 there holds i < sf 
because sf = sf v $. So, by Lemma 4.1 the set 0 is a strong quasi-ordered 
commutative semigroup. 

Proposition 4.2. The mapping T: 0-+ 0 defined by Tsf = {f o T, ...,f° T), 
where sf€0,sf = {f, . . . , f } , is an isotone endomorphism on the set 0. 

Proof . According to Lemma 3.2 if sfe0, then Tsfe0, too. Let sf, 
if e <2>, ^ = {f, . . . , f } , m = {g„ ..., gk}. Then 

sf v m = {f Agj, i = i , . . . , n,j= i , . . . , k}. 

T(sf v ®) = {(f A gj)oT; i = 1, ..., nj = 1, ..., k} = 

= {(f° T) A (gjo T), i = 1, ..., nj = 1, ..., k} = Tsf v m. 

If sf,Me0,sf <m, then there exists ^ e 0 such that M = sf v <$. 
m = T(sf v ^) = Tsf v 7¥. This implies Tsf < m. 

Theorem 4.1. The function Hm\0-*(f), oo) defined by Hm(sf) = 
n 

= — YJ F(m(fi))-> ^ e ^ 7 e ^ = {/,, —>/}- is a generalized entropy with respect 
t= i 

to the endomorphism T from the Proposition 4.2. 
Proof . We prove that (4.5) holds. Let sf, 0$e0, sf<M, i.e. 

if = <£/ v ^ = {f A gp i= 1, ..., n,j= 1, ..., k}. Put a = {(i,j); i= 1, ..., n, 
j = 1, ..., k, m(f A gy) > 0}. Then 

#*O0) = - t I ^ ( f A gj)) = - £ m(f A g;) logm(f A gj) = 
i = l ; = 1 (i,/)ea 

= - E w ( / / A Sj) logmigj/fi) - X m(f; A gj) logmifi) = 
(Uftea (i,j)ea 
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k 

= - E m(fiA gj) i°sm(gj/fi) - E l°sm(fi) E m(fiA £j) ^ 
0°,j)ea i:(Uj)ea j ~ 1 

> - I »•(/.) log m(j;) = - • £ E(m(/,)) = Hm(sf). 
i:(i,J)ea i= 1 

The condition (4.6) is proved in Lemma 3.3 and the condition (4.7) follows from 
Theorem 2.2. 

At the same time we obtain that the function hm(T, stf) = 
1 (n~x \ 

= lim - Hm I \J TJsf I, si e <P, is a generalized /-entropy of the elements/ e 0 
w-*°° n \j = o / 

with respect to the endomorphism T. The triplet (0, T, Hm) is a generalized base 
of the /-entropy 

M.) = M^.):*^<0,oo). 
The entropy hm(T) of the F-dynamical system (X, M, m, r ) is a generalized 
entropy of the endomorphism Tat the base (<P, T, Pfw): 

/iw(r) = hf = sup{h r(^); i e ^ } . 
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ЭНТРОПИЯ НА ^-КВАНТОВЫХ ПРОСТРАНСТВАХ 

Оа^таг М а г к е с Ь о у а 

Р е з ю м е 

В статье рассматриваются энтропия на Р-квантовых пространствах, энтропия Р-состоя-
ния и энтропия Г-динамической системы. В работе показано, что приведенные определения 
являются обобщением энтропии Шаннона и Колмогоровова-Синия. 
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