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COMPACT PARTIALLY ORDERED SETS
AND COMPACTIFICATION
OF PARTIALLY ORDERED SETS

ALEXANDER ABIAN—JUDITA LIHOVA

We call a partially ordered set P compact if and only if every subset S of P has
a nonzero lower bound in P (i.e. a lower bound which is not the least element of P),
provided every finite subset of S has a nonzero lower bound in P. A compact
extension Q of a partially ordered set P which preserves all the existing infima and
suprema of subsets of P, except perhaps the zero infima (if P has a zero) of certain
infinite subsets of P is called a compactification of P. Every partially ordered set
without zero has a compactification. For partially ordered sets with zero it is not the
case. We give one necessary and one sufficient condition for the existence of
a compactification of a partially ordered set.

In what follows we refer for the sake of simplicity to a partially ordered set
simply as a poset. The least element of a poset P, if it exists, is called the zero of P
and is denoted by O.

Definition 1. A poset P is called compact if and only if for every subset S of PS
has a nonzero lower bound if every finite subset of S has a nonzero lower bound.

Let S be a subset of a set P. We say that S has the finite lower bound property if
and only if every finite subset of S has a nonzero lower bound. Thus, Definition 1
can be rephrased as follows:

Definition 2. A poset is called compact if and only if every subset of it which has
the finite lower bound property has a nonzero lower bound.

Let P be a poset without zero. We denote by Pu{0} the poset with the zero
element O which is obtained by adjoining O to P in the most obvious way (we
assume that 0 is not used as a symbol for an element of P). But then from the above
Definitions it follows:

Lemma 1. Let P be a poset without zero. Then P is compact if and only if the
poset Pu {0} is compact.

The significance of Lemma 1 is revealed by Lemma 2 which shows that
compactness is formulated rather conveniently in posets with a zero element.
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Lemma 2. Let P be a poset with zero 0. Then P 1s compact if and only if for every
subset G of P in the case of 0 being the infimum of G. 0 is already the inftmum of
a finite subset of G.

Proof. By Definition 2, P is compact if and only if every subset of it which has
no nonzero lower bound, fails to have the finite lower bound property. Since
a subset of P has no nonzero lower bound if and only if 0 is its infimum, the
statement is evident.

Let (P, <), (Q, <) be posets and Pc Q. We say that (Q, <) is an extension of
(P, <) if and only if the order relation between the elements of P in (Q, <) is the
same as that of P in (P, <). Clearly, an extension (Q, <) of (P, <) need not
preserve the zero or the infima or the suprema of the subsets of P; however, if it
does preserve them, then we say that the extension (Q, <) is zero-, or infima-, or
suprema- (depending on the case) preserving. For instance, if (P, <) has no zero
element, then the extension (PU{0} <) is both infima- and suprema-preserving

Let (P, <) be a poset. We hall be interested 1n the existence of a poset (Q, <)
with the following properties:

(1) (O, <) is an extension of (P, <) such that the zero of (P, <) (if it exists) is also
the zero of (Q, <).

(2) (Q, =) preserves all the existing infima and suprema of the subsets of P,
except the zero infima of those infinite subsets of P which have the finite lower
bound property, each of which, however, acquires a nonzero infimum in
(0. =).

(3) (Q, =) is compact.

Definition 3. An extension (Q, <) of (P, <) satisfying (1), (2) and (3) is called
a compactification of (P, <).
The following theorem is evident.

Theorem 1. Let (P, <) be a poset without zero. Then the ordinal sum any two
element chain and (P, <) is a compactification of (P, <).

In what follows we shall suppose that (P, <) is a poset with zero 0.

If A is a subset of P having the finite lower bound property, then by Zorn’s
Lemma there exists a subset of P maximal with respect to the finite lower bound
property and containing A.

Lemma 3. If M is a subset of P maximal with respect to the finite lower bound
property, then inf M exists. If inf M=p#0, then p is an atom in (P, <) and
M—{xeP: x=p}.

Proof. Let M(c P) be maximal with respect to the finite lower bound property.
If O is the unique lower bound of M, then 0 =inf M. Suppose that M has a nonzero
lower bound p. Then Mu{p} has evidently the finite lower bound property and
using the maximality of M we obtain p e M. Hence p =inf M. Assume that there
exists p, such that 0< p, <p. Then p, is also a nonzero lower bound of M, hence
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pi=inf M. We have a contradiction. Evidently Mc {xe P: x=p}. Assume that
q € P and g=p. Then Mu{q} has the finite lower bound property. Consequently
by the maximality of M we have ge M.

Denote by # the system of all subsets of P maximal with respect to the finite
lower bound property with zero infima. ’

Theorem 2. If (Q, <) is a compactification of (P, <), then {infoM: Me M} is
an antichain. Further if Me M and xe P—(Mu{0}), then infoM and x are
incomparable.

Proof. If Me #, then M has the finite lower bound property and infM =0,
hence M must be infinite. By (2) we see that info M e Q — P exists. Let M,, M, e M,
M, # M, and suppose e.g. infoM, <infoM,. Pick m € M, — M,. The maximality of
M, ensures the existence of a finite subset K of M, with inf,(Ku{m})=0. Then
(2) implies that info (Ku{m})=0. On the other hand infoM, <m and infoM, <
info M, < k for every k € K, hence infoM, is a nonzero lower bound of Ku{m} in
(Q,=).

Further let Me # and x e P—(Mu{0}). Suppose that x<infoM. Then x is
a nonzero lower bound of M in (P, <) and we have a contradiction. Assume that
infoM<x. Since x¢M, there exists a finite subset L of M such that
infp(LU{x})=0. Then we have info(LuU{x})=0, a contradiction. Therefore
infoM and x are incomparable.

Consider the following conditions :

(a) If Nc M for some Me M and N has in P a nonzero infimum, then the latter
belongs to M.

(b) If M,, Me M and M, # M,, then info(M\nM;)#0 (i.e. MinM, has in
P a nonzero lower bound). .

Theorem 3. If (P, <) has a compactification, then (P, <) satisfies condition (a).

Proof. Suppose that (Q, <) is a compactification of (P, <). Let Me M, Nc M
and inf, N = p# 0. By (2) we have info N = p and since infoM<infoN = p, in view
of Theorem 2, p must belong to M.

Let M={M,: he H}. Denote by Q the disjoint join of P and H and define
a relation < in Q as follows: forevery x, ye Plet x<yin Qif and only if x<y in
P;forevery x, ye Hlet x<y if and only if x=y; for every xe P and y € H let
x=<y if and only if x=0 and y=<x if and only if xe M,. It is easy to verify that
(Q, <) is a poset.

Theorem 4. Let (P, <) satisfy condition (a). The poset (Q, <) defined above is
a compactification of (P, <) if and only if (P, <) satisfies (b).

Proof. Suppose that (Q, <) defined above is a compactification of (P, <). Let
hi, h.e€ H and h, # h,. Assume inf (M,,NM,,)=0. Then, as the set M,,NM,, has
the finite lower bound property, it must be infinite. By (2) there exists g € Q and
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q# 0 with info (M, nM,,)= q. Evidently ¢ ¢ P. Since h,, h; are lower bounds of
M, NnM,,, we must have h,, h.<q. We have a contradiction.

Now suppose that (P, <) satisfies (b). Evidently (Q, <) is a zero- and sup-
rema-preserving extension of (P, <). Let now inf,A=p#0 for some AcP.
Suppose that A(e H) is a lower bound of A. Then A c M, and by (a) we have
p € M,. Hence h=<p. Therefore p =infoA. Further let inf, A =0 for some A c P.
If O is the unique lower bound of A in (Q, <), then info A =0. Suppose that there
exists a lower bound h(e H) of A in (Q, <). Then A c M, which implies that A
has the finite lower bound property and it is infinite. We show that 7 =info A. Let
h, € H be a lower bound of A different from 4. Then A = M,,,. From the relation
A cM,nM,, it follows that inf, (M,NM,,)=0, which contradicts (b).

It remains to prove that (Q, <) is compact. Let A be a subset of Q having the
finite lower bound property. If A c P, then there exists a subset M of P maximal
with respect to the finite lower bound property containing A. If infeM = p# 0, then
p is a nonzero lower bound of A. If infoM =0, then M= M, for some he H and h
is a nonzero lower bound of A. Now suppose that AnH# @. Then evidently A
contains just one element of the set H. Let AnH = {h}. Forevery xe A and x# h
the set {x, A} has a nonzero lower bound, hence we have A <x. Thus A is a lower
bound of A.

Remark. In view of Theorem 2 every compactification of (P, <) is an extension
of the one mentioned above if P is a poset satisfying (a) and (b).

We recall that a poset is called lower semilattice {1] if and only if every two
elements of it have an infimum. But then, based on Theorem 4, we have:

Corollary 1. Let (P, <) be a lower semilattice satisfying (a) and (b). Then the
compactification (Q, <) of (P, <) mentioned in Theorem 4 is also a lower
semilattice.

Proof. By (2) the compactification (Q, <) preserves all the infima of two-elem-
ent subsets of (P, <). It remains to show that every two elements of Q, where at
least one of them belongs to H, have an infimum in (Q, <). But this is obvious,
since inf { A\, h.} = inf{x, b} =0 for every h, h.€ H, h, # h; and x € P such that
X* h] .

Let us recall that a poset is called complete lattice if and only if every subset of it
has an infimum (or equivalently, a supremum). Based on Theorem 4, we have:

Corollary 2. Let (P, <) be a complete lattice satisfying (a) and (b). Then the
compactification (Q, <) of (P, <) mentioned in Theorem 4 is also a complete
lattice.

Proof. Let S be a subset of Q. If Sc P, then from (2) it follows that infoS
exists. If SN H contains more than one element, then info S =0 since the elements
of H are pairwise incomparable and 0 is the only element of Q which is less than

324



every one of them. Finally if SNnH={h}, then either infoS=~h if h is a lower
bound of S, or infoS =0 otherwise.
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KOMITAKTHBIE YACTHYHO YMOPAIJOYEHHBIE MHOXECTBA
N KOMINTAKTUO®HKALIUA YACTUYHO YINMOPAOOYEHHBIX MHOXECTB
Anekcaunep A6au-IOnuTa JInxosa
Pesiome
B pa6oTe onpefienneTc NOHATHE KOMIAKTHOTO MaCTHYHO YNOPAZIOUCHHOTO MHOXECTBA B KOMMNaK-

TuduKauuH. HccregyeTca BONpOC CYLIECTBOBAHHA KOMNAKTH(HKALWH YacCTHYHO YNOPAAOHEHHOIO
MHOXecTBa (Teopemsl 1, 3, 4).

325



		webmaster@dml.cz
	2012-07-31T23:55:05+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




