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THE ENTROPY ON F-QUANTUM SPACES
DAGMAR MARKECHOVA
Introduction

A usual mathematical model for the quantum statistical mechanics is the
quantum logic theory, i.e. the theory of orthomodular lattices [1]. A state m on
an orthomodular o-complete lattice L(v, A, L, 0, 1) is a maping m: L — <0, 1)
satisfying the following two conditions:
1.m(1)=1

2. If a, < a/* (i # ), then m <\/ a,-) =Y mla).

i=1 i=1
Riecan and Dvurecenskij pointed out in [2] and [3] that the Piasecki
P-measure has the same algebraic structure. The Piasecki P-measure
m:M — {0, 1) (cf. [4]) is defined on an appropriate set of real functions
M < <0, 1)¥ and satisfies the following conditions:
1. m(f v f*) =1 for every fe M.

2,16 £, < f* (i # j). then m (\/ ﬁ) = 3 m().
i=1 i=1
Of course, here f* =1 — f and \/ f, = sup f,.

Riec¢an and Dvurecenskij introduced a new mathematical model of
the statistical quantum theory based on the Piasecki measure, the so-called
F-quantum space ([2], [3]). The aim of the present paper is to give a characteriza-
tion of an informational ability of an F-state and of an F-dynamical system (X,

M, m, T). The main properties of such a quantity are stated. The connection
with the classical cases is also mentioned.

1. Some definitions and notations

Definition 1.1. By an F-quantum space we mean a couple (X, M), where X is
a non-empty set and M is a subset of {0, 1)* satisfying the following conditions:

If 1(x) = 1 for any x€ X, then 1e M. (1.1)
177



IffEM, then f’ = 1 — fe M. _ (1.2)
Iff,eM(=1,2, ..), then \07 fLEM. (1.3)
If 1/2(x) = 1/2 for any xe X, then 1/2¢ M. (1.4)

If we define /\ Jfu: = inff,, then the meet A. and the join v.are related to

h
each other by simple relations:

l—/”\f,,=\/(1 —f) =M

I=VA=AU0-f){f}cM

S ooviy=(farg)v(fAh),f g heM.

We say that f, - = '« " orthogonal (we write f 1 g) if f< g’.
Definition1.2. L : .- 4 - 1 an F-quantum space (X, M) we mean a mapping
m:M — <0, 1) sai . . ; 4 [2llowing conditions:
st vl — ) =1 for every fe M. (1.5)

[ee]

IffeMm- .2 .. fLf (i#j),thenm(\w/ﬁ) =Y m(f). (1.6)
=1 1

i=

Lemma 1.1. An F-siate m on an F-quantum space (X, M) has the following
properties:

m(f) +m(f’) =1 for every fe M. (1.7)
Iff, geM, f< g, then m(g) = m(f) + m(g A f"). (1.8)
Iff.geM, f<g, then m(f) < m(g). (1.9)

Proof. Since /i /" for every fe M by (1.6) we obtain 1 = m(f) + m(f").
Let f, geM, f<g. Then fig’" and m(fv g’)=m(f)+ m(g’) by (1.6).
Therefore m(f" A g) =m((fv g')Y)=1—m(f) —m(g’) = m(g) — m(f). The
property (1.8) implies the property (1.9).

Example I.1. Let (X, &, P) be a probability space. Put M = {y,,
Ae S}, where yx, is the characteristic function of the set A€% and
m(x,) = P(A). Then (X, M) is an F-quantum space and m is an F-state on (X,
M).

178




Example 1. 2. Let M be the set of all functions f: X — <0, 1> and m be
the Piasecki P-measure. Then (X, M) is an F-quantum space and m is an F-state.

2. Definition of the entropy of an F-state

Let (X, M) be an F-quantum space and m an F-state on (X, M). A finite set
o ={fi, ..., fo}, fi€ M, is called an orthogonal resolution of the unit if for each

Ji» f;€ o, i # j, there holds f; L f; and \/ f;= 1. Let us consider the set of all

i=1

orthogonal resolutions of the unit and denote it by @. Each .o/ € @ in the sense
of the classical probability theory represents the random experiment with a finite
number of outcomes with the probability distribution p, = m(f), fie o/, p; > 0,

il’;~= i m(ff)=m(\n/f,->=m(1)=l.

i=1 i=1 i=1

Definition 2.1. Let <7 be an orthogonal resolution of the unit, o = {f,, ..., f,}-

We define the entropy H,(sf) of a resolution </ in the F-state m by the Shannon
Sformula:

“ xlogx if x>0
H,(o)= — z F(m(f,)), where F:<0, o0) > R, F(x) = { 0 Fox=0
@.1)

We define the entropy of an F-state m as the maximal information which one
can gain performing all experiments from the set @.

Definition 2.2. We define the entropy of an F-state m on an F-quantum space
(X, M) by

h(m) = sup{H,():, o € D}. 2.2)

In the following example there is mentioned the connection with the Shannon
entropy of a probability distribution.

Example 2.1. Let (X, &, P) be a finite probability space, i.e. X = {x,,

v X, 5, =2% 5 ={p,, ..., p.} is a probability distribution on X. If 4€ ¥, then

P(A) =Y p.
irx;ed
We define the F-quantum space (X, M) and the F-state m as in Example 1.1.
Then the set @ contains all resolutions of the type {x,, ..., X}, where A; = X

k
(=1, ...k, AAnA =0 (#]j) and () 4, =X. The entropy of a resolution

i=1
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k
o = {XAI’ e ZAk} in the F-state m is the number H, (/) = — Z F(P(A,)) and

i=1
the entropy of an F-state m is h(m) = sup {H,(/); o/ € @} = — Y. F(p,), which
i=1

is in fact the Shannon entropy of the probability distribution 5 = {p,, ..., p,}.
We shall now consider a o-homomorphism U: M — M, i.e. a mapping
preserving the lattice operations as well as the mapping f'— f7, j.e.

U(\d/ f,,) = \w/ U(f,) forevery fLeM(n=1,2,..) 2.3)

n=1 n=1 .
Ul —f)=1—-U(f) forevery feM (2.4)
and furthermore

uQl) = 1. (2.5)

We define U> = U- U and by the mathematical induction U”" = U- U"~ ',
n=1,2, ..., where U’is the identical mapping on M. It is easy to see that U has
the following properties: U"(1)=1, U"(0)=0, U'(1 —f)=1-U"(f),

U (\I/ j,?> = \I/ U"(f)), f < gimplies U"(f) < U"(g) for every f, ge M and for

i=1 i=1

each sequence {f;}c M(n=0,1, 2, ...).

Lemma 2.1. Let .o/ be an orthogonal resolution of the unit and U: M — M be
a o-homomorphism. Then U"of © = {U"(f); fe o} is also an orthogonal resolu-
tion of the unit (n =0, 1, 2, ...).
Proof. Let & ={f,, ..., fi}, L €®. Then U"s/ ={U"(f)), ..., U'(f,)}
¢ k

k
and \/ U"(f)=U" (\/f,) =U"(1)=1mn=0, 1,2, ...). Since for i #j we

i=1 i=1
have f; < 1 — f, for i # j we obtain U"(f) < U"(1 = f) =1 -U"(f) (n=0, 1,
2, ...,
So, U"#/ is an orthogonal resolution of the unit (n =0, 1, 2, ...).

Lemma 2.2. Let m be an F-state on an F-quantum space (X, M) and U: M — M
be a o-homomorphism. Then the mapping moU": M — {0, 1>, defined by
(m-U")Y(f) =mU"(f)), feM,. n=0,1, 2, ...) is an F-state on (X, M).

Proof. For every fe M we get

(m-U")(fv[)=mU"(fv[f)=mU"(f)v U(f) =
=m(U"(f) v (U"(f))) = 1.
Let fie M, f; < 1 — f,(i # j). Then U"(f)) < 1 — U"(f)) for i # j and
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i=1 i=1 i=1

om0 (V1) =m (07 (V 5)) =m(V vt =

=Y mU) =Y (mo U (f).

i=1 i=1

The basic properties of the entropy H,, are stated in the next theorem.

Theorem 2.1. The entropy H,,: @ — R has the following properties:

H, () >0 for every o/ € ®. (2.6)
H, () = H,(U") for every L ed,n=0,1,2, .... (2.7

Proof. The property (2.6) is evident. Let &/ € (D,.d ={f, ..., fi}.- Then
k k
H, y(st) = = ), F(m-U")(f)) = — Y, Fm(U"f)) = H,(U"sL).
i=1

Corollary 2.1. hi(mo U") = sup{H,(U"A); o € D}.

In the set @ of all the orthogonal resolutions of the unit one can define the
operation v in the following way: if &/, Be @, of = {f,,....[.}, B ={g1, ---» &}
thenweput o/ v#B={fing;i=1,..,r,j=1,.. s}

We shall read the symbol ¢ v # the common refinement of .« and 4. If «/,,
2

sl,, ...€ @, then instead o/, v o/, we write \/ &/, and we define by the
i=1

induction

k+1 k
\/di=\/.ﬂivﬂk+], fOI’ k=2,3,4,....
i=1 i=1

Lemma 2.3. Let o/, # be the orthogonal resolutions of the unit. Then of v &
is an orthogonal resolution of the unit, too.
Proof. Let &, #ed, 4 ={f, ..., f.}, Z=1{g, ..., g} Then

ANvB={fing,i=1.,rj=1.,stand \/ \/ (firg)=
j=1i=1

=\/(<Vﬁ>Agj>=\/&=l. Since for i #j f; < f], we obtain g, A f; <
j=1\\i=1

j=1

<[fi<fi<five=(jng). Thereforeg A fiLfingfori#jand/, k=1,

2, ..., 8.

Analogously we prove that fiAn g, Lf, A g forl#kandi,j=1,2,..r.
The posibility of the definition of the entropy of the system (X, M, m, T) is

based on the following theorem.

181



Theorem 2.2. H,(o/ v #) < H,(4) + H,(#) for every o, Be .
Proof. The function F:<0, «0) = R,

xlogx if x>0,
F(x) = .
0 if x=0,

k
is convex and therefore for any convex combination ) ax; (i.e. such that a;,

i=1

k
e @20, ) o= 1) of the elements x,, ..., x,€<0, 1) there holds
i=1

k k
F(Z aix[) < Y aF(x). (2.8)

i=1 i=1

Leto ={fi, ... f,}, B=1{g, ... &} Puta=m(g) (i=1, .., k), x;=m(f/g)
(i=1, ..., k, j fixed), where we define

mifi A &) m(g,) > 0,
m(fi/g): =< . m(g)
0 it m(g)=0.

Then

k

k k
Z a;x; = Zl m(gi)'m(fj/gi) = Z m(g;) - M = Z m(f/ A g)=

i=1 i= izm(g;) >0 m(g;) i=1

enln ({0

k

By (2.8) we obtain F(m(f)) < Z m(g). F(m(f/g)), forj=1, ..., n If m(g)=
—0, then also mi(g). F(m(f/g) =0. If m(f ng)>0, then mig).

Fm(fg)) = m(g) - T8 1og MUINED _ i n gy,
m(g,) m(g;)

Jdogm(f; A g) — m(f; A g;).logm(g,).

Denote by
a={{j);1<j<n 1 <i<k m(f;ng)>0}
B={i;1<i<k,m(g)> 0}
Then . .k
H, (o) = *j; Fm(f)) = — 3, ), m(g). F(m(f/g)) =

j=1i=1
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= - Z m(f; A &) IOgm(f;‘ A g)+ Z m(f, A g) logm(g) =

(i.)ea (i.)ea
n k n
=—Y Y Fm(f,ng))+ Y logm(g) Y, m(f,Ang)=H, (A v B)+
j=li=1 ief j=1
k
+Y m(g) logm(g) = Hy(s/ v B) — (— 5 F(m(g,)) — H,(/ v B) — Hy(®).
iep i=1

3. The entropy of the F-dynamical system

By an F-dynamical system we mean the quadruple (X, M, m, T'), where (X,
M) is an F-quantum space, m is an F-state on (X, M) and T is an F-state m
preserving the transformation, i.e. T: X — X satisfies the following condition:

feM implies foTeM and m(foT)=m(f). (3.1)

Example 3.1. Let (X, &, P, T) be a dynamical system in the sense of
the classical probability theory, i.e. (X, &, P) is a probability space and T is a
measure preserving transformation (i.e. E€¥ implies T '(E)e¥ and
P(T~'(E)) = P(E)). Then the quadruple (X, M, m, T), where (X, M) and m are
defined as in the Example 1.1, is an F-dynamical system. It is easy to see that
satisfies also the condition (3.1). Namely, if fe M, then f = y;, where E€ ¥
m(fo T) = m(xzo T) = m(tr-z) = P(T~\(E)) = P(E) = m(xs) = m(f).

Lemma 3.1. Let (X, M, m, T) be an F-dynamical system. Then the maping
UM->M,UYf)=f-T, fe M, is a o-homomorphism of M.

Proof. Since for every xe X

[(V£)7]0=(V 5) T = V Gaem = V Gen @,

we obtain

Moreover, for every xe X
(I=NeTIX)=0-NT))=1-f(Tx)=1-(fT)(x)

and therefore U(1 —f)=(1 —f)oT=1—foT=1— U(f). It is easy to see
that U fulfils also the condition (2.5).
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Lemma 3.2. Let of = {f,, ..., fi} be an orthogonal resolution of the unit. Then

={fieT", ..., f,oT"} (n=0, 1, 2, ...) is an orthogonal resolution of the
unit, too.

Proof.

k k
\/(ﬁoT")=(\/ﬁ)oT"= 1oT" = 1.
i=1 i=1

Since (fie T") A (1 = fioT") = (fi A (1 = f)))o T" = f;o T" (i # j) there holds for
i#jfieT"<1—foT" So that T".o/ is an orthogonal resolution of the unit.

Lemma 3.3. H (T"«/) == H,(), where T"sf = {f,-T", ..., [,c T"} (n =0, 1,
2,...) for every A €@, o ={f,, ..., fi}-
Proof. Since m(foT") =m(f) for n =0, 1, 2, ... and every fe M, we
k k

obtain H,(T"s/) = — Y, F(m(fie T") = — Y. F(m(f})) = H, ().
i=1 i=1
Lemma 3.4. ([5]) Let (a,),’, be a sequence of nonnegative numbers such that

a,,,<a,+a,foreachr,s=1,2, ... Then there exists lim ! a,. -

n—co pn

n— 1
Lemma 3.5. For every o/ € @ there exists lim — H (\/ T’.gf/’>

n— oo n
n—1

Proof. Put a,=H,, (\/ T-’Jzi). According to Theorem 2.2 and Lemma
j=0

3.3 we obtain
r+s—1 r+s—1 s—1
a,,=H ( \/ Thsz/) ",(\/ T'sf v \/ T1d><H <\/ de>+
j=0
r+s—1 ) r—1 r—1
+H,,,< \/ rw)zaﬁym (T"(\/ m»:aﬁ Hm<\/ m) -
j=s i=0 i

=a,+ a,.

By the preceding lemma there exists lim 1 a,.

n—-o n

Definition 3.1. Let (X, M, m, T) be an F-dynamical system. Then for every
n— 1
o € D we define h,(T, o/) = lim — H <\/ T’d) The entropy of the F-dynami-
n-— o n

cal system (X, M, m, T) is defined by h,,(T) = sup {h,(T, o); o € D}.
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In the following we shall see that the Definition 3.1 is a generalization of the
classical Kolmogorov-Sinaj entropy of a dynamical system (X, &%, P, T). A
starting point in its definition is the notion of the entropy of a measurable
partition. If 4 = {4,, ..., A,} is a measurable partition of the space X, &, P),

then the entropy of the partition A4 is defined by H(4) = — Z F(P(A)). If we

consider the F-quantum space (X, M) and the F-state m from Example 1.1, then
for every measurable partition 4 = {4,, ..., 4,} of the space (X, &, P) there
exists the partition € @, o/ = {y,, ..., ZA”} and there holds further H,, (/) =

== Fim(x,) = — ) F(P(4))=H(4).fA={4,, ..., 4,}, B={B,, ..,
i=1 i=1
B,} are two measurable partitions of the space (X, &, P), then the common
refinement of 4 and B is defined as the set A v B={4,nB;; i=1, n,
j=1,..., k}. If we put &/ = Hays ooos X4 ) B = {Xs,5 - Zp,}> then the following
equality holds:
n k n k

H (A v B)=—3 Y Fm(,n 1)) =— ) ) F(P(4,nB))=

i=1j=1 i=1 j=1

= H(A v B).

The Kolmogorov-Sinaj entropy of the dynamical system (X, &, P, T) is
defined by A(T) = sup {h(T, A); A is a finite measurable partition of X}, where

n—1
h(T, A) = lim — ! H<\/ T 'A) and finally T4 = {T~/(4,), ..., T"'(4,)} for
n-— oo n ’___0
every measurable partition A4 = {Al, ..y A}, Since H, (o v TeH) =
= - Z F(m(xa, A ZT—'(A))) = = z F(P(A;n T~ l(A D)) = H(A v T~'A), by

ij=1 ij=1

n—1
induction we obtain H,, (\/ T'oA > = (\/ T"A), hence
i=0 i=0

n— o0 n—»OOn

h (T, o) = lim + H (\‘/1 Tiso >_ lim 1 H(\/l T- 'A>=h(T, A)

and finally
h,(T) = sup{h, (T, o), of € @} = sup{h(T, A); A is a finite measurable par-
tition} = A(T).

Lemma 3.6. Let (X, M, m, T) be an F-dynamical system. Then the function
Tom: M — 0, 1) defined by

(Toem) (f) =m(fT)
is an F-state on (X, M).
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Proof. For every fe M there holds

(Tom) (fv fy=m((fv [)eD)=m(feTv [ oT)=m(foTv (fT))=1

Let fie M, f; Lf; (i #j). Then for every xe X and i #j fi(x) <1 — f(x) and
therefore we obtain

(fio ) (x) =f(T(x) < 1 = f(T(x)) =1 = (f;= T) (x).
) (§5) 1= 01) 5 s

i=1 i=

=Y (Tem) (f)

i=1

Lemma 3.7. For every o/ € @ there holds Hy, () = h,(T</) = H, (7).

Theorem 3.1. 4, ,(T) = h,(T).
Proof. For every o/ € @ we have by the preceding lemma

n — 1 n— 1
h,. (T, /) = lim L H, (\/ ~-Tw> —lim L H, ( W) — h (T, o).
=0

n—’oon ]=0 n—»oon

J

hy.n(T) = sup {hr.,(T, f); o € P} = sup{h,(T, o); A € P} = h,(T).

4. The connection with the general scheme

Riecan in [6] notices some common properties of the topological and the
Kolmogorov-Sinaj entropy and introduces a general scheme which includes the
mentioned entropy. A similar character have also the papers [7], [8] and [9].
Grosek in [7] pays first of all attention to algebraic aspects of the entropy. In this
section we give the definition of the so-called generalized base of the l-entropy
(see [7]). At the same time we show that the entropy of the system (X, M, m, T)
is a special case of the /-entropy. First we give the definitions of some algebraic
notions which we shall use in the following.

A triplet (S, v, <) is called a quasi-ordered semigroup if the couple (S, v)
is a semigroup, the set S is quasi-ordered by relation < and for every x, y, ze S
there holds

x<yimpliesxvz<yvzandzvx<zvy. 4.1

The set S is called a strong quasi-ordered semigroup if S is a quasi-ordered
semigroup and the ordering < on the set S satisfies the condition

x<xvy forevery x,yeS. 4.2)
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Lemma 4.1. If the quasi-ordered semigroup S contains the unit-element such
that it is at the same time also the minimum of the set S, then S is a strong
quasi-ordered semigroup.

Proof. Let x, yeS. Then 1<y and by (41) xv1<xvy Since
x v 1=x,weobtain x <xvy.

A mapping T:S — S is called an isotone endomorphiom if for every x, ye S
the following conditions hold:

Txvy)y=Tx) v T() 4.3)
x <y implies T(x) < T(y) 4.4)

Definition 4.1. Let S be a strong quasi-ordered commutative semigroup, T be
an isotone endomorphism on S. By a generalized entropy with respect to the
endomorphism T we shall mean a function H: S — {0, o) satisfying for every x,
y€S the following conditions:

x <y implies H(x) < H(y) 4.5)

H(T(x)) < H(x) (4.6)
HxVvTX)V..vT'"xX)<HXvVITXV...vT(x)+ HT'(x) v ... v T"(x))

@.7)

for every j,neN, 0 <j<n.

Definition 4.2. By a generalized l-entropy of the element x € S with respect to
the isotone endomorphism T we mean a function hy: S — <0, o) defined by

hy(x) = lim lH,,(x), where H(x) = H(x v T(x) v ... v T""(x)), xeS. By a
n— oo n

generalized base of the l-entropy hy we mean an ordered triplet (S, T, H), where
S is a strong quasi-ordered commutative semigroup, T is an isotone endomorphism
on S and H is a generalized entropy. We define the generalized entropy of the
endomorphism T at the base (S, T, H) by

h* = sup{h(x); xe S}.

Let (X, M, m, T) be an F-dynamical system. Let @ be the set of all orthogonal
resolutions of the unit. In the set @ we define the relation < in the following
way: forevery o/, Be @, of < ABiff thereexists¥e PsuchthatB = o/ v €. We
say then that 4 is the refinement of .<7.

Proposition 4.1. The set @ of all orthogonal resolutions of the unit is a strong
quasi-ordered commutative semigroup.
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Proof. Evidently, the operation v is commutative and associative and
according to Lemma 2.3 the set @ with the operation v is a commutative
semigroup. We prove that the relation < is a quasi-ordering on @ as well as the
condition (4.1) holds. For every .« € @ there exists ¥ € @ such that of = o/ v €.
Indeed, it suffices to put € = &: = {1}. The relation < is reflexive. We prove that
it is transitive, too. If «7,, &,, &/;€ @ such that &/, < &, and &/, < o/;, then
there are #, ¥e€® such that &/, =, vH, S;=4,v % We have
Ay=(Ad, v RB)YvE=xA, Vv (#V E). Hence o/, < ;. We prove (4.1). If &,
B, €€ D, where of < A, then there exists e @ such that Z = o/ v 9. We
obtain
BVvE=(AVIAVE=A VP VE=AVEVD=(IVEV D
Hence o v € < # v €. The partition & = {1} is the unit-element and at the
same time the minimum of the set @. For every </ € @ there holds & < o/
because &/ = &/ v &. So, by Lemma 4.1 the set @ is a strong quasi-ordered
commutative semigroup.

Proposition 4.2. The mapping T: @ — @ defined by Tl = {f,° T, ..., f,° T},
where o € @, o ={f,, ..., f,}, is-an isotone endomorphism on the set ®.

Proof. According to Lemma 3.2 if &/e®, then T/ e @, too. Let &,
Bed, oA ={fi, .... [}, Z=1{g, -.-, &} Then

ANvB={fing,i=1,..,nj=1, ..k}
T(A v B)={fing)eT;i=1,..,nj=1, .., k}=
={(ficT) A (gjeT),i=1,..,n,j=1,..,k} =T v TA.
If o, Bed, of < 2B, then there exists ¥e @ such that Z = o v €.
T =T(A v €) =T v TE. This implies T.o/ < TA.

Theorem 4.1. The function H,:®— {0, o©) defined by H, ()=
= — i F(m(f)), & €e D, o = {f,, ..., [}, is a generalized entropy with respect
to thei 2;1domorphism T from the Proposition 4.2.

Proof. We prove that (4.5) holds. Let o/, Be®, o < B, ie.

B=sAVvE={fing,i=1.,nj=1,.. k. Puta={G));i=1,..,n,
Jj=1,..., k m(f A g)>0}. Then

n k
H,(B)=— ) ) Fm(fing))=— Y m(fing)logm(firg)=

i=1 j=1 (i,Dea
=— Y m(fing)logm(glf) — Y m(fiAg)logm(f)=
(i,)ea (i)ea
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=— Y m(fing)logm(glf) — 3} logm(f) Y m(firg)=

(i,))ea i:(i,)ea Jj=1

>— ) m(f)logm(f)=— 3 F(m(f))=H, (L)
i:(il)ea i=1

The condition (4.6) is proved in Lemma 3.3 and the condition (4.7) follows from
Theorem 2.2.

At the same time we obtain that the function #h, (T, &)=

n— 1

= lim ! H,(\/ T's ), o/ € @, is a generalized /-entropy of the element.s/ € @

n-w p i=0
with respect to the endomorphism 7. The triplet (@, T, H,,) is a generalized base
of the l-entropy

h(.) = h,(T, .): @ <0, ).

The entropy 4,,(T) of the F-dynamical system (X, M, m, T) is a generalized
entropy of the endomorphism T at the base (@, T, H,,):

h,(T) = ht = sup {h(); o € B}.
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OHTPOIINA HA F-KBAHTOBbBIX ITPOCTPAHCTBAX
Dagmar Markechova
Pesome
B cTaThe paccMaTpHBAIOTCA JHTPONHUS HAa F-KBaHTOBBIX NPOCTPAHCTBAX, 3HTPONUS F-COCTOs-

HHUS U JHTpONHsA F-AMHaMU4ecKoil cucteMbl. B paboTe noka3aHo, YTO NPUBENCHHBIE ONPe/IEIeHUs
aBnstoTcs 0606menuem snTponuit lannona u Konmoropososa-Cunus.
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