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OSCILLATION THEOREMS FOR THIRD ORDER 

NONLINEAR DIFFERENTIAL EQUATIONS 

ANTON SKERLIK 

ABSTRACT. The oscillation criterion for the equation 

("2 ( 0 (ri (t)y')')' + p(t)y' + q(t)f(y) = 0 

with nonnegative coefficients p and q is established. This result generalizes some 
oscillation criteria for third order nonlinear differential equations. 

1. Introduction 

This paper is concerned with the oscillatory behaviour of solutions of a third 
order nonlinear differential equation of the form 

MOM-V) ') ' +ri*)y' + i(t)f(y) = o, (QF) 

where / : R —> R = (—00,00), r2, n , p, q: I —* [0, 00), J = [a, 00) C R are 
continuous, T2 > 0, r\ > 0, q(t) not identically zero on any ray of the form 
[£*, 00) for some t* > a > 0 and xf(x) > 0 for x ̂  0. 

We restrict our attention to those solutions of equation (QF) which exist on 
I and satisfy the condition 

sup{|y(*)|; T < t < 00} > 0 for any Tel. 

Such a solution is called oscillatory if it has arbitrarily large zeros, otherwise 
it is called nonoscillatory. 

In paper [4] the oscillation theorem for a linear differential equation has been 
presented 

y'"+p(t)y' + q(t)y = 0. (L) 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 34C10. Secondary 34C15. 
K e y w o r d s : Nonlinear differential equations, Nonoscillatory solution, Second order non­

linear oscillation. 
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THEOREM A. (Theorem 3.1 in [4]) If p > 0, q > 0, 2q - p' > 0 and not 
identically zero in any interval and there exists a number m < .j such that the 
second order differential equation 

z" + [p(t) + mtq(t)]z = 0 

is oscillatory, then (L) has oscillatory solutions. In fact, if y is any nonzero 
solution of (L) with 

0 > F[y(c)] = [2y(t)y"(t) - y'\t) + p(t)y\t)] t=c 

for some c> a, then y is oscillatory. 

The partial generalization of this theorem on third order nonlinear differential 
equations was presented in [3, 11, 14, 15, 16, 17] and others. 

L . E r b e generalized Theorem A on the equation 

y'" + r(t)y"+ p(t)y' + q(t)ya = 0, (A) 

where a > 0 is the quotient of odd positive integers and r : / —• [0, oc) is 
continuous. 

THEOREM B . (Theorem 4.9 in [2]) Let r >0, p>0, q> 0 and rp+p' < 0. 
Let y be a nontrivial solution of (A) with F[y(c)] < 0 for some c> a, where 

F[y(t)] = R(t)[2y"(t)y(t) - y'\t) + p(t)y2(t)] , 

R(t) = expf J r(s)ds) . Assume further that the equation 
c 

(R(t)zf)' + R(t)[p(t)z + Xataq(t)za] = 0 (B) 

is oscillatory (that is, all solutions of (B) are oscillatory) for some 0 < A < | . 
Then y is oscillatory. 

It is therefore natural to ask whether the above results can be extended on 
more general differential equations than the equations (L) and (A). 

Such a extension is possible for equations 

(r2(t)(r1(t)y')')'+p(t)y'+q(t)y = 0 

and 

MOMOt/')')' +p(t)y' + q(t)ya = o, 
where r2 = n , since we make use a change of variable to transform these 
equations into equations of the form (L) or (A), respectively, (see [6], also see 
[8]). In general, for r2 7-= Ti , such a change of variable does not exist. The 
purpose of this paper is to answer the question above in the affirmative, also see 
a similar open question of P h i 1 o s and S f i c a s [7, Remark 7]. The methods 
used patterns after those of L a z e r [4], E r b e [2] and W a l t m a n [17]. 
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OSCILLATION THEOREMS . . . 

2. Basic lemma 

For the sake of brevity, we denote 

L0y(t) = y(t), Liy(t) = ri(t)(Li.\y(t)y , i = 1,2, 

L3y(t) = (L2y(t))' for t e l . 

So the equation (QF) can be written as 

Lzy + p(t)y' + q(t)f(y) = 0. 

R e m a r k 1. If y is solution of (QF), then z = —y is a solution of the 
equation 

L3z + p(t)z' +q(t)f*(z) = Q. 

where f*(z) = -f(-z) and zf*(z) > 0 for z ^ 0. 

DEFINITION 1. Let y be a solution of (QF). We say that the solution y has 
property V2 on [T, oo), T > a if and only if 

0,1,2; Loy(t)L3y(t)<0 (2) Loy(t)Lky( ;*) > 0, к = ( 

for every t Є [T, oo) . 

Define the functions 

Rг(t,T) = 
j ds 

' J r2(s) ' 
т 

a < T <t < oo. 

We assume that 
R2(t,a) —> oo 

t 

Rгг(t,T)= IЩŢ-ds, (3) 
J r\(s) 

as t —> oo . (4) 

LEMMA 1. .Let <Ae assumption (4) feo/d and y be a non-oscillatory solution of 
(QF) 3ttc/fc that y(t)L\y(t) > 0 /or every t > T > a. Then y has property V2 

for all large t. 

P r o o f . Suppose without loss of generality that y(t) > 0, L\y(t) > 0, 
t > T (see Remark 1). From the equation (QF) we see that L$y(t) < 0, t > T, 
and Lzy not identically zero on any ray pn the form [£*, oo) for some t* > T. 
So either y has property V2 for large t or there exists a point to > T such 
that L2y(*o) = A < 0. Hence (£iy(*))' < -4/r2(*), * > *o , (see (1)) and by 
integration of this inequality we obtain L\y(t) < 0 for large t, a contradiction. 
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LEMMA 2. Let (4) hold. Suppose that r2/rly p G Cl(L,R) and 

p'(t)<0, [ r 2 /r i (*)] '> 0 for t>a. (5) 

Let y be a solution of (QF) and assume further that there exists t0 E / such 

thai F[y(^ 0 )] < 0 , where 

F[У(t)] =2y(t)L2y(t) 
Г2(t) 

ri(t) 
(Liy(t))2+P(t)y2(t)). (6) 

Then either y is oscillatory or y has property V2 for every large t. 

P r o o f . Let y be a nonoscillatory solution of (QF) satisfying the condition 
F[t/(^o)] < 0 for some t0> a. Suppose without loss of generality that y(t) > 0 
for every t > T > t0 . Then a calculation shows that 

>[V(*)]]' = -Ht)/ri(t)]\Liy(t))2 +p\t)y2(t) - 2q(t)f(y(t))y(t) < 0, 

t > T. 

So there exists a point t^>T such that i*1 [?/(£)] < 0 for every t > rj and 

lim jFfy^)] = F0 < 0 exists (finite or infinite). From (6) we obtain 

2r2(t) 
d \Liy(t)] 2 

åt [ y(t) \ У2(t) 

< 2y(t) 

y(t)L2У(t)-Г-^(LlУ(t))2 

ш^. (7) 

y~г(t)<-p(t)<o, 

means that 
there exists 

some T\ d. l

0

 s u c n t n a t Tiy\i) < U lor t > 11 . We snail prove that the case 
y(t) > 0, L1y(t) < 0, t > Ti , is contradictory to assumptions of Lemma 2. 

Let y(t) > 0, Liy(t) < 0 , * > T j . From (4) and (5) we have r2(t) > Arx(t), 
t > a, where A = r2(a)/r,(a) > 0 and so > a, where A = r2(a)/r1(a) > 0 and 

lim i2i 
t—•oo 

(t,a) = lim / 
ť-юoy 

dб 
= oo , 

r\(s) 
a 

r2(t)y'(t)<ALiy(t)<0, t>Tx 

(8) 
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We consider the function L2y. The case L2y(t) < 0 cannot hold for all large 
t, say t > T2 > T\ , since by integration of inequality yf(t) < L\y(T2)/ri(t), 
t >T2 we obtain from (8) y(t) < 0 for all large t, a contradiction. 

Let y(t) > 0, Lxy(t) < 0, L2y(t) > 0 for all large t, say t > T3 > Tx . We 
assert that lim L\y(t) = limsupr2(t)y'(J;) = 0. (If lim sup r2(t)y'(t) < 0, i.e. 

there exist numbers B < 0 and T4 > T3 such that r2(t)y'(t) < B, t > T 4 , 
then integrating the inequality y'(£) < B/r2(t), t > T± , yields a contradiction 
for all large t). Otherwise, a calculation shows that 

0 > F0 = lim F[y(t)} = limsup[2y(t)L2y(t) - r2(t)y'(t)LlV(t) + p(t)y2(t)} 
t-+oo t-^oo 

= lim sup [2y (t)L2 (t) +p(t)y2(t)} > 0, 
t—OCX) 

a contradiction. 

Finally, y(t) > 0, L\y(t) < 0, £ > Ti and L2y changes the sign for arbi­
trarily large t. Denote 

G(ť) = ( r 2 ( ť ) y ' ( * ) ) ' = ( ^ ) ' i i » ( * ) + 
^2У'(Q 

П ( Í ) 
< > 2 \ . 

The function G cannot be nonpositive on [T2,00) for some T2 > T\ , since there 
is r2(t)y'(t) < r2(T2)y'(T2) < 0, t > T2 , and from (4) we obtain a contradiction 
with positivity of y for all large t. Let G change the sign. Hence there exists 
an unboundary sequence of zeros of the function G. Choose a sequence (£n) , 
h = 1,2, . . . . from the set of zeros of G (i.e. G(tn) = 0) such that a\ < a2 < 
* * * < «n < • • • , where an = r2(£n)y'(£n), n = 1,2,. . . are nondecreasing rel­
ative maxima of r2y'. It is clear that lim an = 0. (If lim an = ao < 0, 

n—•00 n—KOO 

i.e. r2(t)y'(t) < ao for all £ > l;i , then we obtain again a contradiction.) 
From (8) it follows that lim Liy(rn) = 0. We see that L2y(tn) > 0 since 

n—•oo 

G(tn) = \(r2(t)/r\(t)) L\y(t) + L2y(t)/ri(t) = 0 . So a calculation shows 
L J t=tn 

that 

0 > Fo = lim F[y(t)] - lim F[y(tn)} 
t—+oo L J n—•co L J 

= lim [2y(tn)L2y(tn) - r2(tn)y'(tn)Liy(tn) + p(tn)y
2(tn)] 

n—•00 

= lim [2y(tn)L2y(tn) + p(tn)y
2(tn)] > 0 , 

n—•00 

a contradiction, too. This completes the proof of Lemma 2. 
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DEFINITION 2. The equation (QF) is called we,ak superlinear if the function 
f has the property: 

for any u ^ O there exists a number m > 0 such that uf(u) > mu2 . 

Let us note that any linear equation is weak superlinear with m = 1. 

R e m a r k 2. If the equation (QF) is weak superlinear (linear, m = 1), 
then the condition p* < 0 in (5) of the Lemma 2 may be replaced by a weaker 
condition 2mq(t) — p'(t) > 0, t € I and 2mq(t) — p'(t) not identically zero on 
any ray of the form [t*, oo] for some t* > a > 0. 

R e m a r k 3. From Lemma 2 it follows that any nonoscillatory solution y 
of (QF) with F[y(^o)] < 0 for some to G -I is unbounded. 

E x a m p l e 1. Consider the differential equation 

(t*(t-V)T +(1/360^^ 
a > 0 and t > 0. 

The conditions of Lemma 2 are satisfied and the equation has the unbounded 
nonoscillatory solution y(t) = t5/3 . 

3. Conditions of nonexis tence of property Vi 

We assume that the function / satisfies conditions: 

/ is nondecreasing, (10) 
there exists a constant C > 0 such that 

\f(uv)\>Cf(u)\f(v)\ for u > 0 , veR. (11) 

Suppose further that 

R\2(t,a) —> oo as t —> oo . (12) 

Let conditions (4), (10)-(12) hold and y be a nonoscillatory solution of 
(QF), say y(t) > 0, with property V2 for t > c > a. By the third Kiguradze 
lemma (see Lemma 2 in [13]) 

y(t) > R^Chiy(t) for every t > t0 > c 
K2\t,C) 
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holds. Thus, for every A G (0,1) there exists a number T , T = t\ > t0 such 
that 

Дia(t,c) Дiз(«,a) 

Дa(*,c) - Д 2 ( í , a ) ' 
t>т, 

since lim ^ ,. \ ——77—-- = 1. Using conditions (10) and (11) we obtain 
«—00 Д 2 (ť,c ) Д i 2 ( * , a ) 

/(y(0) > / \^ĄLlУ(t) 
Дa(*,a) 

> C/(A)/ 
iži2(^,a) 

L Дa(í,a) /(iiУ(O) 

for some C > 0 and every t >T. Substituting /(y) by the estimate above we 
obtain 

W ( ) + M L „ ( Í ) + C / ( W [ ^ M q(t)f(LlУ(t))<0 

and so 

for every t >T. 

í(ť)/(iiУ(0)}<0 
(13) 

It is clear that the inequality (13) for a negative solution y of (QF) with 
property V2 holds, too. 

Let conditions (4) and (12) hold and the equation (QF) be weak superlinear. 
Let y be a nonoscillatory solution of (QF). Similarly as above we derive the 
inequality 

LlУ(t)\LзУ(t) + 
p(t) . Д i a ( . , a ) . m 

—т-r + rnA—— г (t) 
гi(t) R2(t,a)чк\ 

Liy(t) } < 0 (13') 

for every t >T > a. 

THEOREM 1. Let conditions (4) and (10)-(12) hold and assume that the 
equation 

(r2(t)z')' + ^ + Cf(\)f 
Rn(t,a) 

R2(t,a)\ 
q(t)f(z) - 0 (14) 

is oscillatory (that is, all solutions of (14) are oscillatory) for some 0 < A < 1 
and C > 0. Then no nonoscillatory solution y of (QF) has property V2 for all 
large t. 

P r o o f . Let y be a nonoscillatory solution of (QF) with property V2 for 
all large t. Thus inequality (13) holds for all large t. By Theorem 1 in [10] the 
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equation (14) is oscillatory if and only if the inequality 

z{(r2(t)z')' + Җ-)Z + Cf(\)f Ru(t,a) 

R2(t,a) 
(t)f(z) } < 0 } - (15) 

is oscillatory, too. This is a contradiction, since z = L\y is a nonoscillatory 
solution of (15) for large t. 

R e m a r k 4. Under the hypotheses of Theorem 1 it is clear by the general­
ized Sturm comparison theorem (see Theorem 2 in [10]) that any criterion which 
guarantees that 

Ht)z')' + ^j* = 0 (16) 

or 

(r2(t)z')' + Cf(\)f 
Riг(t,a) 

q(t)f(z) = 0 (17) 
R2(t,a) 

for some 0 < A < 1 and C > 0 is oscillatory, also guarantees that (14) is 
oscillatory. 

Oscillation criteria for (16) may be found in [1], [5], and [12], for example. 

E x a m p l e 2. The equation (9) from Example 1 has the solution 

y(t) = r 5 ' 3 with property V_ . Both, the equation 

(t1/2z')' + (l/36)t-3/2z = 0 (16') 

and the equation 

(<1/V)' + A ! " - ) * [3,1/2 _ al,2t _ a t l / 2 _ a 3 / 2 ] « r ( 5 _ + 4 ) / 3 | z | a g g n ^ = Q > 

108 V 6 / 

t>a, (17') 

are not oscillatory. The equation (16') is nonoscillatory since its general solution 

is z(t) = t1/4(Cit"/E/l2+C2t-
y/*/l2) . The equation (17') is not oscillatory (that 

is, there exists at least one nonoscillatory solution; see §4 in [18]) by the gener­

alized Atkinson theorem (Theorem 4.1 in [18], a > 1) or generalized Belohorec 

theorem (Theorem 4.7 in [18], 0 < a < 1), respectively, since 

oo 

/ 2(t1/2-a1/2)[3t3/2-a1/2t-ati/2-a3/2]at-^a+^/3dt<oo for a > l 

or 
oo 

/ 2 ( Ó - a ì ) a { Ы 3 / 2 - a l / 2 t - a Ѓ / 2 - a 3 / 2 } a t - ( Ъ a ^ / 3 à t < o o for 0 < a < 1. 
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DEFINITION 3. The equation (QF) is called superlinear if the function f for 
every e > 0 satisfies 

±00 

l JЇÜ < 00 , (18) 

and (QF) is called sublinear if f satisfies 

f du 

I .. . < 00 for every e > 0 . 

J /(-) 

(19) 

Let us give examples of the functions which satisfy the conditions (10) , (11) , 
and (18) or (19). 

E x a m p l e 3. The functions f\ and f2 : R —> R, where fi(u) = \u\a sgn u , 
iz sscn u 

a > 0 and f2(u) = — , a > 0 are continuous on R , satisfy uf(u) > 0 
/ i i | ^ | 

for u y - 0 and conditions (10), (11). Further, the function f\ satisfies (18) for 
a > 1 and (19) for 0 < a < 1. The function / 2 satisfies (18) for a > 1. 

COROLLARY 1. Zet conditions (4) and (10)-(12) AoZd and assume that 

oo 

"fil2(M)l jf(R2(t,a))f 
[ Җt,a) J 

g(ť) dí = oo, (20) 

if (QF) w sublinear 

oo 

í R2(t,a )/ 
Яi2(*,q) 

. f i г (* ,a) . 
ç(ť)dť = oo, (21) 

if (QF) is superlinear. 

Then no nonosdilatory solution y of (QF) has property V2 for all large t. 

P r o o f . Condition (20) is sufficient for oscillation of all solutions of (17) 
in the sublinear case (that is, / satisfies (19)), see Theorem 1.8 in [9]. Likewise, 
condition (21) is sufficient for oscillation of (17) in the superlinear case (see 
Theorem 4 in [10]). Therefore, the Corollary 1 follows by Remark 4 and Theorem 
1. 
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THEOREM 2. Let conditions (4), (10)-(12) hold and the equation (QF) be 
sublinear. If 

oo 

j f(Ri2(t,a))q(t)dt = oo (22) 

holds, then no nonosdilatory solution y of (QF) has property V2 for all large 
t. 

P r o o f . Let y be a positive solution of (QF) with property V2 on [c, oo), 
c > a. By the third generalized Kiguradze lemma (see Lemma 2 in [13]) 

y(t) > R\2(t,c)L2y(t) for every t > t0 > c 

holds. Thus, for every A E (0,1) there exists a number T = t\, T > to such 
that 

Ri2(t,c)> \R12(t,a), r > T , 

since lim Ri2(t,c)(R\2(t,a)) = 1. Using conditions (10) and (11) we obtain 

f(y(t)) > f[\Rl2(t,a)L2y(t)} >Cf(X)f(Rl2(t,a))f(L2y(t)) 

for some C > 0 and every t >T. Dividing (QF) by f(L2y(t)) and integrating 

from T to t > T, we get 

/ f(LУ

2m)ás - -Cf{x) I / ( f í l 2 ( s ' a ) ) q{s) ds • 
т т 

Since equation (QF) is sublinear, we have 

L2y(T) L2y(T) 

_dt 

0 
[ Lşy(ş)A [ du [ du 

І7(I^j)d5 = - I W)-~ I Tӣ^"00' 
L2j/(<) 

contradicting the condition (22). This completes the proof of the theorem. 

R e m a r k 5. The condition (22) is weaker than the condition (20) because 

/(вд = /(д2^)>oяад(§f). 
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THEOREM 3. Let conditions (4) and (12) hold and the equation (QF) be weak 
superlinear. If the equation 

(r2(t)z')' + 
p(t) ,Rn(t,a) ,.. 

+ mл n ti—^-q(t) n(t) R2(t,a) 
z = 0 (23) 

for some m > 0, 0 < A < 1 is oscillatory, then no nonos dilatory solution y of 
(QF) has property V2 for all large t. 

The proof is similar to that of Theorem 1 (see (13')) and hence is omitted. 

R e m a r k 6. Let conditions (4) and (12) hold. By the generalized Kneser 
theorem (Theorem 2.3 in [5]) or by the criterion Moore-Rab (see Theorem 11 or 
Theorem 12 in [1] with u = (.R2)5), respectively, the equation (23) is oscillatory 
if the condition 

lim inf T2 (t)R2 (tj a) 
t—->oo 

p(t) ,R12(t,a) 
+ mA „ , ,— r l ( t ) 

or 
0 0 

J(R2(t,a))1 P(t) 

П(t) 
+ m\ 

r i (0 

Д i 2 ( * , q ) 

R2(t,a) 

R2(t,a) 

ч(t) dt = 

1 

> 4 

0 < 6 < 1 

holds. 

THEOREM 4. Let the function f satisfy the condition 

liminf | / ( u ) | > 0. 
H — 0 0 

// 
0 0 

q(t)dt = ex), 

then no nonos dilatory solution y of (QF) has property V2 for large t. 

(24) 

(25) 

P r o o f . Let y be a positive solution of (QF) with property V2 on [T, 00), 

T > a. Since yL\y > 0 on [T, 00), lim y(t) exists. If lim y(t) = 00, then 
t—KX> t—KX> 

from (24) and (25) we obtain 

q(t)f(y(t))dt = 0c. (26) 
/ • 

If lim y(t) =- K < 00, then from (25) and the continuity / (26) holds, too. 
t—>oo 

Integrating the inequality L$y + q(t)f(y) < 0 from T to t > T and using (26) 
we get L2y(t) < 0 for all sufficiently large r, a contradiction. This completes 
the proof of the theorem. 
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4. Main result 

The last theorem is an oscillation criterion for (QF). It generalizes not only 
Theorem A and Theorem B but some partial generalizations of Theorem A for 
third order nonlinear differential equations, too (see [11, 14, 15, 16, 17]). See also 
Corollary 3.4 in [3]. 

We recall that 

t 

R2(t,T)= [Jt-, t>T>a, 
J r2(s) 
T 

Liy(t) = ri(t)y'(t), L2y(t) = r2(t)[Liy(t)}', ( s e e ( l ) ) , 

and 

F[y(t)] = 2y(t)L2y(t) - rJ^[Lly(t)}2 + p(t)y*(t). 
r l \ t ) 

Assume further that r2/Ti , p G C*(J,R). 

THEOREM 5. Let p > 0, q > 0, [r2/r.i]' > 0, p' < 0 on J , R2(t,a) —• oo as 
t —> oo . In addition assume that the hypotheses of any theorem 1-4 are fulfilled. 
Let y be a solution of (QF) which exists on the interval [T, oo), T > a. Then 
y is oscillatory if and only if there exist a point to > T such that F[y(to)\ < 0. 

P r o o f . If F[y(t)] > 0 for all t > T , it is clear that y cannot have any 
zeros for t >T. Hence y is nonoscillatory. 

Now suppose that F[y(ro)] < 0 for some to > T. By the Lemma 2 either y 
is oscillatory or y is nonoscillatory with the property V2 for all large t (see (2)). 
On the other hand applying some of Theorems 1-4 we get that a nonoscillatory 
solution y has not property V2 . Consequently y is oscillatory. This completes 
the proof of theorem. 

R e m a r k 7. Any solution y of (QF) which has a zero (that is, y(t*) — 0 
for some t* > T) satisfies F[y(i*)] < 0 . So by Theorem 5 any solution which 
has a zero is oscillatory. 

R e m a r k 8. The assertion of Theorem 5 can be written as: Then y is 
nonoscillatory if and only if F[y(t)] > 0 for all t E [T, oo) . 

R e m a r k 9. Let us recall that if the equation (QF) is weak superlinear, 
(see Definition 2), then the condition p' < 0 of Theorem 5 may be replaced with 
a weaker condition 2mq(t) — p'(t) > 0, t G J and 2mq(t) — p'(t) not identically 
zero any ray of the form [r*, oo] for some t* > a > 0, (see proof of Lemma 2). 
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E x a m p l e 4. Consider the weak superlinear equation 

Of 

(t(ty')')' + (f - 1V + 2 + s . n 2 f ( y + y 3) = 0, t > a > 0. (26) 

All the conditions of Theorem 5 (see Theorem 3 and Remark 9, m = 1) are 
satisfied since the equation 

(tz')' + 
1 A„ K Зí 

+ õ( l n - ) : t 2 v a' 2 -f- sin 2t 
z = 0 , some 0 < A < 1 

is oscillatory (see Remark 6). Hence any solution of (26) with .F[y(ro)] < 0 

(e.g. if y(to) = 0, then F[y(£o)] < 0) is oscillatory. An example of such solution 

is y(t) = smt + cost. 
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