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APPROXIMATING THE FIXED POINTS
OF SOME NONLINEAR OPERATOR EQUATIONS

IOANNIS K. ARGYROS

Introduction. Consider the quadratic equation
x=y+ B(x,x) (1)

in a Banach space X, where y e X is fixed and B is a bounded symmetric bilinear
operator on X [4]. We choose ze X and F to be a bounded symmetric bilinear
operator on X in such a way that the following auxiliary quadratic equation is
satisfied

z=y+ F(z,2). 2)

We then use the solutions of (2) to approximate the fixed points of (1).
We make use of the following theorem. The proof can be found in [3].
Theorem 1. Let P be a nonlinear operator defined on D < X such that P is twice
Fréchet differentiable on D. Let z€ D be such that: ’
(i) Iy = (P’(2))"" exists and is bounded,
(i) [P < v
@iii)) [P") <bif |x —z|| <r, U(z,r) ={xeX|llx — z|| <r} = D;

(iv) k= IIGIIZVbs%;
W) ro=(1 —T=2h) v Ll/h <r.

Then there exists x€ U(z,r,) such that P(x) = 0. Furthermore, x is the only
solution of P contained in U(z,r)n U(z,r,), where

ri=(14++/1=2h)| Ll v/h.

Definition 1. Let ze€ X be such that

z=y+ F(z,2) (2

Key words and phrases. Newton’s method, quadratic operator. 1980 A.M.S. classification
code(s): 46(B15), 65.
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for some auxiliary bounded symmetric bilinear operator F defined on D. Define the
operator P on D by

P(x) = x — z + F(z,z) — B(x, x). 3)

Then every solution x of (3) is a solution of (1).
Note that

P'(x)=1—-2B(x) and P"(x)= —2B.

The following theorem now follows easily from Theorem | and the above
observations.
Theorem 2. Let P, z be as in definition and such that:
(1) (I — 2B(z))~" exists and is bounded,
(i) [P = I(F— B)z2)| <IIF—B|-|z|*=v;
@) |[P"x)| <2|Bl=bif |x—z| <r, Ulz,r) = D;

ﬁwﬁ=HU—2MﬂYWWbs%;
V) ro=(—=41-— 2/7) v- |l — 23(2))_I ||/E< r.

Then there exists x€ U(z, ry) such that x = y 4+ B(x, x) and x is unique in U(z,r) N
N U(z,r,), where

ro= (141 =2h)v|(—-2B(z)"|/h.
Note that if z is such that

1
Izl < ——,
2B

then the linear operator (/ — 2B(z))™" exists and

I - 2B@) | < !

1 =2|B]-|=zI
In the above case, (iv) can be replaced by
1 2 1
— | |[F= BJ-|z|*2| B| < -,
<1 —2||B||-l|zn> | 2
or ' '
Izl < RVIBINIBI +VIB— FI)™". 4

We now state a lemma that will allow us to replace (i) above with the
inverability of the linear operator I — 2F(z). The proof can be found in [1].

Lemma. Let L, and L, be bounded linear operators on X. Suppose that
(I — L))" exists as a bounded linear operator on X and
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1
IL\L, - L] < ———.
17— L)~

Then (I — L,)™" exists and

1+ (= L)~ "[l- 1Ly
1= = L)~ 1Ly Ly — L3
If L, is compact, then (I — L,)™" is defined on all of X.
We can prove the theorem.

Theorem 3. Let B be defined on D = X such that B(x) is compact for each
xeD. Let F(z) be a linear operator on D for some ze€ X such that

17— L)'l <

z=y+ F(z,2).

Assume:

(i) (I — 2F(2))~" exists and is bounded above by some K > 0;

1

ii) 4| F(z) B(z) — B(z) B <————
(i) 4| F(2) B(z) — B(z) B(2)| T 2F@) |

(i) PN < v;
(iv) 2|B|| <b if |x—z| <r, U(z,r) = D;
142 =2F@)""'I- 1 B@)I
1 —4|(I - 2F(2))~'| | F(2) B(2) — B(2) B(2)|
i) ro=(0 =1 =2nK-vih<r.

Then there exists xe U(z,ry) such that x =y + B(x,x) and x is unique in
U(z,r) " U(z,r)), where

V) h=K*v-b, K=

rn=>0++1-=2h)K-v/h.

Proof. We obviously have that (I — 2B(z))~' exists and is bounded above
by K according to the lemma, (i), (ii) and the compactness of B(z). The rest
follows by applying Theorem 1 to

P(x) =x—z+ F(z,z) — B(x, x).

The natural question arises now, what the best choices for F and z are.
(a) For F =0, (2) gives z = y and (4) requires 4| B| - |y || < 1.

(b) For F = B, (4) requires |z|| < 1

2181
The best choice, however, for F and z must be such that
| z=y+ F(z,2).
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The difficulties in finding solutions of the above auxiliary equation may be
equivalent to those of finding solutions x of (1). However, it Q is the unique
symmetric quadratic operator associated with F such that

Q(x) = F(x,x) forall xelX,

then (2) can be written as

z=y+00) (5)

Now assume that Q is of finite rank v = dim (span(Rang(Q))) and set
X =z — y to obtain

x = Qx4+ y).

The above equation implies that the problem of solving the auxihary cqua-
tion can be translated to a finite dimensional one since x must lie in rang (Q).

Definition 1. Let A denote the set of all bounded quadratic operators Q in X
such that Q has finite rank. Denote by E the set of all bounded quadrat'c func-
tionals f on X.

Let feE, de X; the operator f® d: X — X sending xe X to f(\)de Y is a
bounded quadratic operator of rank one. Thus

0= /i®ded

forany feE, i=12 ..,ndeX, i=12..n

Note that if Q = X — Y is a bounded quadratic operatorand L: Y —» Zis a
bounded linear operator, then Lo Q: X — Zis a bounded quadratic operator. (Q
and L need not be of finite rank.)

Definition 2. Denote by E ® X the vector subspace generated in the space of all
bounded quadratic operators by the set {Qe Al Q=f®d, feE, de X}, so
Qe E® X if and only if

0=" f®d,

=1

Theorem 4. A = E® X.

Proof. Let {d,,...,d,} be a basis for rang(Q) and choose g, such that
g(d) =6, i,j=1,2,...,n Since rang(Q) is finite dimensional, the {g},
i=1,2,...,n functionals are bounded and by the Hahn-Banach theorem they
can be extended to bounded linear functionals on X without increasing their
norms. Let

f'= g Q, i=1,2,...,n.

Then the f,, i = 1,2, ...,n are bounded quadratic functionals and
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0=3 f@d

Definition 3. Let f}, i =1,2,...,n denote the symmetric bilinear functionals
associated with the f,, i = 1,2, ...,n, given by

S y) = ‘l‘(f,-(x + ) = fix = »)).

Denote by C’ the matrix of the linear transformation 2B(y)(c) restricted to
rang (Q) relative to the basis d,, ...,d,. Define the n x n matrix C, by

c=1-C,

I,
—l= [: ]’ by li =j;(y)’ i= 1’2’“',”’
l,

G

: :| by C; = {c/*}, where
C

n

c’j’\' =fi*(dj’ dk)a i’j’k = 1’2’ s M

the block of matrices ¢, C= [

M,
Define v by v = C~'1if |C| # 0 and the block of matrices M= l: : :| with
M

n

M, = |C|7'M}, where each M, k = 1,2, ...,n is the n x n matrix which results

o
Jfrom the determinant of the matrix C if we replace the kth column by l: : ]

CM] C”
Define CM by : .

CM,
Note that M, k =1,2,...,nis indeed an n x n matrix. For the case n = 2,

C, c

M;=|"" "l=cyC ~cpCy.
G ey
¢, C

M;=|" "=enCy—enC.
n 2

Theorem 5. The point w € X is a solution of the auxiliary equation (5) if and only

if
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&
where the vector =\ . |eR" (or 2") is a solution of

+C'x+x""Cx in " (or . "). (6)
Moreover, if |C| = |I — C’| # 0, the Cramer rule transforms the above to
x=v+x""Mx in " (or (") (7
Proof. Assume that (5) has a solution we X. Then

w=y+Q(w)

=y+ i f(w)d.

i=1

Apply f1. /s, -...f, In turn to this vector identity to obtain for p = 1,2, ...,n

o =4 (r+ 5 rona)
=mn+éyﬂwmm+2§ﬁmVﬂ»m

+ 23 S0 [, d).

1#]

Letting
fw)y=x, i=12,..,n
and writing these equations in vector form, we obtain

x=1+Cx+x"Cx
or

Cx=1+x""Cx.

Since |C| # 0, we obtain (7) by composing both sides of the above equation by
c.

. &
Conversely, given (7), assume (6) has a solution vector & = l: i |. LetweX

&
be defined as

w=y+ Z &d,.

i=1
Apply £, /s, ---»f, in turn to this vector identity to obtain for p = 1,2,...,n,
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L,00) =£,(5) + kz E21(dy) + 2; ESH (. dy)

+23 EESX(d.d),

Ny
or in matrix notation,
fO0) =1+ CE+ ECE.
Now since & satisfies (6) we have § =1+ C'§+ £ CE.

Now since ¢ satisfies (6) we have
E=1+CE+EVCE.
Comparing the last two equations, we get

§1=f:(w)a i= 1,2,...,",
SO

w=y+ ¥ find,
or
w=y+ 0(w).
Therefore, w is a solution of (5) and the theorem is proved.
Example. Let X = C[0, 1] and consider the equation
1

x(s) =s+ SJ x2(¢) dt,
0

where s€[0, 1]. This equation is of the form (5), with rank (Q) = 1,

y)=s
d=s, and

d(s) = j x2(1) dt.
0

Using the formula,

F*ow) = ‘l‘(f(v +w) = [0 — W),
we have 1 1 ]
C=1=2*,d) =1 —2_J 457 ds = 1
4o 3

I=f(y) =/ =j st ds =1+
0 3
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1

C=fd)=f(s)= L stds = %

v=3.-=1

I
3

{

J—=1.

[PSI

Therefore, (6) becomes

&= 1+ &% in O with solutions 1_4__-21\_/3

L}

since x = y + &d, we finally have

Now note that if the linear operator F(z) is of finite rank », then the linear

operator I — 2F(z) is invertible if and only if for every fixed ve X there exists
we X such that

w—2F(z,w) =v.

Since F(z) is of finite rank n, the above equation can be translated exactly as
in Theorem 5 for the quadratic case to a linear system in =", or ", similar to
system (7).
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ATIIMTPOKCUMALNA HEMOABUXHBLIX TOYEK HEKOTOPbIX HEIUHEMHbIX
OMEPATOPHbIX YPABHEHUN

lIoannis K. Argyros
Pe3iome

PaccMOTpHM napy KBaJApaTHBIX yPaBHEHUH
x=y+ B(x,x)
z=y+ F(z,2)

B 6aHaxoBOM npocTpaHcTBe X, rae y€ X ecTb GUKCUPOBAHHAS TOuYKA, a B, F — orpaHuyeHHbIC

CcHUMeTpHuecKue OuMHeHbIe onepaTopsl Ha X. [TpeanonoxuM, 4To pelIcHUE Z BTOPOro YpaBHCHUA

M3BECTHO, M UCTIOJIb3YEM €TO HA ANIPOKCUMALIMIO PELLICHUS MEPBOro ypaBHeHus. B yacTHoM ciydae,

koraa F ecTh onepaTop KOHEYHOrO PAHra, Noka3bIBACTCA, YTO MPOGIEMa HAXOXKICHHS PELUCHHS

Z BTOPOrO YpA4BHEHHS YKBMBAJCHTHA 3aJla4€ PELUCHUS CHCTCMbl KBaIPATHBIX YPABHEHHIA B /1" WK
n
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