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THE MEASURE EXTENSION THEOREM
FOR SUBADDITIVE MEASURES
IN o-CONTINUOUS LOGICS

PETER VRABEL

The quantum theory requires the study of measures on logics (see [1], [6]). The
basic problem of the extension of measures on logics has not been solved so far.

There are some results in [2], [3], but for modular lattices only. B. Riean
proved the extension theorem for subadditive probability measures in [5].
B. Riecan assumes the given measure to be a probability measure defined on an
orthocomplemented sublattice of a logic. Every orthocomplemented sublattice of
a logic is a ring.

In this paper we prove an extension theorem for subadditive o-finite measures
defined on rings.

Notations and notions

If ¢ is a lattice, we shall write x, /'x, if X, =xps1 (n=1,2,...) and x =\ x,,

n=1

similarly for x,\,x. A o-complete lattice will be called o-continuous if x. /'x, y. /'y
implies x, Ay, x Ay and respectively.

By an orthocomplementation of a lattice € with the least element 0 we mean
a mapping 1: a—a* of  into itself such that

(i) a=b implies b*=a*,
(ii) (a*)*=a for all a,
(iii) ana*=0 for all a.
A o-complete lattice 9 with an orthocomplementation L is said to be a logic in the
following case
(iv) if a, be ¥ and a=b, there exists an element d € ¥ such that d=a* and

b=avd. ’

The element d in (iv) is unique and is equal to b Aa* (see e.g. [6]). If a,, a,, ... is
a sequence of elements of a logic, then
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(\"/a..)L=/n\a,f and (/"\a,.)L=\n/a,f.

Two elements a, b of a logic are called orthogonal (aLb) if a=b™*. If gL b and
a=c, then (avb)ac = av(bnac).
A subset & of a logic is called a ring (Z-ring) if a, be A (a. €4, n=1,2,..)

. implies avbe.sd(Va,.ed), anbesd, anb* esd. A mapping m A — (0, ©) is

called a measure if the following statements are satisfied :
(@) m(0)=0

(B) if a,esf (n=1,2,...) and a, are pairwise orthogonal and V a, € &, then

m <\n/a,.) = Zm(a,.).

A measure m is called subadditive if m(avb)=m(a)+ m(b)foreverya,b e .

Preparatory constructions

Let ¥ be a o-continuous logic. Let &f = % be a ring, let m: &{— (0, ©) be
a finite subadditive measure. We want to extend it to the 3-ring 3 (<) generated by
. We shall prove the main theorem in the case of m being o-finite.

Let £*={be¥; Ab,e A, b,/ b}. It is easy to prove that a mapping m*:
A" — (0, ©) is well defined by the formula

m*(b)= lim m(b,), b,/'b

Now put -
m*(x)=inf {m*(b);beAd”, x=b}, xe.

Similarly can be defined &/, m~, mx. It is easy to prove that m*, m~ are
non-negative extension of m, m* is non-decreasing, subadditive and upper
continuous, m* is non-decreasing and subadditive and m* is an extension of m™.

Lemma 1. Letae 4™, besd*, a=b. Then m (a)=m™(b).
Proof. It is sufficient to consider m*(b)<w. Let a,, b,ed (n=1,2,..),
a,\a, b,/b. If K=a,vb, then a*, K, Kna*esd*, m"(K)<w,

m*(K)= lim m(a,vb,)= lim m(a,) + lim m((a,vb)Aay)=

=m (a)+m*(Knaa"),
" K=av(Kaa*)=bv(Kra*)=K.

If m™(a)>m*(b), then m*(K)=m*(b)+m*(Kra*)<m (a)+ m*(Knra')=
=m™*(K). This is a contradiction.
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Corollary. For every x € Xmx(x)=m*(x).

Lemma 2. If aes{™, bes*, a<h, then m*(b)=m (a)+m*(bra").
Proof. Let b,/b, a,\\a, a,, b,esd (n=1,2,...); then

m* (b) =lim m(b,) Zlim m((b, A )V (b AaR)) =
=lim m (b, Aa,) +lim m(b.Aar)=
=m*(bAaa)+m*(baan)Zm (a)+m*(bAam).
Taking m— o we obtain
(1) m*(b)=Zm (a)+m*(bAaat).

Further

(amV(banay))/(amv(bra*))Zb,
m*(b)=m*(anv(bara*))= li'r'n m(am Vv (b, Aay))=

=m(a,)+m*(baa*), hence
(2) m*(b)=m (a)+ m*(bAaa*).

The assertion follows from (1) and (2).
Let us denote L ={x € ¥; mx(x)=m*(x)<x}.

Lemma 3. Let ye &, xe L, x=y. Then m*(y)=m*(x) + m*(yAx").

Proof. It is sufficient to consider m*(y) <. If £>0, then there exist ae 4",

b e s such that a=x, y=b and

m*(x)=mx(x)<m (a)+¢&, m*(b)—e<m*(y),
m*(yax*)=m*(baat).
Further
m*(x)+m*(yax)<m (a)+ m*(bra*)+e=
=m*(b)+e<m*(y)+2¢, hence
m*(x)+ m*(y Ax*)=m*(y).

The opposite inequality follows from the subadditivity of m*.

Proposition 1. If x, ye L and x<y, then yAx*“€L.

Proof. To any £>0 there exist a, ce &~ and b, de A" such that a=x=b,

c=y=d,a=c, b=d and

m*(b)—m (a)<e
@) m*(d)—m (c)<e.

Obviously cAb*=yAx*=dnaa*, cAnb*esf” and dra* e *. Further

((dAct)v(bra ) =(d*veIA(btva)=
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=av((d*vc)abt)=avd*v(cab)=
=(dnra*) vicab)=((dra*)A(cAbr))",

hence
(dnrct)v(brar)=(dra*)Ar(cAabh)* .

We have by Lemma 2 and (3)
m(danat)—m (cab*)=
=m*(dra*)A(cab))=m*(dArc)+m*(bra*)=
=m*(d)—-m (c)+m*(b)—m (a)<2e,

hence it follows that m+(y Ax*)=m*(y ax™).

Proposition 2. If z,e L (n=1, 2, ...), z./z (z.\\2), z € H and lim m*(z,) <,

then z € L and m*(z) =lim m*(z,).

Proof. The first part of the Proposition can be proved analogously as in [5]. Let
z\z:thenz;=z,Zz(n=1,2,...), ziAnzr €L, z:Azy /' zaAnz*. From the first part
we have z;Az* € L because m*(z,Az")=m*(z,) <. Further

z=zun(tnzt) €L, m*(z)=m*(2)+ m*(Zinzt),
m*(z)=m*(z1) — m*(ziAz") = m*(z)) —lim m*(z1A22) =

= li’r.n m*(z:A (2 AZ7)") =1lim m*(z,).

Proposition 3. The mapping rm = m*|L is additive, i.e. x, ye L, y=x" implies
m*(xvy)=m*(x)+ m*(y).
Proof. Let x, yeL, y=x*; then by Lemma 3 we have

m*(xvy)=m*(x)+m*((x vy)axt)=m*(x)+ m*(y).

Definition. Let ¥ be a o-continuous logic, A c¥. By 3(A) ($(A), o(A),
9(A)) we shall denote the Z-ring generated by A (the smallest monotone system
containing A ; the smallest ring containing A closed with respect to the least upper
bounds of any sequences of elements of 0(A) upper bounded in 6(A) ; the smallest
system containing A closed with respect to the limits of any decreasing sequences
and the limits of any increasing sequences of elements of 9(A) upper bounded in

P(A)).

Lemma 4. Let 7 be a o-continuous logic and let o — 3 be a ring. Then ¥(4),
2(oA) are rings and ¥(H)=3(A), D(H)=0(A). If ac (L), beD(A) and
a=b, then ae D(A).

Proof. See [4].
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Main theorem

Theorem. Let ¥ be a o-continuous logic. Let % < ¥ be a ring and let m:
R— (0, ©) be a o-finite, subadditive measure. Then there is exactly one measure

m: Z(R)— (0, ©) that is an extension of m. The measure m is a o-finite
subadditive measure.

Proof. First let us suppose that m is a finite measure defined on a ring &f <= 7.

From Proposition 2 and the inclusion & <=L it follows that D(f)<=L. Let us
denote

D(A)={x€eL;Ax, € D(A), x../x, lim m*(x,)<}.

By Lemma 4 and Proposition 2 it can be easily proved that M is a lattice,
D(A)cD(A)cZ(A) and D(A)cL. If xeZ(A), yeD(A) and x=y, then
x € D(A). Indeed if ya,'y,yn € D(L) and li"m m*(y,) <o, then y, AX,/ X, ya AX =
=Y, YuAX€Z(H)=F(A) and by Lemma 4 we have y.Ax e Z(sf). Evidently

lim m*(y.Ax) = lim m*(y.) <, consequently x € D(H).

Now let us define m on X(&f) in the following way:
If x € D(A), then m(x)=m*(x), if x ¢ D(A), then rr(x)= ». The mapping 1 is
non-decreasing. Namely, if x=y and ye @ (), then xe D(HA) and m(x)=m*(x)=

= m*(y)=m(y). The mapping rn is upper continuous. Let x,, x e Z() (n=1,

2, ...), x.,/ x. Evidently li’r'n m(x,)=m(x). If li'rln m(x,) <o, then x, GW. Let
Xnm / Xny Xum € D(A), li'E_n M(X.m)<® (n,m=1, 2, ...). The sequences are chosen
already so that x,,=x,. for any integers n, r, m, n<r. If y,=x.., then
\"/y,.=\n/x,,=x, Vu ' %, linrﬁ m(y.) = lim rit(x,) < hence xeP(A)cL. Thus
li'rln m(x,) = li’r'n m*(x,) = m*(x) = m(x).

The mapping m is additive. Let x, yeX(«), x1ly, x, yem; then

xvye@ () and m(xvy) = m*(xvy) = m*(x)+m*(y) = m(x)+m(y). If

x ¢ D(A) or y & D(A), then x vy ¢ D(s£) and the additivity of s is evident. The
subadditivity of 7 is proved analogously. The mapping 7 is non-decreasing, upper
continuous, subadditive, additive hence m is a subadditive measure on X ().
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Now let m be a o-finite subadditive measure defined on a ring R . If
A={xeR; m(x)<w}, then « is a ring. According to the preceding part of the
proof we can extend m to Z(f), but X ()= X (R), because if x € R, then there

exist x, e (n=1, 2,...), x,/x. The system T={ceZ(R); c=\ a,, a. €4,

n=1,2, ...} is monotone and it contains R, hence T = X(R) and r is o-finite.
Now we prove the uniqueness of the extension. Let p be a measure defined on

3(#A) and p(x)=m(x) for every x e 4. Let Q={xe3I(HA); p(x)=m(x)<x}.

Evidently 4 =O If x,/'x, yeQ, x=y, x,€Q (n=1, 2,..)), then m(x)=

=lim m(x,)=limp(x,)=p(1)=p(y)<o, hence xe€ Q. If x,€ Q, x,\\x, then also

xeQ and (A< Q. If xeP(A), x./'x, x, e D(A) (n=1, 2,...), then p(x)

= lim p(x,} = lim m(x,) = m(x)<oo, hence D(Hf)c= Q. Let x e X(H); then

there exists a non-decreasing sequence {a, .-, of elements of s such that x =\/ a,.

Then x =\ (xAa,), xAa,=a, € D(H), hence x ra, € D() and

rh(x)=li’r‘n rh(x/\a,.)zli’x‘n p(xAna,)=p(x).

The proof of Theorem is complete.
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MNPEJJIOXEHHUE O INMPOJOIIKEHWUN MEPLI
1A CYBANOWUTHUBHBIX MEP B o-HEIIPEPBIBHBIX JIOTMKAX

Ilerp Bpaben
Pe3ome
Iycts # — o-HenpepbIBHAs JIOTHKA, M — O-KOHe4YHas CyGajyIMTMBHAsS Mepa Ha Kojblie R < .

MMycts 2(ZR) HauMeHbllice O-MOJIHOE KOJILIO, cofepxalyee 2. Toraa cyuwecTByeT eAMHCTBEHHAs Mepa
m: (R)— (0, ), aBAsIOWAACS NPOJOIKEHHEM MePbl m. Mepa rt 0-KOHEYHa ¥ CyOajIuTUBHA.
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