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ABSTRACT. The object of this paper is to introduce some sequence spaces which 
arise from the notions of strong almost convergence and a modulus function / . 

1. Introduction 

Let m be the set of all the real or complex bounded sequences with the norm 
||x|| = sup \xk\ < oo. A sequence x = (xk) G m is said to be almost convergent 

k 

if all of its Banach limits coincide. L o r e n t z [5] has proved that x is almost 
convergent to a number 5 if and only if 

n+k 

tkn = (fc + 1)" 1 y^Xk -> S 
i=n 

as k —> oo uniformly in n . We denote the set of all almost convergent sequences 
by c and we denote the set of all sequences which are almost convergent to zero 
by Co. M a d d o x [7] has defined that x is strongly almost convergent to a 
number s if and only if 

tkn(\x-s\) = (fc + 1) 1^2\xi+n-s\ 
i=0 

as k —> oo uniformly in n . We denote the space of all strongly almost convergent 
sequences by [c] and we denote the space of all sequences which are strongly 
almost convergent to zero by [co]. It is obvious that 

[co] C [c] C c C m. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 40A05, 40D05. 
K e y w o r d s : sequence space, modulus function, density, uniform statistical convergence. 
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D a s and S a h o o [2] extended the space [c] to the space [wi], where [w\] 
is the space defined recently in [2] as follows: 

m 

[wi] = < x : (ra + l ) _ 1 2_.tkn(\z — s\) as ra —• oo uniformly in n for some s > . 
k=0 

It is obvious that [c] C [wi] and [c] — limx = [wi] — limx = 5. 
The notion of a modulus function was introduced by N a k a n o [10]. 

R u c k l e [12] has investigated the sequence space defined by a modulus func­
tion / . Recently, M a d d o x has introduced and discussed some properties 
of three spaces defined using a modulus / , which generalized the well-known 
spaces wo, w and w^ of strongly summable sequences, ( M a d d o x [8], [9]). 
It may be noted here that the spaces of strongly summable sequences were dis­
cussed by M a d d o x [6]. In [11], the spaces [c0], [c] and [CQO] were extended 
to [co(/)] , [c(/)] and [£«,(/)] . 

Now we extend the spaces [wi] and [WQ] to the spaces [^i( / ) ] and [uio(/)] . 
Then we extend the relationship between the uniform statistical null sequences 
and the sequence space [wo(/)] . 

2. Definitions 

We recall that a modulus f is a function from [0, oc) to [0, oo) such that 

(i) f(x) = 0 if and only if x = 0, 
(h) f(x + y)<f(x) + f(y) for x,y>0, 

(iii) / is increasing, 
(iv) / is continuous from the right at 0. 

Since \f(x) — f(y)\ < f(x — y), in view of (iv), / is continuous on [0, oo). A 
modulus may be bounded or unbounded. For example, f(x) = xp (0 < p < 1) 
is unbounded, but f(x) = x/(l + x) is bounded. 

Now suppose that we are given a modulus / . We define 

[c(f)] ={x: (k + I)'1 Y, f(\xi+n - s\) - 0 as k - oo , 
1=0 uniformly in n, for some s > . 

m k 

[Wl (/)] = [x : (m + I ) - 1 J2(k + 1 ) ~ 1 Yl f(\xi+n ~ s\) — 0 as m — oo , 

uniformly in n , for some s > . k=0 i=0 

If we put 5 = 0, then we obtain [Hjo(/)] • Note that, if we put f(x) = x, 
then [wx(f)] = [w±] and [w0(f)] = [w0]. 
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If / is a modulus, then [wo(/)] and [wi(/)] are linear spaces. We consider 
only [w i ( / ) ] . Suppose that xk —• s in [wi(/)] , yk —• s' in [itfi(/)] and 
a , u are in C. Then there exist integers Ka and B^ such that |a | < Ka and 
\a\ < #p- We therefore have, uniformly in n 

(m + l ) " 1 ]T(fc + l ) " 1 ^2f(\axi+n + rai+n - (as + jxs')!) 
fc=0 i=0 

m k 

<Ka(m + l)"1 J2(k + -)_ 1 E /(I*** - SD 
fc=0 i = 0 

m k 

+ BM(m + I)"1 £(fc + 1)_1 E /(!»*+« - S'D • 
fc=0 i=0 

This implies that ax + fiy —> a s + /is' in [wi(/)] . 

3. Main results 

We now establish a number of theorems about the sequence spaces mentioned 
above. 

For the proof of Theorem 1 we will use the following lemma. 

LEMMA. Let f be a modulus. Let 0 < 6 < 1. Then for each x > 6 we have 
f(x)<2f(l)6~1x. 

P r o o f . 

/ ( x ) < / ( l + [ « - 1 x ] ) < / ( l ) + / ( [*- 1 x]) 

< / ( l ) + [*-1x]/(l) = / ( l ) ( l + [*-1x]) 

< / ( l ) ( l + ( 5 " 1 x ) < 2 / ( l ) ( 5 - 1 x , 

where [h] denotes the integer part of h. • 

THEOREM 1. Let f be any modulus. If /3 = lim f(t)/t > 0. then [wi(/)l 
t—• o o 

= M-
P r o o f . We note that the limit exists for any modulus / by [9; Proposi­

tion 1] of M a d d o x . Then x G [wi] implies that 

m k 

a(m, n) = (m + 1 ) _ 1 ^ ( f c + l ) " 1 ^ |x i +n - s\ -> 0 
k=0 2=0 

as m —• co, uniformly in n for some s. For arbitrary e > 0, choose <5, with 
0 < 6 < 1, such that f(u) < e for every u with 0 < u < 8. We can write for 
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each n , 

(ш+iгif;(fc+i)-i"г;/(|я;i+n-в|) 
k=0 ż=0 

m k 

=(m+iг1E(fc+1)~1 £/0.+»-*i) 
k=0 i=o 

\xi + n-s\<6 

+ (m + l)-1~~;(fc + l)-1 "["/(|a: i+n-8|) 
k=0 *=o 

|xi + T l - S | > 6 

< e + 2 / ( l ) « - - a ( m , n ) - » 0 , 

by the lemma as m —> oo, uniformly in n . Therefore x E ["Ui(/)] • 
Note that in this part of the proof we do not need (3 > 0. 
Now suppose that /3 > 0 and x E | V L ( / ) ] . Since this (3 > 0, we have 

f(t) > (it for all t > 0. It follows that x E [~Ui(/)] implies that x E [1D1]. D 

We now establish some relations between [c(/)] and ^ i ( / ) ] . 

THEOREM 2. Let f be any modulus. Then [c(/)] C [wi(/)] . 

k 

P r o o f . If (k + 1 ) _ 1 Yl f(\xi+n — s\) —• 0 a s k -^ oo uniformly in n , then 
i = 0 

its arithmetic mean also converges to 0 as m —+ oo uniformly in n . D 

Although it seems likely that [c(/)] is strictly contained in ["Ui(/)] , we have 
been unable to prove it. It is therefore an open question. 

Recall, see [3], that if x is a sequence of complex numbers, we say that x is 
statistically convergent to s if 

lim n _ 1 \{k <n : \xk — s\ > e\I = 0 for each e > 0 , 
n—>-oo ' u } ' 

where the larger vertical bars indicate the number of elements in the enclosed 
set. The set of all statistically convergent sequences is denoted by S. Strong 
summability and statistical convergence were introduced separately, and until 
recently, followed independent lines of development by C o n n o r , see [1]. 

DEFINITION. The number sequence x is uniformly statistically convergent to 0 
provided that for each e > 0, 

lim (k + l ) - 1 max|{0 <i<k: \xi+n\ > s}\ = 0 . 
fc—oo n > 0 ' L J l 

The set of all uniformly statistically null sequences is denoted by SUo . 

It is easy to see that SUo C So. In this form, SUQ-convergence is seen to be 
part of uniform zero density convergence as defined in [4]. 
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T H E O R E M 3. SUo C [wo(/)] if an& on^V if f ™ bounded. 

P r o o f . Suppose that / is bounded and that x E SUo . Since / is bounded, 
there exists an integer K such that f(x) < K for all x > 0. Let e > 0. Then 
for each n we have 

(m + lГ^fc + lГ^/flz^l) 
k=0 г=0 

rn k 

Чm + l Г ^ f c + l)-1 £/(!*.+»!) 
k=0 І=O 

\*i + n\>e 

+ (m + l Г 1 X > + l)-1 ]Г/(|zг+n|) 
k=0 І=O 

l * i + n l < e 

< (m + I ) - 1 ]T(fc + l ) " 1 ^ m a x | { 0 < i < k : \xi+n\ >e}\+ f(e). 
k=0 

We now select N£ such that 

{k + iy^O^i^k: |x,+n| >s}\ < | -

for each n and k > N£. Now for k > N£ we see that 

m fc 

^ {(\T,^\\ < fm + i r 1 VIV 

/c=0 

£ + / ( e ) , 

(m + l)-1 J > + l)-1 ~l f(\xi+n\) < (m + l)-1 J2 K^ + f(є) 
k=0 г=0 k=0 

and so, letting e —+ 0, the result follows. 

Conversely, suppose that / is unbounded so that there exists a positive se­
quence vp with /(Up) = p2 for p = 1, 2,... . Now the sequence x is defined by 
X{ = Vp \i i = p2 for p = 1, 2 , . . . , and x 2-= 0 otherwise. Then, we have 

(k + l ^ m a x l j O <i<k: | x z + n | > e } | < (fc + l ^ V ^ T + T 
n > 0 ' ' 

as k —» co. Hence (xz) £ SUo, but x ^ [I/JQ(/)] , contradicting /SUo C [iUo(/)] • 
This completes the proof, • 
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