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ON THE COMPLETION OF A LATTICE BY ENDS
STEFAN CERNAK

Stimulated by Leader’s and Finkelstein’s [3] topological considerations,
Arnow [1] defined the notion of a system of ends of a lattice.

Let L be a lattice. To each system of ends E there corresponds a lattice Lg. The
main results of [1] are as follows (cf. [1], Theorem 1.1 and Theorem 1.2):

(A) The lattice Lg is conditionally complete.

(B) There exists an injection f of the lattice L into Lr and this mapping f is onto
Lg if and only if L is conditionally complete.

Let us denote by U(A) (L(A)) the set of all upper (lower) bounds of a subset
AcLin L. Let d(L) be the conditional Dedekind completion of L (i.e., d(L) is
the system of all sets L(U(A)) where A is a nonempty and upper bounded subset
of L. Cf., e.g., Birkhoff [2], p. 126) and let f, be the natural injection of L into
d(L). In this note it will be shown that for each system of ends E, the lattices Lg
and d(L) coincide up to isomorphisms leaving L fixed, i.e., that there is an
isomorphism @ of d(L) onto Lg such that ¢(f,(x)) = f(x) is valid for each x e L. In
particular, if E, and E, are two systems of ends on L, then Lg, is isomorphic to Lg,.

Let £ be the class of all lattices. A mapping t: £— £ will be said to be
a c-mapping, if it fulfils the following conditions for each Le %: (a) t(L) is
conditionally complete ; (b) there exists an injection f, of L into t(L) having the
property that f, is an epimorphism if and only if L is conditionally complete. Two
c-mappings t, and ¢, will be called equivalent if there exists an isomorphism v of
t;(L) onto t,(L) and injections f,, f, into t(L), (L), respectively, such that
Y(f,(x))=f,(x) for each x € L. It is easy to verify that there exists a proper class of
nonequivalent c-pappings (cf. also Example 4 below).

1. Preliminaries

Let us recall some definitions and results from [1] and [3]. Let (L, v, A) be
a lattice. Suppose that there is defined a binary relation < on L satisfying the
following conditions:

A,. If a<b, then a<b.

A, Ifakb<coras<b<c, then a<c.
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A;. If a<b and c<d, then avc<bvd and arnc<bad.

A.. If a<<c, then there exists an element b € L such that a<b <c.

As. For each b e L there exist elements a and ¢ in L such that a <b <c.

A¢. If x<a implies x <b, then a<b.

A;. If a<x implies b <x, then b<a.

Then the structure (L, v, A, <) is said to be a regular lattice (cf. [1]).

Next we suppose that L is a regular lattice.

Let a, a’ be elements of L with the property a<<a'. The set {xeL: a<x<a'}
will be denoted by (a, a’) and called a cell from L. Denote by S the set of all cells
from L.

It can be easily verified that the following assertions hold for each cell (a, a'),
(b, b') from S (cf. [1]).

(a) If (a, a’)n(b, b')+0, then (a, a’)n(b, b')=(avb, a’Ab’).

(b) (a, a’)n(b, b’)#@ if and only if a<b’ and b <a’.

Let S, be a subset of S. We say that a cell (x,x')eS clings to S, if
(a, a’)n(x, x')# 0 for each cell (a, a’)e S, (cf. [3]).

Define a binary relation on S as follows: for each (a, a’), (b, b’)e S we put

(a,a)e(b,b’) if b<aand a’'<b'.

For subsets A and B of L, A <B means that a <<b for each ae A, b e B. Let

A, A' be nonempty subsets of L such that A <A’. Denote
AXA'={(a,a')eS:aeA,a’'eA’}.

Suppose that A and A’ are nonempty subsets of L with A <A’. Theset A X A’
is said to be an end from S if the following conditions are fulfilled (cf. [3]):

E,.If (a,a’), (b, b’)e A X A’, then there exists a cell (c, c')e A X A’ such that
(c, ¢')e(a, a')n(b, b’').

E.. If (a, a’), (b, b’) € S such that (a, a’) clings to A X A’ and (a, a')<= (b, b’),
then (b, b')EA XA’

The condition E, is equivalent to (a,a’)n(b,b')#@ for each (a,a’),
(b,b)eAXA'.

From the definition it follows that if A X A’ and B X B’ are ends from S with
AXA'cBXB’, then A X A’=B x B’ (each end is maximal with respect to the
set inclusion). The set of all ends from S will be denoted by L.

Now we shall describe the construction of the completion of a lattice L by ends
(cf. [1]).

Let < be a binary relation on Lg defined in the following way: A X A’<B X B’
iff A< B. Then Lg is partially ordered by <, moreover, L is a conditionally
complete lattice. The set N*={(y, y')€S: xe(y, y')} € Lg for each xe L. The
mapping f(x) = N* is an isomorphism from the lattice L into Lr and the mapping f
is onto Lg if and only if L is conditionally complete. We shall call Lg the
completion of L by ends.
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2. The relation between d(L) and Lg

Let L be a regular lattice. In this paragraph it will be shown that the conditional
Dedekind completion d(L) is isomorphic with the completion Lg by ends.
Let xe L and zed(L). Denote

L(z)={aeL:a<z}, U(z)={aeL:a=z};
A,={aeL:a<x}, A.={aeL:a>x};
A(2)=UA (xeL(2)), A'(z)=uUAl(xeU(2)).

The sets L(z) and U(z) are non-void. From A; we infer that A,, A} and so
A(z), A'(z) are non-void as well. Choose arbitrary a € A(z), a’e A’(z). Then
there exist x € L(z), x’' € U(z) such that a <x, x' <a’. By A, from x < x' it follows
that a <a’, and thus A(z)<A’(2).

1. A cell (x,x')eS clings to A(z) X A’(z) if and only if x € L(z), x' € U(2).

Proof. Assume that (x, x') clings to A(z) X A’(z), u is an arbitrary element of
U(z) and that a’'e L with the property u<a’. Then we have a’'e A’(z). The
hypothesis implies that (x, x")n(a, a') # @ for any a € A(z). By using (b) we obtain
x<a'. We have shown that u <a' implies x <a’. Hence according to A; x <u.
From this it follows that x <z, i.e., x € L(z). It can be verified in an analogous
manner that x’'e U’'(z).

0z
Fig. 1

Conversely, let (x, x') be a cell from S such that x € L(z), x' € U(z) and let
(a, a') be an arbitrary cell belonging to A(z) X A’(z). There exists an element
x, € L(z) such that a <x,. Since x; <x', by A; a <x' holds. In a similar way we get
x <a’'. By using (b) we obtain (x, x')n(a, a') # @, which implies that (x, x’) clings
to A(z) X A'(2).

2. A(z) X A'(z) € Lg.

Proof. First, we intend to show that the condition E; is satisfied. Assume that
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(a,a'), (b,b')e A(z) X A’(z). From 1 we infer that (a, a’)n(b, b')#@. Then
with respect to (a), (a, a’)n(b, b’)=(av b, a’Ab’). There exist elements x € L(z),
yeL(z) witha<x,b<y.Hence by A; we have avb <xvy. By A, there exists an
element ce L with avb<c<xvy. Since xvyeL(z), we conclude ce A(z).
Similarly we prove the existence of an element ¢’ € A’(z) having the property
c¢'<a’'Ab'. Therefore c<c’,(c, ¢')e A(z) X A’(z) and (c, ¢’)=(a, a’)n(b, b").

There remains to be shown that the condition E, holds. Suppose that (x, x’),
(y,y')eS, (x,x")=(y, y') and that (x, x’) clings to A(z) X A’(z). Whence y <x,
x'<y’ and from 1 we deduce x € L(z), x’ € U(z). Then ye A(z), y' € A'(z) and
thus (y, y')e A(z) X A'(2).

Next we show that every end from S can be written in the form A (z) X A'(z).

3. Let BX B’ € Lg. Then there exists an element z € d(L) such that BX B'=
A(z2) X A'(2).

Proof. B(B') is a nonempty upper (lower) bounded subset of L. It is clear that
sup L(U(B))=inf U(B). This element from d(L) will be denoted by z. Hence
L(z)=L(U(B)) and U(z)= U(B).

It is enough to verify that B X B’ < A(z) X A’(z). Assume that (b, b')e BX B’.
By E, there exists a cell (x, x')e B X B’ such that (x, x’)c (b, b’'), i.e., b <x,
x'<b’. We claim that be A(z), since x € B< L(z). Similarly we obtain that
b' e A'(z). Consequently, (b, b')e A(z) X A'(z) and so BXB'c A(z) X A'(2).
The validity of equality follows from the maximality of ends with respect to the set
inclusion.

4. Let z,, z2e€d(L). Then z,<z, if and only if A(z;)c A(z2).

Proof. Suppose that z; <z, and that a € A(z;). Hence there exists an element
x € L(z,), with a < x. The assumption implies L(z,) = L(z.). Then x € L(z,) and so
a € A(zz). Thus A(z,) = A(z2) holds.

Conversely, let A(z,)c A(z2), x € L(z,) and u € U(z,). Suppose that a is an
arbitrary element of L with a <x. As a € A(z,), according to the assumption we
obtain a € A(z,). There exists a,€ A(z;) with a <a,<u. Using A, we get a <u.
Then by A¢ x<u is valid. Hence x<z,, i.e., x€ L(z,). We have seen that
L(z1)c L(z2), and thus z; <z,, as desired.

From the statement 4 it immediately follows

5. z1=2, if and only if A(z,)=A(z2).

Let @ be a mapping from d(L) into Lr defined by the rule

p(z2)=A(z) X A'(2).

By summarizing, we infer from 1—5 that ¢ is an isomorphism from the lattice
d(L) onto Lg. Hence the following Theorem is valid:

6. Theorem. The lattices d(L) and Lg are isomorphic.
7. o(fi(x))=f(x) for each xe L.
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Proof. Let xe L. We identify x and f,(x). We have to show that A(x)Xx
A'(x)=N~. It is sufficient to prove the inclusion A(x)X A’(x)c N*. Let
(y,y)e A(x) X A'(x). Hence y<x, for some x,€L(x). From xeL(x) and
y <x,;<x according to A, it follows y <x. In an analogical way we obtain x <y’.
Therefore (y, y') e N*.

Every lattice can be considered as a regular lattice if the relation < is taken as the
relation <. There are regular lattices (for instance the chain (R, <) of all real
numbers with the natural order <) with respect to the relation < equal to <.

On the other hand there exist regular lattices (L, <, <) such that (L, <) is
a chain and that the relation < is different from both relations < and <
(Example 1).

8. Let (L, <, <) be a regular lattice and let (L, <) be a chain x, ye L, x#y.
Then x <y if and only if x <y.

Proof. Let x<y. Then A, and the assumption imply x <y.

Conversely, let there exist elements x, y € L such that x<y, x¥y. Hence
according to As and A, there is an element a € L having the property a<<y, a<¥x.
We have two possibilities: x<a<y or a<x. Suppose that x<a<y. Since
x<a<y,byA;weobtain x <y, a contradiction. Now let a <x.Froma <y and A,
it follows that there exists b € L with a<b <y. Hence x<b =<y or b<x. In the
same way as above we obtain x <y or a <x, respectively, contrary to suppositions.
The proof is complete.

If we suppose in 8 that (L, <) is a lattice, the assertion fails in general
(Example 2).

3. Examples

Example 1. Let (L, <) be a chain and let (L, <, <) be a regular lattice. Pick
out any a € L. Define a relation <, on L in the following way : put a <.,a and x <,y
iff x<y. Then (L, <, <,) is a regular lattice. The relation <, coincides neither
with < nor with <.

Example 2. Let (R, <) be the chain of all real numbers with the natural order
<. Suppose that the lattice (L, <) is the direct product of lattices R;, L=IIR,;
(i e I) where R, = (R, <) for each i € I. Let i be a fixed element of I. Define x <,y
on L to mean x(i)<y(i) and x(k)<y(k) for each keI, k+i. Hence (L, <, <) is
a regular lattice. Let x, y be elements of L such that x(j)=0 for each jeI and
y(i)=0, y(k)=1 for each keI, k+#i. Therefore x<y but x<.y.

The following example shows that the systems of ends can be different on the
same lattice.

Example 3. Let (L, <) be a chain and let (L, <, <) be a regular lattice. Take
a,beL, a¥b. By Example 1 (L, <, <,) and (L, <, <,) are regular lattices. The
systems of all cells (ends) will be denoted by S, and S, (Lg, and Lg, ), respectively.

345



‘Hence N° = {(x, y)€S.: x<.a <.y} € Lg, and a cell (a, a) belongs to the end N°.
On the other hand N° ¢ Lg,, since a¥,a. Hence Lg,# Lg, is valid.

There exists a proper class of nonequivalent c-mappings.

Example 4. Let d(L) be the conditional Dedekind completion of the lattice L.
We may suppose that L ¢ d(L). Take an element z € d(L)— L. Let a be an infinite
cardinal and D,(a) the a-diamant in the picture.

Denote by Y, the set of all mutually incomparable elements of D,(a). We
suppose that card Y, = a. Let us form the set f,(L)=Lu(uD,(a) (ze d(L)— L)).
Define a partial order < on f,(L) by putting:

if t,, beL, then t,<¢t, iff t,<t, in L,

if t;, ,e D,(a), then t, <t iff t,<t, in D,(a),

if tteL, ;e D,(a), then t,<t, (,<t,) iff <z (z<t,) in d(L),

if tye D, (), t€ D,(a), then t,<t, iff z,<z, in d(L).

Therefore f,(L) turns out to be a conditionally complete lattice. The mapping f,:
£ — & is a c-mapping. If f> a, the mappings f, and f; fail to be equivalent. We
conclude that the class {f.} of nonequivalent c-mappings is a proper class.
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